10
DIGITAL
RESEARCH"

C

Language

Programming Guide

for CP/M-68K™

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publi-
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. CP/M-68K and DDT-68K are
trademarks of Digital Research. PDP-11 and VAX are trademarks of Digital Equipment
Corporation. ONYX is a trademark of ONYX Systems, Inc. UNIQ is a trademark of
UNIQ Computer Corpuranon. UNIX is a registered trademark of Bell Laboratories.
Xenix is a registered trademark of MicroSoft Corporation. Zilog is a registered
trademark of Zilog, Inc.

The C Language Programming Guide for CP/IM-68K was prepared using the Digital
Research TEX Text Formatter and printed in the United States of America.

Second Edition: June 1983

The C Language
Programming Guide
for CP/M-68K™

Change Packet One to the
Second Edition: June 1983

1015-2309

COPYRIGHT

Copyraight © 1984 by Digital Research Inc. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research Inc., Post Office Box
579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research Inc. reserves
the right to revise this publication and to make
changes from time to time in the content hereof
without obligation of Digital Research Inc. to
notify any person of such revision or changes.

TRADEMARKS

Digital Research and its logo are registered
trademarks of Digital Research Inc. CP/M-68K is a
trademark of Digital Research Inc.

The C Language Programming Guide for CP/M-68K Change
Packet One to the Second Edition: June 1983 was
prepared using the Digital Research TEX" Text
Formatter and printed 1n the United States of
America.

(1222 ER RN EER NSRS RS R RN

. Compiled: March 1984 *

I A EEZEEEZZRSARRREESER SRR AR R RS

Foreword

The C language under CP/M-68K™ is easy to read, easy to
maintain, and highly portable. CP/M-68K can run most applications
written in C for the UNIX® operating system, except programs that
uge the UNIX fork/exec multitasking primitives or that read UNIX
file structures,

The C Language Programming Guide for CP/M~68K is not a
tutorial. This manual describes how to program in C under the CP/M-
68K operating system, and is best used by programmers familiar with
the C language as described in The C Programming Languaqge (Kernighan
and Ritchie, 1978).

The commonly accepted standard for C language programming is
the Portable C Compiler (PCC), written by Stephen C. Johnson. Many
versions of the UNIX operating system use PCC, including the
2ilog® , ONYX™ , Xenix® , Berkeley UNIX, and UNIQ™ systems.

The CP/M-68K C compiler differs from PCC on the following
points:

e The CP/M-68K C int (default) data type is 16 bits long.
Pointers are 32 bits 1long. All function definitions and
function calls that use long (32-bit ints) and pointer
parameters must use the proper declarations.

e long, int, and char register variables are assigned to D
registers. Five such registers are available in each
procedure,

® Any register variable used as a pointer is assigned to an A
register. There are three such registers available in each
procedure.

® All local declarations in a function body must precede the
first executable statement of the function.

e The CP/M-68K C compiler handles structure initialization as if
the structure were an array of short integers, as in UNIX
version 6.

e The first eight characters of variable and function names must

be unigque. The first seven characters of external names nmust
be unique.

iii

e The CP/M-68K C compiler does not support floating point.

® The CP/M~-68K C compiler does not support structure assignment,
structure arguments, and structures returned from procedures.

e The CP/M-68K C compiler does not support initialization of
automatic variables.

e The CP/M-68K C compiler does not support enumeration types.

Section 1 of this manual describes the conventions of using C
language under CP/M-68K. Section 2 discusses C language
compatibility with UNIX version 7 and provides a dictionary of C
library routines for CP/M-68K. Section 3 presents a style guide for
coding C language programs.

Appendix A is a table of CP/M-68K error codes. Appendix B
discusses compiler components, tells you how to operate the
compiler, and suggests ways to conserve the disk space used for
compiling. Finally, Appendix C presents sample C modules that are
written and documented according to the style conventions outlined
in Section 3.

iv

Table of Contents

Using C Language Under CP/M-68K

Compiling a CP/M-68K C Program .
Memory Layout
Calling Conventions
Stack Frame
Command Line Interface . .

1/0 Conventions
Standard Files

I/0 Redirection . .

C Langquage Library Routines

2.1

2.2

Compatibility with UNIX V7 . . .
Library Routines under CP/M-68K

abort
abs
access
atoi, atof, atol . .
brk, sbrk
calloc, malloc, realloc
ceil
chmod, chown
close

cos, sin . e e e

creat, creata, creatb

ctype e e e e e e e
end, etext, edata Locations
etoa, ftoa
exit, exit
€XP .+ v v e e e e e e e e
fabs

fclose, fflush
fecf, ferror, clearerr, fileno
floor

fmod . r e e e e e e e e e
fopen, freopen, fdopen
fread, fwrite
fseek, ftell, rewind e e e
gete, getchar, fgetc, getw, getl
getpass4 e ...

-
.
.
.

.
ree

v e % s e s e s

e e PR o e

I

s e s 6 & s s e e o

s v e e & & s o =

e v o v e o

L S

« s o e e & & a

e e e 0 v s

« o v o

« 4+ 8 e e 8 o o

getpid . .

Table of Contents
(continued)

gets, fgets .
index, rindex . .
isatty . . .
log
lseek, tell .
mktemp . e e e e s e .
open, opena, openb
perror e e e e
pow . Ve e e e e e
printf, fprintf, sprintf « v e
putc, putchar, fputc, putw, putl .
puts, fputs e e e e e e
gqsort . e e e e e e e e e e e
rand, srand . .
read b . e e e e e e e e
scanf, fscanf, sscanf s e e e s
setjmp, longjmp
signal . . . e et e e e e
einph, tanh« .+ .
1 S
strcat, strncat
strcap, strncmp o e e
strcpy, strnepy . . . o« ¢ e 4 e
strlen © e e e e e e e e e e e
swab L
tan, atan 0 0 0 e ..
ttyname 0 0. .
ungetc N . . o e
unlink . NN . . .
write ., o e e e SN
3 C Style Guide

3.1 Modularity . . .
3.1.1 Module Size .
3.1.2 Intermodule Conmunxcatlon
3.1.3 Header Files . .

3.2 Mandatory Coding Conventions .

3.2.1
3.2.2
3.2.3

Variable and Constant Names
Variable Typing .
Expressions and Constants

V1

" e e e e e e o

e = e s e e e o

* e 8 o e a4 + 4 ¢ + s s s s+ e a s e =

e e s e e v e s .

® * 6 e e s e e e e e s a2 & s s o w s s s e s e s e o

" s e s e e s o

® 6 & 6 4 o s s e e e & s e s s s ®

® 8 & o ° e e s 2 2 6 & & s & 6 % e & e e s e s e e »

® e e e 8 e o o 2 s 6 s e & 6 e e o s e s a 8 o 4 s w s e e »

® 4 o 8 s e e 2 s 8 e + e s s e

« e e s s e o o

e e 4 s e o

® e s 4 e e s e s s s B e e a v & e s o o &

2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-44
2-46
2-47
2-48
2-49
2-50
2-52
2-53
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66

Table of Contents

(continued)
3.2.4 Pointer Arithmetic e« e 4 3=5
3.2.5 String Constants e e o s« 3-6
3.2.6 Data and BSS Sections . . e v e e s s . 3-6
3.2.7 Module Layout « ¢ ¢ +« o o o s v s s o 3=7

3.3 Suggested Coding Conventions +« . . . 3-8

Appendixes

Brror COA@B . . . + o« ¢ o s « o o s o o s o s o o o » o « A=)

Customizing the C Compiler « + ¢ ¢ ¢ ¢« o o B=1
B.l Compiler Operation « + + + « &« « o &+ « « B=1
B.2 Supplied SUBMIT Files ¢« « ¢« + « + « « B=3
B.3 Saving Disk Space« ¢« ¢« « + « 4 ¢« ¢« + ¢« « B=3

B.4 Gaining Speed ¢« ¢ + ¢+ + ¢ e e s s « « B=-2
Sample C Module « ¢ « « « s 4 s o o s s e o s . C=1

Brroxr Messages « .+ « + + « « o s o o« « 2 o o+ . D=1
D.l CO68 Error Messages <+ + ¢« + « o« o o o« o D=1

D.1.1 Diagnostic Error Messages « D=1
D.1.2 Internal Logic Errors . . . « + + +. « + « « o D-12

D.2 Cl68 Error Messages « « + « « « o,o « + « D=-13

D.2.1 Fatal Diagnostic Errors « . +. « .+ . D=-13
D.2.2 Internal Logic Errors +« . . . D-14

D.3 CP68 Error Messages ¢« + « « o« + =+ « «» « o« D-15

D.3.1 Diagnostic Error Messages D-15
D.3.2 Internal Logic Errors D=20

D.4 C-Run-time Library Error Messages D=-20

Tables

Tables and Figures

Standard File Definitions .

ctype Functions
Conversion Operators

Valid Conversion Characters
68000 Exception Conditions

Type Definitions

.

Storage Class Defxn1t1ons .

CP/M-68K Error Codes

C068 Diagnostic Error Messages
Cl68 Fatal Diagnostic Errors
CP68 Diagnostic Error Messages

Memory Layout
C Stack Frame

.

viii

.

.

.

* s e o

2-14
2-43
2-51
2-53

3-4

3~

D~

4

2

D-13
D-15

Section |
Using C Language Under CP/M-68K

1.1 Compiling a CP/M-68K C Progras

To create an executable C program under CP/M-68K, use the C.SUB
and CLINK.SUB command files. The C.SUB file invokes the C compiler
and the CLINK.SUB file invokes the linker. Use the following
command line format to invoke the C compiler. Note that the command
keyword SUBMIT is optional and that the source file must have a C
filetype. You must not specify the C filetype in the compiler
command line.

A>[SUBMIT] C filename

The compiler produces an object file with a O filetype. The
linker uses the object file to create the executable program. Use
the following coammand line format to invoke the linker. Again, the
conmmand keyword SUBMIT is optional. You pust not specify the O
filetype in the linker command line for the object file.

A>[SUBMIT] CLINK filename

You can specify multiple object files for linking into an
executable program. For example, the first three command lines
below compile source files named ONE.C, TWO.C, and THREE.C. The
last command line links the three object files that the compiler
creates into an executable program named ONE,68K

A>submit c one

A>submit c two

A>submit c three

A>submit clink one two three

To link C programs that use floating point math, substitute the
CLINKF file for CLINK in the preceding example. CLINKF uses the
Motorola FFP floating point format which is considered the fastest.
To compile and link programs that use IEEE floating point format,
substitute the CE file for C and the CLINKE file for CLINK in the
preceding examples.

1.2 Memory Layout ‘c Language Programming Guide

1.2 Memory Layout

The memory aliocation of C programs running under CP/M-68K is
gimilar to that of UNIX C programs. A program consists of three
gsegments: the text segment or program instruction area, the data
gsegment for initialized data, and the BSS or block storage segment
for uninitialized data. There are two dynamic memory areas: the
stack and the heap. Procedure calls and automatic variables use the
gtack. Data structures such as symbol tables use the heap. The
brk, sbrk, malloc, and free C functions manage the heap. Figure 1-1
shows how each of the areas are arranged in memory.

TPA HIGH
STACK (GROWS TO LOWER ADDRESSES)

BREAK
HEAP (GROWS TO HIGHER ADDRESSES) END
BLOCK STORAGE SEGMENT

EDATA
DATA SEGMENT

ETEXT
TEXT SEGMENT

TPA LOW

Pigure l-l. Memory Layout

The linker determines the locations etext, edata, and end. These
locations are the ending addresses of the text, data, and BSS

segments. The oreak location is the first unused address following
the heap.

1.3 cCalling Conventions

The JSR instruction (jump to subroutine) calls a C language
procedure. Register Ab acts as the frame pointer to reference local
storage. Arguments are pushed onto the A7 stack in reverse order.
Word and character arguments occupy L6 pits. Long, floating point,
and pointer arguments occupy 32 bits. All function values return in

register DO. Functions that specify no return value actually return
an undefined value.

1-2

. Language rrogramming Guliae

For example,

the following sequence

long a
int b
char x
register y

.
’
.
’
.
’
.
.

b = blivot(x,a);

generates the following codes:

xyx() {
—

]

_Xyz:
Py
—

link a6,#-8
movem.l d6-47,-(27)

move.,l

-4(a6), (a7)
move.b -8(a6),do0
ext.w d0
move.w d0,-(a?)
jsr _blivot
add.l $2,a7
move.w d0,6(a6)
tst.l (a7)+
movem.l (a?7)+,47
unlk aé
rts

L]

.4 cCalLling cLonventions

Space for a,b,x

*a7 used for y
*d6 reserves space

* 2 % * & % % % % % ¥

Load parameter a

Load parameter x
Extend to word size
Push it

Call subroutine

Pop arqument list
Store return parameter
Purge longword
Unsave registers
Restore frame pointer
Return to caller

1.3 Calling Conventions C Language Programming Guide

C code, in which all arguments are the same length, might not
work without modification because of the varying length of arguments
on the stack.

The compiler adds an underline character, _, to the beginning of
each external variable or function name. This means that all
external names in C must be unique in seven characters.

The compiler-generated code maintains a long word at the top of
the stack for use in subroutine calls. This shortens the stack-
popping code -required on return from a procedure call. The movem.1l
instruction, which saves the registers, contains an extra register
to allocate this space.

The compiler uses registers D3 through D7, and A3 through AS, for
register variables. A procedure called from a C program must save
and restore these registers, if they are used. The compiler-
generated code saves only those registers used. Registers DO
through D2, and A0 through A2, are scratch registers and can be
modified by the called procedure,

l.4 Stack Prame

.

Figure 1-2 illustrates the standard C stack frame.

A?

LONGWORD FOR PROCEDURE CALLS

SAVED REGISTERS

LOCAL VARIABLE AREA

AG ———t- PREVIOUS VALUE OF A6

RETURN ADDRESS

ARGUMENT 1

ARGUMENT 2

Figure 1-2. C Stack Frame

C Language Programning Guide 1.4 Stack Frame

Arguments are either two or four bytes depending on the argument
type. The compiler generated code uses register A6 to reference all
variables on the stack.

1.5 Command Line Interface

The standard C argc/argv interface for arguments typed on the
command line also works under CP/M-68K. For example, the coamand

comnand argl arg2 arg3 ... argn

produces the following interface setup:

argce = n+l

arg(0] “C Runtime”
arg(l) “argl"
arg[2] "arg2"
argv(in] argn

You cannot obtain the command name under CP/M-68K. Therefore, the
argv(0] argqument always contains the string "C Runtime".

Strings that contain the characters * or ? are interpreted as
wildcarded filenames. The C runtime start-up routine scans the
directory and expands each wildcarded filename into a list of
filenames that match the specification. To pass a string that
contains * or ? characters to a C program, enclose the string in
single or double gquotation marks. Similarly, enclose argument
strings that contain embedded blanks in quotation marks to pass them
to a C program as a single element of argv(].

1.6 1I/0 Conventions

UNIX C programs use two types of file and device 1/0: regular

and stream files. A unique number called the file descriptor
identifies regular files. In CP/M-68K, file numbers range from O to
15. The address of a user control block i1n the run~time system

identifies stream files. Unlike regular files, stream files use a
form of intermediate buffering that makes single-byte I/0 more
efficient.

Under UNIX, you can reference peripheral devices, such as
terminals and printers, as files using the special names /dev/tty
for terminal and /dev/lp for printer. Under CP/M-68K, CON: is for
the console device and LST: is for the listing device.

1-5

1.6 1/0 Conventions C Language Programming Guide

CP/M-68K stores ASCII files with a carriage return line feed
after each line. A CTRL-Z (Oxla) character indicates end-of-file.
C programs usually end lines with only a line feed. This means that
in C for CP/M-6BK, read and write operations to ASCII files must
insert and delete carriage-return characters. The CTRL-Z must be
deleted on read and inserted on close for such files. These
operations are not desirable for binary files. CP/M-68K C includes
an extra entry point to all file open and creat calls to distinguish
between ASCII and binary files.

1.7 Standard Piles

C programs begin execution with three files already open: the
standard input, standard output, and standard error files. You can
access these files as either stream or regular files in a C program.
The usual C library routines close and reopen the standard files.
The following definitions are in the <stdio.h> file.

Table 1-1. Standard Pile Definitions

File File Descriptor Stream Name
standard input STDIN stdin
standard output STDOUT stdout
standard error STDERR stderr

-6

v wanyuaye riuyloumiigyg vuiue L.0 l/U Realrection

1.8 I/0 Redirection

You can redirect C program standard 1/0 using the < and >
characters. For example, the following command executes the file
TEST.68K. The standard input comes from file DAT and the standard
output goes to the listing device. The argument list is C, D, E,
and F.

A>TEST <DAT >LST: CDEF
You cannot place spaces between the < or > characters and the
filename that the character refers to. Note that you cannot
redirect the standard error file.

You can append information to an existing file using the
following specification:

>>filename
The standard output from the program specified by the filename
appears after the original contents of the file.

End of Section 1

1=7

Section 2
C Language Library Routines

The CP/M-68K C library is a collection of routines for 1/0,
dynamic memory allocation, system traps, and data conversion.
2.1 Compatibility with UNIX V7

The C library is compatible with UNIX version 7, allowing
programs to move easily from UNIX to CP/M-68K. CP/M-68K C simulates

many UNIX operating system calls and features. However, CP/M-68K
does not support the following C functions that UNIX implements:

e the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait
primitives
e the acct system call

e the alarm function, or the stime, time, ftime, and times system
calls)

e the dup and dup2 duplicate file descriptor functions

® the getuid, getgid, geteuid, getegid, setuid, and setgid
functions

e the indir indirect system call
e the ioctl, stty, and gtty system calls
e the link system call

e the chdir, chroot, mknod, mount, umount, apx, pipe, pkon,
pkoff, profil, sync, stat, fastat, umask, and utime systen calls

e the phys system call

2.1 Compatibility with UNIX V7 C Language Programming Guide

The following UNIX library functions are not available under CP/M-
68K:

Assert

Crypt

DBM

Getenv

Getgrent, getlogin, getpw, and getpwent functions
13tol, ltoll

monitor

itom, madd, msub, mult, mdiv, min, mout, pow, gcd, and rpow
nlist

pkopen, pkclose, pkread, pkwrite, and pkfail

plot

popen, pclose

Sleep

system

ttyslot

The CP/M-68K C language library does not contain the floating-
point routines available under UNIX.

Entry points have been added to file open and creat calls to
distinguish between ASCII and binary files. Byte level end-of-file
is unavailable for binary files. ASCII files, however, are
compatible with UNIX, and with the CP/M-68K text editors and
utilities that use ASCII files.

The C Programming Guide for CP/M-68K does not separate the UNIX
system calls and library functions; all calls are library functions
under CP/M-6BK.

2.2 Library Punctions under CP/M-68K

The remainder of this section alphabetically lists library
routines that C supports under CP/M-68K. The C compiler accepts
entry in upper- and lower-case; however, type all library routines
in lower-case, as shown in the calling sequences.

C Language Programming Guide abort Funct

abort Fumnction

——— — ——— o ——— — - — - - = . ™ e A A% e w - . ———— o

The abort function terminates the current program with an err
The error is system dependent. The 68000 uses an illes
instruction trap. This invokes DDT-68K™, if the debugger is loat
with the object program.

Calling Sequence:

WORD code;

abort(code);

Arguments:
code loads into register DO before abort

Returns:

The abort function never returns.

abs Function C lLanguage Programming Guide

abs Punction

——----.-—-_--———--------—---_--..------—-_..--_------_-_-------—---

The abs function takes the absolute value of a single argument.
This function is implemented as a macro in <stdio.h>; arguments with
side effects do not work as you expect. For example, the call

a = abs(*x++);

increments x twice.

Calling Sequence:

WORD val;
WORD ret;

ret = abs(val);

Arguments:

val the input value

Returns:

ret the absolute value of val

C Language Programming Guide access functiol

access Function

— ——— —— - - ————— —— - —— - - - - -

The access function checks whether the calling program can acces:
a specified file. Under CP/M-68K, the file is accessible if i’

exists.

Calling Sequence:

BYTE *name;
WORD mode:;
WORD ret;

ret = access(name,mode);

Arguments:

name points to the null-terminated filename

mode can be one

of four values:

4 checks read access
2 checks write access
1 checks execute access
o checks directory path access
CP/M-68K ignores the 0 argument
Returns:
ret 0 if file access is allowed or -1 if not allowed
Note:

CP/M-6BK only checks to see if the specified file exists,

atoi, atof, atol Functions C Language Programming Guide

atoi, atof, atol Punctions

The atoi, atof, and atol functions convert an ASCII digit string
to an integer, float, or long binary number, respectively. The atoi
and atol functions convert digit strings of the form (-][+)dddddad...
The atof function converts digit strings of the form [-
J{+)aaddd.ddd(e(-]dd]. Each "d“ i1s a decimal digit. The compiler
ignores all leading spaces, but permits a leading sign. Conversion
proceeds until the number of digits in the string is exhausted.
Each function returns a 0 when there are no more digits to convert.

Calling Sequence:

BYTE *gtring;

WORD ival,atoi():
LONG lval,atol():
FLOAT fval,atof():

ival = atoi(string);
lval = atol(string);
fval = atof(string):

Arguments:
string a pointer to a null-terminated string that contains
the number to convert
Returns:
ival atol returns the converted string as an integer
lval atol returns the converted string as a long binary
number
fval atof returns the converted string as a single-
precision floating-point number
Note:

The atoi, atol, and atof functions do not detect or report
overflow. Therefore, you cannot specify a limit to the number
of contiguous digits processed or determine the number of
digits a function processes.

C Language Programming Guide brk, sbrk Function

brk, sbrk Punctions

- - - T o " ——— - —— = . - .- - = e = ————- . 4 = = = = = —— W ™ W e ® e———

The brk and sbrk functions extend the heap portion of the use
program. The brk function sets the upper bound of the prograns
called the break in UNIX terminology, to an absolute address. Th
sbrk function extends the program by an incremental amount.

Calling Sequence:

WORD brk():;

BYTE *addr, *sbrk();
WORD ret;

BYTE *start;

ret = brk(addr);
start = gbrk(incr);

Arquments:
addr the desired new break address
iner the incremental number of bytes desired
Returns:
0 success (brk)
-1 failure (brk)

start begins the allocated area (sbrk)
0 failure (sbrk)

calloc, malloc, realloc, free C Language Programming Guide

calloc, malloc, realloc, free Functions

P N G S E e ® e e e E N N E e . . e . M — . = = = = = e ETEAE e = = % e e T M—— - e w—

The calloc, malloc, realloc, and free functions manage the
dynamic area between the region and the stack.

The malloc function allocates an area of contiguous bytes aligned
on a word boundary and returns the address of this area. Malloc
uses. the sbrk function to allocate additional heap space, if
necessary.

The calloc function allocates space for an array of elements,
whose size is given in bytes,

The realloc function changes the size of a block. The address of
the block returns.

The free function releases a block previously allocated by
malloc.

Calling Sequence:

WORD size,number;
BYTE *addr, *malloc(),*calloc(),realloc():

addr = malloc(size);

addr = calloc(number,size):;
addr = realloc(addr,size);
free(addr);

AX gumen ts:

size the number of bytes desired

number the number of elements desired

addr points to the allocated region
Returns:

Address of the allocated region if succesaful, O if
unsuccess ful .,

iote:

Freeing a bogus address can be disastrous.

C Language Programming Guide ceil Function

ceil PFunction

-———-—— - - —— "~ ———— = = = ——— - == W e

The ceil function returns the smallest integer that is greater
than the argument you specify. For example, ceil(l.5) returns 2.0.
The return value is a floating-point number.

Calling Sequence:

FLOAT ceil():
FLOAT arg;
FLOAT ret;

ret = ceil(arg);

Arguments:

arg a floating-point number
Returns:

ret a floating-point number

2=~

chmod, chown Functions C Language Programaming Guide

chmod, chown Functions

S R R N e e e e e e c e r et c s ca RN e Ec ccm A cmm e . ErE— - .. .- .- o

Under UNIX, the chmod and chown system calls allow you to change
the protection and owner 1D of an existing file. CP/M-68K treats
these calls as NO-OPS if the file exists.

N
Calling Sequence:
BYTE *name;
WORD mode,owner,group,ret;
cet = chmod(name,mode);
ret = chown(name,owner,group);
Arguments:
name the affected filename (null-terminated)
mode the new mode for the file
owner the new owner of the file
group the new group number
Returns:
ret O if the file exists
-1 if the file does not exist S’
N’

2-10

—

C Language Programming Guide close Functic

close Function

The close function terminates access to a file or device. Th.
routine acts on files opened with the open or creat functiont
Specify a file descriptor, not a stream, for the operation. T}
fclose function closes stream files.

Calling Seguence:

WORD fd,ret;

ret = close(fd);

Arguments:

fa the file descriptor to be closed
Returns:

0 successful close

-1 unknown file descriptor

cos, 8in Functions C Language Programming Guide

cos, 8in Punctions

The cos function returns the trigonometric cosine of a floating-
point number. The sin function returns the trigonometric sine of a
floating-point number. You must express all arguments in radians.

Calling Sequence:

PLOAT cos(),sin();
FLOAT val,ret;

ret = cos(val);
ret = sin(val);

Arquments:

val a floating-point number that expresses an angle in
radians
Returns:
ret the cosine or sine of the argument value expressed in
radians

Note:

The best results occur with arguments that are less than 2 pi.
You can pass numbers declared as either float or double to cos
and s8in.

C Language Programming Guide creat, creata, creatb Functio

creat, creata, creatb FPunctions

——— - - - - - " ——— — ——— > = = = = E M e m e —————— " ® @ - e e e e ——

The creat function adds a new file to a disk directory. The fi
can then be referenced by the file descriptor, but not as a stre
file. The creat and creata functions create an ASCII file. T!
creatb function creates a binary file.

Calling Sequence:

BYTE *name:;
WORD mode, fd;

fd = creat(name,mode);
fd = creata(name,mode);
fd = creatb(name, mode);

Argunents:

name the filename string, null-terminated
mode the UNIX file mode, ignored by CP/M-68K

Returns:
fd The file descriptor for the opened file. A fil
descriptor is an int quantity that denotes an ope
file in a read, write, or lseek call.
-1 Returned if there are any errors.
Note:

UNIX programs that use binary files compile successfully, bu
execute improperly.

ctype Functions C Language Programming Guide

ctype Punctions

e e e e . ——— —————— - . . - ® . w —————— - ——— - = ——— - " = - =

The file <ctype.h> defines a number of functions that classify
ASCII characters. These functions indicate whether a character
belongs to a certain character class, returning nonzero for true and
zero for false. The following table defines ctype functions.

Table 2-1. ctype Punctions

Function Meaning
isalpha(c) ¢ is a letter.

isupper(c) c is upper-case.

islower(c) c is lower-case.

isdigit(c) c is a digit.

isalnum(c) c is alphanumeric.

isspace(c) ¢ is a white space character.
ispunct(c) ¢ is a punctuation character.
isprint{(c) ¢ is a printable character.
iscntrl(c) ¢ is a control character.
isascii(c) ¢ is an ASCII character (< 0x80).

The white space characters are the space (0x20), tab (0x09),
carriage return (0x0d), line-feed (0x0a), and form-feed (OxOc)
characters. Punctuation characters are not control or alphanumeric
characters. The printing characters are the space (0x20) through
the tilde (Ox7e). A control character is less than a space (0x20).

C Language Programming Guide

Calling Sequence:

tinclude <ctype.h>

WORD ret;

BYTE c; /* or WORD c; */
ret = isalpha(ec);
ret = isupper(c);
ret = islower(c);
ret = isdigit(c):
ret = isalnum(c);
ret = isspace(c);
ret = ispunct(c);
ret = isprint(c);
ret = iscntrl(c);
ret = isascii(c);

A:guments:

c
Returna:
ret

ret

Note:

These functions are implemented as macros;
effects, such as *p++
values return if ar

the character to be classified

= 0 for talse
<>0 for true

example, >0Ox7f.

ctype Functior

arguments with side
» work incorrectly in some cases. Bogus
guments are not ASCII characters. For

end, etext, edata Locations C lLanguage Programming Guide

end, etext, edata Locations

The linkage editor defines the labels end, etext, and edata as
the first location past the BSS, text, and data regions,
respectively. The program-break location, which is the last used
location, is initially set to end. However, many library functions
alter this location. sbrk(0) can retrieve the break.

C Language Programming Guide etoa, ftoa Functior

etoa, ftoa Functions

The etoa and ftoa functions convert a floating-point number to ¢
ASCII string. Both functions return the address of the converte
string buffer. The string returned in the buffer takes the for
[-)d.ddddde(-]dd. Each "d" is a decimal digit.

Calling Sequence:

FLOAT fval;
BYTE *ftoa(),*etoa(), *buf, *ret;
WORD prec:

ret = etoa(fval,buf,prec);
ret = ftoa(fval,buf,prec);

Argunments:

fval the floating point number to be converted
buf the address of the buffer for the digit string
prec the number of digits to appear to the right of the
decimal point in the converted string
Returns:

ret the address of the buffer for the converted, null-
terminated string

2-1

exit, _exit Functions C Language Programming Guide

exit, exit Punctions

e e v > m = . = ————. % —————— = = = = e = = = = = % w =t em m e~ .. - - .- -

The exit function passes control to CP/M-68K. An optional
completion code, which CP/M-68K ignores, might return. exit
deallocates all memory and closes any open files. exit also flushes
the buffer for stream output files.

The _exit function immediately returns control to CP/M-68K,
without flushing or closing open files.

Calling Sequence:

WORD code;

exit(code);

_exit(code);
Arguments:

code optional return code
Returns:

no returns

C Language Programming Guide exp Functi

exp Punction

———— - e N B R Em Ve e " T S AN e LE . Gm N .- - mm e s e E E R E. EE——- -~ w -

The exp function returns the constant e raised to a specifii
exponent. The constant e is the base of natural logarithims equi
to 2.71828182845905.

Calling Sequence:

FLOAT exp();
FLOAT fval,ret;

ret = exp(fval);

Arguments:

fval the exponent expressed as a floating-point number

Returns:

ret the value of e raised to the specified exponent

Note:

You can pass numbers declared as either float or double to ex|

abs Function C Language Programming Guide

abs Punction

— -—— - -———— e e et — ot c e e ——— - m— . v~ " -

The fabs function returns the absolute value of a floating-point
umber.

alling Sequence:

FLOAT fabs():
FLOAT fval;
FLOAT retval:

retval = fabs(fval):

.rgggents:

fval a floating point number

eturns:

etval the absolute value of the floating-point number

20

C Language Programming Guide fclose, fflush Functions

fclose, fflush Functions

———— > - A i At " = - . - 4 = —— . S S ——— ————— e " ————————— SO————

The fclose and fflush functions close and flush stream files.
The stream address identifies the stream to be closed.

Calling Sequence:

WORD ret;
FILE *stream:;

ret = fclose(streanm);
ret = fflush(stream);

Arguments:

stream the stream address

Returns:
0 successful
-1 bad stream address or write failure

feof, ferror, clearerr, fileno C Language Programming Guide

feof, ferror, clearerr, fileno Punctions

These functions manipulate file streams in a system-independent
manner.

The feof function returns nonzero if a specified stream is at
end-of-file, and zero if it is not.

The ferror function returns nonzero when an error has occurred on
a specified stream. The clearerr function clears this error. This
is useful for functions such as putw, where no error indication
returns for output failures.

The fileno function returns the file descriptor associated with
an open stream.

Calling Sequence:

WORD ret;
FILE *stream;
WORD fd;

ret = feof(stream):
ret = ferror{(stream);:
clearerr(stream);

fd = fileno(stream);

Arguments:

stream the stream address

Returns:
ret 4 zero or nonzero indicator
fa the returned file descriptor

C Language Programming Guide floor Function

floor Function

e er—— . ® G w e EE . . ame .- e . ———— . ——— > " - " E——

The floor function returns the largest integer that is less than
the argument you specify. The returned value is a floating-point
number. For example, floor(l.5) returns 1.0.

Calling Sequence:

FLOAT floor();
FLOAT fval;
FLOAT retval;

retval = floor(fval);

Arguments:

fval a floating-point number
Returns:
retval a floating-point integer value

fmod function ¢ Language Programming Guide

fmod Punction

e I - - —— -

— - —

The fmod function returns the floating-point modulus (remainder)
from a division of two arguments. fmod divides the first argument
by the second and returns the remainder.

Calling Sequence:

FLOAT fmod():
FLOAT x.,y:
FLOAT ret;

ret = fmod(x,y):

Arguments:

x a floating-point dividend
Yy a floating-point divisor
Returns:
ret the modulus as a floating-point number

2-24

C Language Programming Guide topen, freopen, fdopen Functio

fopen, freopen, fdopen Functions

—— - — " - — - - . — - - — ——— = . - - > ——

The fopen, freopen, and fdopen functions associate an I/O stre:
with a file or device.

The fopen and fopena functions open an existing ASCII file £«
1/0 as a stream. The fopenb function opens an existing binary £i:
for 1/0 as a stream.

The freopen and freopa functions subatitute a new ASCII file £«
an open strean. The freopb function substitutes a new binary fi:
for an open strean.

The fdopen function associates a file that file descriptc
opened, using open or creat, with a strean.

Calling Sequence:

FILE *fopen(),fopena(), fopenb();
FILE *freopen(),freopa(),freopb();
FILE *fdopen();

FILE *streanm;

BYTE *name, *access;

WORD £d;

stream = fopen(name,access);

stream = fopena(name,access);

stream = fopenb(name,access):;

stream = freopen(name,access,strean);

stream = freopa(name,access,strean);

stream = freopb(name,access,stream);
=

stream = fdopen(fd,access);

fopen, freopen, fdopen Functions C Language Programming Guide

Arquments:

name the null-terminated filename string
stream the stream address
access the access string:

r read the file
w write the file
a append to a file

Returns:
stream successful if stream address open
0 unsuccessful

Note:

UNIX programs that use fopen on binary files compile and link
correctly, but execute improperly.

=26

C Language Programming Guide fread, fwrite Functio

fread, fwrite Functions

The fread and fwrite functions transfer a stream of bytes betwet
a stream file and primary memory.

Calling Sequence:

WORD nitems;
BYTE *buff;
WORD size;
FILE *stream;

nitems = fread(buff,size,nitems,stream);
nitems = fwrite(buff,size,nitems,stream);

Arguments;:

buff the primary memory buffer address
size the number of bytes in each item
nitems the number of items to transfer
stream an open stream file

Returns:

nitems the number of items read or written
0 error, including EOF

fseesk, ftell, rewind Functions C Language Programming Guide

fseek, ftell, rewind Punctions

The fseek, ftell, and rewind functions position a stream file.

The fseek function sets the read or write pointer to an arbitrary
offset in the stream. The rewind function sets the read or write
pointer to the beginning of the stream. These calls have no effect
on the console device or the listing device.

The ftell function returns the present value of the read or write

pointer in the stream. This call returns a meaningless value for
nonfile devices.

Calling Sequence:

WORD ret;

FILE *streanm;

LONG of fset, ftell():
WORD ptrname;

ret = fseek(stream,offset,ptrname);
ret = rewind(stream):
offset = ftell(stream);

Arguments:

stream the stream address
offset a signed offset measured in bytes
ptrname the interpretation of offset:

0 => from beginning of file
1 => from current position
2 => from end of file
Returns:
ret 0 for success, -1 for failure
offset present offset in stream
Note:
ASCII file seek and tell operations do not account for carriage

returns that are eventually deleted. CTRL-2 characters at the
end of the file are correctly handled.

2-28

C Language Programming Guide getc, getchar, fgetc, getw, get

getc, getchar, fgetc, getw, getl Functions

The getc, getchar, fgetc, getw, and getl functions perfora inpu
from a stream.

The getc function reads a single character from an input stream
This function is implemented as a macro in <stdio.h>, and argument
should not have side effects.

The getchar function reads a single character from the standar
input. It is identical to getc(stdin) in all respects.

The fgetc function is a function implementation of getc, used &
reduce object code size.

The getw function reads a 16-bit word from the stream, high byte¢
first. This is compatible with the read function call. No special
alignment is required.

The getl function reads a 32-bit long from the stream, in 6800C
byte order. No special alignment is required.

Calling Sequence:

WORD ichar;

FILE *strean;
WORD iword:;

LONG ilong,getl():

ichar = getc(streanm);
ichar = getchar():

ichar = fgetc(stream);
iword = getw(streanm):
ilong = getl(stream);

2-2¢

getc, getchar, fgetc, getw, getl C Language Programming Guide

Arguments:

streanm

Returns:

ichar
iword
ilong
-1

Note:

the stream address

character read from stream
word read from stream
longword read from stream
on read failures

Error return from getchar is incompatible with UNIX prior to
version 7. Error return from getl or getw is a valid value
that might occur in the file normally. Use feof or ferror to
detect end-of-file or read errors.

2-30

C Language Programming Guide getpass Function

getpass Punction

—- - > o et ———— ——— - " — ——— > S———

The getpass function reads a password from the console device. A
prompt is output, and the input read without echoing to the console.
A pointer returns to a 0- to B-character null-terminated string.

Calling Sequence:

BYTE *prompt;
BYTE *getpass;
BYTE *pass;

pass = getpass{prompt);

Argunentgi

prompt a null-terminated prompt string

Returns:

pass peints to the password read
Note:

The return value points to static data whose content is
overwritten by each call.

2-31

getpid Function C Language Programming Guide

getpid Punction

-———-- -_—— m—— " ———— - —- - m— - -

The getpid function is a bogus routine that returns a false
precess ID. This routine is strictly for UNIX compatibility; serves
no purpose under CP/M-68K. The return value is unpredictable in
some implementations.

Calling Sequence:

WORD pid;

pid = getpid();

Arquments:

no arguments.

Returns:

pid false process ID

2-32

C Language Programming Guide gets, fgets Function

gets, fgets Functions

= e e G e e W e . . e e —— ——— ™ % e T e .~ G - > @

The gets and fgets functions read strings from stream filea
fgets reads a string including a newline (line-feed) character
gets deletes the newline, and reads only from the standard input
Both functions terminate the strings with a null character.

You must specify a maximum count with fgets, but not with gets
This count includes the terminating null character.

Calling Sequence:

BYTE *addr:;

BYTE *s;

BYTE *gets(),*fgets();
WORD n;

FILE *stream;

addr = gets(s);
addr = fgets(s,n,stream);

Arguments:
8 the string buffer area address
n the maximum character count

stream the input stream

Returns:

addr the string buffer address

PRI P se T T o TN

index, rindex Functions C Language Programming Guide

index, rindex Punctions

.- e m————-— -

R e e i I R R —— -

The index and rindex functions locate a given character in a
string. 1index returns a pointer to the first occurrence of the
character. rindex returns a pointer to the last occurrence.

Calling Sequence:

BYTE c:

BYTE *s;

BYTE *ptr;

BYTE *index(),*rindex():

ptr = index(s,c);
ptr = rindex(s,c);

Arquments:
s a null-terminated string pointer
c the character for which to look
Returns:
ptr the desired character address
0 character not in the string

C Language Programming Guide isatty Functio

isatty Punction

A CP/M-68K program can use the isatty function to determin
whether a file descriptor is attached to the CP/M-68K console devici
(CON:).

Calling Sequence:

WORD f£d:
WORD ret:

ret = isatty(fd):

Arguments:

fd an open file descriptor
Returns:

1 fd attached to CON:

0 fd not attached to CON:

2-35

log Punction C Language Programming Guide

log Punction

- e —— —— - ———— - ————— - —— -~ —— " " - = .

The log function returns the natural logarithm (log base e) of a
floating~-point number.

N’
Calling Sequence:
FLOAT 1log():
PLOAT fval,ret:
ret = log(fval);
Arquments:
fval a floating-point number
Returns:
ret the natural logarithim of the floating-point number
Note:
You can pass numbers declared as either float or double to log. N S
N’

C Language Programming Guide lseek, tell Functions

lseek, tell Punctions

The lseek function positions a file referenced by the file
descriptor to an arbitrary offset. Do not use this function with
stream files, because the data in the stream buffer mnight be
invalid., Use the fseek function instead.

The tell function determines the file offset of an open file
descriptor.

Calling Sequence:

WORD £4;
WORD ptrname;
LONG offset, lseek(),tell(),ret;

ret = lseek(fd,offset,ptrname);
ret = tell (fd);

Argunen ts:

fd the open file descriptor
offset a signed byte offset in the file
ptrname the interpretation of offset:

0 => from the beginning of the file
l => from the current file position
2 => from the end of the file

Returns:
ret resulting absolute file offset
-1 error

Note:

Incompatible with versions 1 through 6 of UNIX.

2-37

mktemp Function C Language Programming Guide

mktemp Punction

— - ——— e e e e " B . . ————— ——— s - —— -

The mktemp function creates a temporary filename. The calling
argument is a character string ending in 6 X characters, The
temporary tilename overwrites these characters.

Calling Sequence:

BYTE 'airing:
BYTE *mktemp():

string = mktemp(string);

Arquments:
string the address of the template string

Returns:

string the original address argument

2-38

C Language Programming Guide open, opena, openb Functions

open, opena, openb Functions

—— e — ——— " - ————— - —— - - = . ————

The open and opena functions open an existing ASCII file by file
descriptor. The opend function opens an existing binary file. The
file can be opened for reading, writing, or updating.

Calling Sequence:

BYTE *name;
WORD mode;
WORD fd;

fd = open(name,mode);
fd = opena(name,mode);
fd = openb(name,mode);

Arquments:

name the null-terminated filename string
mode the access desired:

0 => Read-Only
1 => Write-Only
2 => Read-Write (update)

Returns:
fa the file descriptor for accessing the file
-1 open failure

Note:

UNIX programs that use binary files compile correctly, but
execute improperly.

perror Function C Language Programming Guide

perror Function

—— . e e m m e . . ———— % > - — ————— - - -

The perror function writes a short message on the standard error
file that describes the last system error encountered. First an
argument string prints, then a colon, then the message.

CP/M-68K C simulates the UNIX notion of an external variable,
errno, that contains the last error returned from the operating
system. Appendix A contains a list of the possible values of errno
and of the messages that perror prints.

Calling Sequence:

BYTE *s;
WORD err;
err = perror(s):

Argggenta:

8 the prefix string to be printed
Returns:

eryr value of "ERRNO" before call
Note:

Many messages are undefined on CP/M-68K.

2-40

C Language Programming Guidé pow Punctio

pow Punction

——— —— — - - —— - - ———— —— - - -

- - oww we.

The pow function returns the value of a number raised to :

specified power; pow uses two floating-point arguments. The firsi
argument is the mantissa and the second argument is the exponent.

Calling Sequence:

FLOAT pow();
FLOAT x,y:
FLOAT ret;

ret = pow(x,y);

Arguments:
x a floating-point mantissa

y a floating-point exponent

Returns:
ret the value of the mantissa raised to the exponent

printf, fprintf, sprintf Functions C Language Programming Guide

printf, fprintf, sprintf Punctions

- e e = —— ——— e S——— ———————— - —

The printf functions format data for output. The printf function
outputs to the standard output stream. The fprintf function outputs
to an arbitrary stream file. The sprintf function outputs to a
string (memory).

Calling Sequence:

WORD ret;

BYTE *fnt;

PILE *streanm;

BYTE *string;

BYTE *sprintf(),rs:

/* Args can be any type */

ret = printf (fmnt,argl,arg2 ...):

ret = fprintf(streanm, fnt,argl,arg2 ...);

rs = gprintf(string, fmt,argl,arg2 ...):
Argquments:

fat format string with conversion specifiers

argn data arguments to be converted

stream output stream file
string buffer address

Returns:
ret number of characters output
-1 {f error
rs buffer string address

null if error

Conversion Operators

A percent sign, 8, in the format string indicates the start of a
conversion operator. Values to be converted come in order from the
argument list. Table 2-2 defines the valid conversion operators.

2-42

C Language Programming Guide printf, fprintf, sprintf Functior

Table 2-2. Conversion Operators

Operator Meaning
d Converts a binary number to decimal ASCII
oo and inserts in output stream.

o Converts a binary number to octal ASCII and
inserts in output stream.

x Converts a binary number to hexadecimal
ASCII and inserts in output stream.

c Uses the argument as a single ASCII
character.

s Uses the argument as a pointer to a null-

terminated ASCII string, and inserts the
string into the output streanm.

u Converts an unsigned binary number to
decimal ASCII and inserts in output stream.

3 Prints a % character.

You can insert the following optional directions between the §
character and the conversion operator:

e A minus sign justifies the converted output to the left,
instead of the default right justification.

® A digit string specifies a field width. This value gives the
minimum width of the field. If the digit string begins with a
0 character, zero padding results instead of blank padding. An
asterisk takes the value of the width field as the next
argument in the argument list,

e A period separates the field width from the precision string

e A digit string specifies the precision for floating-point
conversion, which is the number of digits following the decimal
peint. An asterisk takes the value of the prec1sxon field fros
the next argument in the argument list.

e The character 1 or L specifies that a 32-bit long value be
converted. A capitalized conversion code does the same thing.

putc, putchar, fputc, putw, putl C Language Programming Guide

putc, putchar, fputc, putw, putl Punctions

The putc, putchar, fputc, putw, and putl functions output
characters and words to stream files.

The pute function outputs a single 8-bit character to a stream
file. This function is implemented as a macro in <stdio.h>, so do
not use arguments with side effects. The fputc function provides
the equivalent function as a real function.

The putchaf function outputs a character to the standard output
stream file. This function is also implemented as a macro in
<stdio.h>. Avoid using side effects with putchar.

The putw function outputs a 16-bit word to the specified stream
file. The word is output high byte first, compatible with the write
function call.

The putl function outputs a 32-bit longword to the stream file.

The bytes are output in 68000 order, as with the write function
call.

Calling Segquence:

BYTE c¢:

PILE *stream;

WORD w, ret;

LONG lret,putl(),1;

ret = putc(c,stream):
ret = fputc(c,streanm);
ret = putchar(c):

ret = putw(w,stream);
lret = putl(l,stream);

C Language Programming Guide

Arguaents:

c the character to be output
stream the output stream address
w the word to be output
1 the long to be output
Returns:
ret the word or character output
lret the long output with putl
-1 an output error
Note:

putc, putchar, fpute, putw, put

A -1 return from putw or putl is a valid integer or long value.

Use ferror to detect write errors.

puts, fputs Functions C Language Programming Guide

puts, fputs Functions

- ——— — . ® 4~ —— - A ——— —— — — —— — = = - -—— W s = = = =

The puts and fputs functions output a null-terminated string to
an output stream.

The puts function outputs the string to the standard output, and
appends a newline character.

The fputs function outputs the string to a named output stream.
The fputs function does not append a newline character.

Neither routine copies the trailing null to the output stream.

Calling Sequence:

WORD ret;
BYTE *s;
FILE *streanm;

ret = puts(s):
ret = fputs(s,stream);

Arguments:

8 the string to be output
stream the output stream

Returns:
ret the last character output
-1 error

Note:

The newline incompatibility is required for compatibility with
UNIX.

C Language Programming Guide gsort Functic

gsort Function

- . = ® ———— W = —— — S——— W - >

The gsort function is a quick sort routine. You supply a vecto
of elements and a function to compare two elements, and the vecto.
returns sorted.

Calling Seguence:

WORD ret;

BYTE *base;
WORD number;
WORD size;
WORD compare({);

ret = gsort(base,number,size,compare);

Arguments:

base the base address of the element vector
number the number of elements to sort
size size of each element in bytes

compare the address of the comparison function
This function is called by the following:
ret = compare(a,b):

The return is:

<0 if a <b
=0 ifa=obh
>0 ifa>bd
Returns:
(o] always

rand, srand Functions C Language Programming Guide

rand, srand Punctions

—— — - o -~ -——— - - —

The rand and srand functions constitute the C language random
number generator. Call srand with the seed to initialize the
generator. Call rand to retrieve random numbers. The random
nunbers are C int quantities,

Calling Sequence:

WORD seed;
WORD rnum;

rnum = srand(seed):
rnum = rand():

Arquments:

seed an int random number seed
Returns:
rhum desired random number

2-48

C Language Programming Guide read Function

read Function

P = — ——— - - " W @ S W = = - = e = . e ——— 0 = S = —

The read function reads data from a file opened by the file
descriptor using open or creat. You can read any number of bytes,
starting at the current file pointer.

Under CP/M-68K, the most efficient reads begin and end on 128~
byte boundaries.

Calling Sequence:

WORD ret:
WORD £d4;

BYTE *buffer;
WORD bytes;

ret = read(fd,buffer,bytes);

Arguments:

fd a file descriptor open for read
buffer the buffer address
bytes the number of bytes to be read

Returns:
ret number of bytes actually read
-1 error

2-49

scanf, fscanf, sscanf Functions C Language Programming Guide

scanf, fscanf, sscanf Functions

—— ————— - - = % ™ M s m s M e e MmN~ e cMm~ = e e®® B .- e—— -

The scanf functions convert input format. The scanf function
reads from the standard input, fscanf reads from an open stream
file, and sscanf reads from a null-terminated string.

Calling Sequence:

BYTE *format,*string:

WORD nitems;

FILE *stream;

/* Args can be any type */

nitems = scanf(format,argl,arg2 ...):
nitems = fscanf(streanm, format,argl,arg2 ...):
nitems = sscanf(string,format,argl,arg2 ...):

Arguments:
format the control string
argn pointers to converted data locations

stream an open input stream file
string null-terminated input string
Returns:

nitems the number of items converted
-1 I/0 error

Control String Format

The control string consists of the following items:

e Blanks, tabs, or newlines (line feeds) that match optional
white space in the input.

® An ASCII character (not %) that matches the next character of
the input stream.

® Conversion specifications, consisting of a leading %, an
optional * (which suppresses assignment), and a conversion
character. The next input field is converted and assigned to
the next argument, up to the next inappropriate character in
the input or until the field width is exhausted.

C Language Programming Guide scanf, fscanf, sscanf Functions

Conversion characters indicate the interpretation of the next input
field. The following table defines valid conversion characters.

Table 2-3. Valid Conversion Characters

Character Meaning

) A single % matches in the input at this
point; no conversion is performead.

qa Converts a decimal ASCII integer and stores
it where the next argument points.

o Converts an octal ASCII integer.

x Converts a hexadecimal ASCII integer.

s A character string, ending with a space, is

input. The argument pointer is assumed to
poeint to a character array big enough to
contain the string and a trailing null
character, which are added.

c Stores a single ASCII character, including
spaces. To find the next nonblank
character, use $ls.

L Stores a string that does not end with
spaces. The character string is enclosed in
brackets. If the first character after the
left bracket is not ~, the input is read
until the scan comes to the first character
not within the brackets. If the first
character after the left bracket is “, the
input is read until the first character
within the brackets.

Note:

You cannot determine the success of literal matches and
suppressed assignments.

2-51

setjimp, longjmp Functions C Language Programming Guide

setjmp, longjmp Functions

- - - - e e ———— . - ——— —— . ——— > = . " E—— - - -

The setjmp and longjmp functions execute a nonlocal GOTO. The
setjmp function initially specifies a return location. You can then
call longjmp from the procedure that invoked setjmp, or any
subsequent procedure. longjmp simulates a return from setjmp in the
procedure that originally invoked setjmp. A setjmp return value
passes from the longjmp call. The procedure invoking setjmp must
not return before longjmp is called.

Calling Sequence:

$include <setjmp.h>
WORD xret,ret;
jmp_buf env;

xret = setjmp(env);

longjmp{env, ret):

Arguments:

env contains the saved environment

ret the desired return value from setjmp
Returns:

xret 0 when setjmp invoked initially

copied from ret when longjmp called

Note:

awkward

2-52

C Language Programming Guide signal Function

signal Function

The signal function connects a C function with a 68000 exception
condition. Each possible exception condition is indicated by a
number. The following table defines exception conditions.

Table 2-4. 68000 Exception Conditions

Number Condition

4 Illegal instruction trap. Includes illegal
instructions, privilege violation, and line A
and line F traps.

S Trace trap.

6 Trap instruction other than 2 or 3; used by
BDOS and BIOS.

8 Arithmetic traps: zero davide, CHK
instruction, and TRAPV instruction.

10 BUSERR (nonexistent memory) or addressing
(boundary) error trap.

All other values are ignored for compatibility with UNIX.

Returning from the procedure activated by the signal resumes

normal processing. The library routines preserve registers and
condition codes.

2-53

signal Function C Language Programming Guide

Calling Sequence:

WORD ret,sig:;
WORD func():

ret = signal(sig,func):

Arguments:

sig the signal number given above
func - the address of a C function
Returns:
ret O if no error, -1 if sig out of range

C Language Programming Guide sinh, tanh Functions

sinh, tanh Punction

The sinh function returns the trigonometric hyperbolic sine of a
floating-point number. The tanh function returns the trigonometric
hyperbolic tangent of a floating-point number. You must express all
arguments in radians.

Calling Sequence:

FLOAT sinh(),tanh():
FLOAT fval,ret;

ret = ginh(fval):
ret = tanh(fval);

Argunents 3

fval a floating-point number that expresses an angle in

radians
Returns:
ret the hyperbolic sine or hyperbolic tangent of the
argument value expressed in radians
Note:

You can pass numbers declared as either float or double to sinh
and tanh.

sqrt Function C Language Programming Guide

sqrt Punction

—— - . ———————— . = = e ——— > > ® —————— —— -

The sqrt function returns the square root of a floating-point
number.

Calling Sequence:

PLOAT sqrt():
FLOAT . fval,ret;

ret = sqrt({fval);

Arquments:

fval a floating-point number

Returns:

ret the square root of the specified argument

Note:

You can pass numbers declared as either float or double to
sqrt.

C Language Programming Guide strcat, strncat Functiont

strcat, strncat Functions

- - . - E—— - = —— = m T mer m . m ™ E e e = A - = - & =S @~ W

The strcat and strncat functions concatenate strings. The strcat
function concatenates two null-terminated strings. The strncat
function copies a specified number of characters.

Calling Sequence:

BYTE *sl,*s2,*ret;
BYTE *strcat(),*strncat():
WORD n;

ret = strcat(sl,s2);
ret = strncat(sl,s2,n);

Arguments:

sl the first string

82 the second string, appended to sl

n the maximum number of characters in sl
Returns:

ret a pointer to sl
Note:

The strcat (sl,sl) function never terminates and usually
destroys the operating system because the end-of-string marker
is lost, so strcat continues until it runs out of memory,
including the memory occupied by the operating systenm.

2-57

stremp, strnemp Functions C Language Programming Guide

stxcmp, strocmp Punctions

- ————— = —— = —— ———— =~ e - . e W . - - -

The stremp and strncmp functions compare strings. The strcmp
function uses null termination, and strncmp limits the comparison to
a specified number of characters.

Calling Sequence:

BYTE *sl,*"s82;
WORD val,n;

val = stremp(sl,s2);
val = strncmp(sl,s2,n);

Arguments:

sl a null-terminated string address
s2 a null-terminated string address
n the maximum number of characters to compare
Returns:
val the comparison result:
< 0 => 8l ¢ 82
= 0 => g1 = 82
> 0 => sl > 82

Note:

Different machines and compilers interpret the characters as
signed or unsigned.

2-58

N

C Language Programming Guide strcpy, strnecpy Function

strcpy, strocpy Punctions

—— - - ——— - - -

- e e et m e ac e m .. m - ——- e ———————

The atrcpy and strncpy functions copy one null-terminated string
to another. The strcpy function uses null-termination, while
strncpy imposes a maximum count on the copied string.

Calling Sequence:

BYTE *sl,*s2,*ret;
BYTE *strcpy(),*strncpy():
WORD n:;

ret = strcpy(sl,s2);
ret = strncpy(sl,s2,n);

Arguaents:

8l the destination string

82 the source string

n the maximum character count
Returns:

ret the address of sl
Note:

If the count is exceeded in strncpy, the destination string is
not null-terminated.

2-59

strlen Function

strlen Punction

C Language Programming Guide

The strlen function returns
string.

Calling Sequence:

BYTE *3g;
WORD len:;

len = gtrlen(s):

Argquments:

] the string address
Returns:
len the string length

2-60

the length of a null-terminated

C Language Programming Guide swab Punctio

swab Punction

The swab function copies one area of memory to another. The hig
and low bytes in the destination copy are reversed. You can us
this function to copy binary data from a PDP-11" or VAX™ to th
68000. The number of bytes to swap must be even.

Calling Sequence:

WORD ret;
BYTE *from, *to:
WORD nbytes;

ret = swab(from, to,nbytes);

Arguments:
from the address of the source buffer
to the address of the destination

nbytes the number of bytes to copy

Returns:

ret always 0

2-6]

tan, atan Functions C Language Programming Guide

tan, atan Punctions

—— - - - - . - . . m e e m e mm m e m e e e Eme e m .. S —— . . e - - .- ———

The tan function returns the trigonometric tangent of a floating-
point number. The atan function returns the trigonometric
arctangent of a floating-point number. You must express arguments
to tan in radians.

Calling Sequence:
FLOAT tan{(),atan();
FLOAT wval,rval,ret;

ret = tan(rval):;
ret = atan(val);

Arguments:
rval a floating-point number that expresses an angle in radians
val a floating-point number
Returns:
ret the tangent or arctangent of the argument value
expressed in radians
Note:

The best precision results with arguments that are less than
two pi. You can pass numbers declared as either float or
double to tan and atan.

2-62

C Language Programming Guide ttyname Punct i

ttyname Function

—..--.--_-.---~---------—Q--.--.--_--_..--..-,_-.--.---..-—..-—-.---..

The ttyname function returns a pointer to the null-terminat
filename of the terminal device associated with an open fi
descriptor.,

Calling Sequence:

BYTE *name,*ttyname():
WORD £d:

name = ttyname(£fd);

Atgugents:

fa an open file descriptor

Returns:

A pointer to the null-terminated string CON: if the fi
descriptor is open and attached to the CP/M-68K console devic:
Otherwise, zero (NULL) returns.

ungetc Function C Language Programming Guide

ungetc Function

The ungetc function pushes a character back to an input stream.
The next getc, getw, or getchar operation incorporates the
character. One character of buffering is guaranteed if something
has been read from the strean. The fseek function erases any
pushed-back characters. You cannot ungetc EOF (-1).

Calling Sequeﬁce:

BYTE ¢;
FILE *stream;
WORD ret:;

ret = ungetc(c,stream);

Arguments:

- the character to push back
stream the stream address

Returns:
ret c if the character is successfully pushed back
-1 error

2-b4

“ Languaye rimjiaeming Lwulde unlink Function

unlink Punction

——— " - = A % T m ® m W EEEmEA S m e T & AT 4 Th W W T W . -

The unlink function deletes a named file from the file system.
The removal operation fails if the file is open or nonexistent.

Calling Sequence:

WORD ret;
BYTE *nanme:;

ret = unlink(name);

Arguments:
name the null-terminated filename
Returns:
0 success
-1 failure

2-65

write Function C Language Programming Guide

write Function

The write function transfers data to a file opened by file
descriptor. Transfer begins at the present file pointer, as set by
previous transfers or by the lseek function. You can write any
arbitrary number of bytes to the file. The number of bytes actually
written returns. If the number of bytes written does not match the
nuober requested, an error occurred.

Under CP/M-68K, the most efficient writes begin and end on 128-
byte boundaries.

Calling Sequence:

WORD f4:;

BYTE *buffer:
WORD bytes;
WORD ret;

ret = write(fd,pbuffer,bytes);

Argquments:

fa the open file descriptor
buffer the starting buffer address
bytes the number of bytes to write

Returns:
ret the number of bytes actually written
-1 errora

Note:

Due to the buffering scheme used, all data is not written to
the file until the file is closed.

End of Section 2

1-66

Section 3
C Style Guide

To make your C language programs portable, readable, and easy
to maintain, follow the stylistic rules presented in this section,
However, no rule can predict every situation; use your own judgment
in applying these principles to unique cases.

3.1 Modularity

Modular programs reduce porting and maintenance costs,
Modularize your programs, so that all routines that perform a
specified function are grouped in a single module. This practice
has two benefits: first, the maintenance programmer can treat most
modules as black boxes for modification purposes; and second, the
nature of data structures is hidden from the rest of the program,
In a moAular program, you can change any major data structure by
changing only one module.

3.1.1 Module Size

A good maximum size for modules is 500 lines. Do not make
modules bigger than the size required for a given function.
3.1.2 Intermodule Communication

Whenever possible, modules should communicate through procedure
calls. Avoid global data areas. Where one or more compilations
require the same data structure, use a header file.
3.1.3 Header Files

In separately combined files, use header files to define types,

symbolic constants, and data structures the same way for all
modules., The following list gives rules for using header files.

e Use the 'ginclude "file.h"' format for header files that are
project-specific. Use '#include <file.h>' for' system-wide
files. Never use device or directory names in an include
statement.

e Do not nest include files.
® Do not define variables other than global data references in a

header file. Never initialize a global variable in a header
file,

61

C Programming Guide 3.1 Modularity

e When writing macro definitions, put parentheses around each use
of the parameters to avoid precedence mix-ups,

3.2 Mandatory Coding Conventions

To make your programs portable, you must adhere strictly to the
conventions presented in this section. Otherwise, the following
problems can occur:

® The length of a C int variable varies from machine to machine.
This can cause problems with representation and with binary I/0
that involves int quantities.

e The byte order of multibyte binary variables differs from
machine to machine. This can cause problems if a piece of code
views a binary variable as a byte stream.

e Naming conventions and the maximum length of identifiers differ
from machine to machine. Some compilers do not distinguish
between upper- and lower-case characters,

® Some compilers sign-extend character and short variables to int
during arithmetic operations; some compilers do not.

® Some compilers view a hex or octal constant as an unsigned int;
some do not, For example, the following sequence does not
always work as expected:

LONG cata;

nrintf ("sld\n", (data & OXEEEE));

The printf statement prints the lower 16 bits of the long data
item data. However, some compilers sign-extend the hex
constant Oxffff.

® You must be careful of evaluation-order dependencies,
particularly in compound BOOLEAN conditions. Failure to
parenthesize correctly can lead to incorrect operation.

3.2.1 Variable and Constant Names

Local variable names should be unique to eight characters.
Global variable names and procedure names should be unique to six

characters. All variable and procedure names should be completely
lower-case.

Usually, names defined with a #define statement should |
entirely upper-case. The only exceptions are functions defined ;
macros, such as getc and isascii. These names should also be uniq
to eight characters,

You should not redefine global names as local variables with:
a procedure.

3.2.2 Variable Typing

Using standard types is unsafe in programs designed to 1
portable due to the differences in C compiler standard ty}
definitions, Instead, use a set of types and storage class¢
defined with typedef or #define. The following tables define
language types and storage classes,

Table 3-1. Type Definitions

Type C Base Type . |
|
1

LONG signed long (32 bits) ‘

WORD signed short (16 bits)

UWORD unsigned short (16 bits)

BOOLEAN short (16 bits)

BYTE signed char (8 bits)

UBYTE unsigned char (8 bits)

vOI1D void (function return)

DEFAULT int (16/32 bits)

Table 3-2. Storage Class Definitions

Class C Base Class

REG register variable

LOCAL auto variable

MLOCAL module static variable
GLOBAL global variable definition
EXTERN global variable reference

Additionally, you must declare global variables at ¢t}
beginning of the module. Define local variables at the beginning ¢
the function in which they are used. You must always specify tt
gtorage class and type, even though the C language does not requirt
this.

63

C Programming Guide 3.2 Mandatory Coding Conventions

3.2.3 Expressions and Constants

Write all expressions and constants to be implementation-
independent. Always use parentheses to avoid ambiguities. For
example, the construct

tf{c = geucrari) == '\n')

does not assign the value returned by getchar to c. Instead, the
value returned by getchar is compared to '\n', and c receives the
value 0 or 1 {the true/false output of the comparison). The value
that getchar returns is lost, Putting parentheses around the
assignment solves the problem:

if(\c = getcnar{)) == 'A\n')

Write constants for masking, so that the underlying int size is
irrelevant., In the following example,

LONG data;

.

printf("sld\n", (data & OxffEfL);

the long masking constant solves the previous problem for all
compilers. Specifying the one's complement often yields the desired
effect, for example, “Oxff instead of 0xff00.

For portability, character constants must consist of a single
character. Place multicharacter constants in string variables.

Commas that separate argquments in functions are not operators.
Evaluation order is not guaranteed. For example, the following
function call

printf{"8d $d\n", 1++,i+4);

can perform differently on different machines.

3.2.4 Pointer Arithmetic

Do not manipulate pointers as ints or other arithmetic
variables. C allows the addition or subtraction of an integer to or
from a pointer variable. Do not attempt logical operations, such as
AND or OR, on pointers. A pointer to one type of object can convert
to a pointer to a smaller data type with complete generality.
Converting a pointer to a larger data type can yield alignment
problems.

o

- W WISV Wt BPEWEsn
£d

You can test pointers for equality with other pointer variables
and constants, notably NULL. Arithmetic comparisons, such as >=,
do not work on all compilers and can generate machine-dependent
code.

When you evaluate the size of a data structure, remember that
the compiler might leave holes in a data structure to allow for
alignment. Always use the sizeof operator.

3.2.5 8String Constants

Allocate strings so that you can easily convert programs to
foreign languages. The preferred method is to use an array of
pointers to constant strings, which is initialized in a separate
file. This way, each string reference then references the proper
element of the pointer array.

Never modify a specific location in a constant string, as in
the following example:

BYTE string{) ="BDOS Error On x:";

string(l4]) = ‘A‘;

Poreign-language equivalents are not likely to be the same length as
the English version of a message.

Never use the high-order bit of an ASCII string for bit flags.
Extended character sets make extensive use of the characters above
0x7F.

3.2.6 Data and BSS Sections

Usually, C programs have three sections: text (program
instructions), data (initialized data), and BSS (uninitialized
data). Avoid modifying initialized data if at all possible,
Programs that do not modify the data segment can aid the swapping
performance and disk utilization of a multiuser system.

Also, if a program does not modify the data segment, you can
place the program in ROM with no conversion. This means that the
program does not modify initialized static variables. This
restriction does not apply to the modification of initialized
automatic variables.

65

C Programming Guide 3.2 Mandatory Coding Conventions

3.2.7 NModule Layout

The following list tells you what to include in a module.

@ At the beginning of the file, place a comment describing the
following items:
- the purpose of the module
- the major outside entry points to the module
- any global data areas that the module requires
- any machine or compiler dependencies

® Include file statements.

o Module-specific $§define statements.

® Global variable references and definitions. Every variable
should include a comment describing its purpose.

® Procedure definitions. Each procedure definition should
contain the following items:

- A comment paragraph, describing the procedure's function,
input parameters, and return parameters. Describe any
unusual coding techniques here,

- The procedure header. The procedure return type must be
explicitly specified. Use VOID when a function returns no
value,

- Argument definitions, You must explicitly declare storage
class and variable type.

- Local variable definitions. Define all 1local variables
before any executable code. You must explicitly declare
storage class and variable type.

- Procedure code.
Refer to Appendix C for a sample program.

3.3 Suggested Coding Conventions
The following suggestions increase program portability and make
programs easier to maintain.
® Keep source code within an 80-character margin for easier

screen editing.

e Use a standard indention technique, such as the following:

C Programming Guide 3.3 Suggested Coding Convention

- Begin statements in a procedure one tab stop (column eight)
from the left margin.

- Indent statements controlled by an if, else, while, do, or
for one tab stop. If you require multiple nested
indentions, use two spaces for each nesting level. Avoid

o going more than five levels deep.

- Place the brackets surrounding each compound statement on a
separate line, aligned with the indention of the controlling
statement. For example,

for (i=0; i <MAXNUM; i++)
j = compute(i);
if (j > UPPER)

i = UPPER;
output(j);

- Place a null statement controlled by an if, else, while, for,
or do on a separate line, indented for readability.

e To document your code, insert plenty of comments. If your code
. is particularly abstruse, inserting comments helps clarify it.
e Put all maintenance documentation in the source code itself,
If you do not, the documentation will not be updated when the
code changes.
e Use blank lines, form-feeds, and white space to improve
readability.

End of Section 3

€

Appendix A
CPM-68K Error Codes

The perror function and the errno external variable determine
the cause of an error during a CP/M-68K system call. The include
file <errno.h> contains symbolic definitions for the errors that
CP/M-68K returns. The following table lists error numbers, symbolic
names, and messages available from perror.

Table A-1. CP/M-68K Error Codes

Number Name Error Message

- Error Undefined on CP/M-68K

- Error Undefined on CP/M-68K
ENOENT No Such File

- Error Undefined on CP/M-68K

- Error Undefined on CP/M-68K

EIO 1/0 Error

- Error Undefined on CP/M-68K
E2BIG Arg List too Long

- Error Undefined on CP/M-68K
EBADF Bad file Number

- Error Undefined on CP/M-68K
- Error Undefined on CP/M-68K
ENOMEM Not enough core
EACCES Permission denied
- Error Undefined on CP/M-68K
- Error Undefined on CP/M-68K

FHRHRPHRHRFR,OYONOONAWN O
N W~ o

16 - Error Undefined on CP/M-68K
17 - Error Undefined on CP/M-68K
18 - Error Undefined on CP/M-68K
19 - Error Undefined on CP/M-68K
20 - Error Undefined on CP/M-68K
21 - Error Undefined on CP/M-68K
22 EINVAL Invalid argument

23 ENFILE File table overflow

24 EMPILE Too many open files

25 ENOTTY Not a typewriter

26 - Error Undefined on CP/M-68K
27 EFBIG File too big .

28 ENOSPC No space left on device

29 - Error Undefined on CP/M-68K
30 EROFS Read-Only file system

31 - Error Undefined on CP/M-68K
32 - Error Undefined on CP/M-68K
33 - Error Undefined on CP/M-68K
34 - Brror Undefined on CP/M-68K
35 ENODSPC No directory space

69

C Programming Guide Appendix A Error Codes

The file <errno.h> also includes the names for all errors
defined with UNIX V7. Therefore, programs that reference these
definitions need not be changed.

End of Appendix A

kX,

Appendix B
Customizing the C Compiler

Compiling a C program requires three compiler passes. The
output of the compiler is assembly language, which must be assembled
and linked to produce a program that runs. The compiler, assembler,
linker load modules, C library, and the sysatem include files need a
substantial amount of disk storage space, minimizing storage space.
This appendix discusses compiler operation and suggests ways to
minimize the disk storage requirements for compiling.

B.l Compiler Operation

The C compiler has three components: the preprocessor (CP68),
the parser (CO068), and the code generator (C168). The assembler
(AS68) and the linker (LO68) also help generate an executable
program. The following list tells you how these components operate.

1) The preprocesasor, CP68, takes the original source file and
produces a file with all #define and #include statements
resolved. The preprocessor command line takes the form:

CP68 [~I d:]) file.C file.I

The -1 flag indicates that the next argument is a CP/M-68K
drive specification. This drive is used for all 1library
include statements of the form #include <file>. Drive
specifications can also appear in the filename portion of
an #include statement, but this procedure is not
recommended. File.C is the source file, and file.I is the
output file.

2) The parser, CO068, takes the file produced by the
preprocessor and creates an intermediate code file. The
command line takes the form:

c068 file.I file.IC file.ST
FPile.l is the output from the preprocessor. PFile.IC ia the
intermediate code file that Cl168 uses. Pile.ST is a

temporary file that collects constant data for inclusion at
the end of the intermediate code file.

71

C Programming Guide B.1 Compiler Operation

3)

4)

5)

The code generator, Cl168, takes the intermediate code file
from C068 and produces an assembly-language source file.
The command line takes the form:

Cl68 file.IC file.S [~LD)

File.IC is the intermediate code output from CO68. File.S
is the assembly-language output file. The -L flag
indicates that the compilation assumes all address
variables are 32 bits. The default is 16-bit addresses.
The -D flag causes the compiler to include the line numbers
from the source file (file.C) as comments in the generated
assembly lanquage. This is useful for debugging.

The assembler, AS68, translates the compiler output to a
form that the linkage editor can use. The command line
takes the form:

AS68 -L -U (-F d:) (-s d:) file.S

The -L option indicates to the linkage editor that
addresses are considered 32-bit quantities. The -U option
means that undefined symbols are considered external
references. The -F option specifies a drive that the
assembler uses for temporary files, The -S option
specifies a drive that the assembler uses for the
initialization file (AS68SYMB.DAT). File.S is the output
of C168, and file.0 is produced by the assembler.

The linker, LO68, produces an executable file from the
output of one or more assembler runs. You must also
include a start-up file and the C library when linking C
programs. The linker command line takes the form:

LO68 -R (-F d:) -0 file.68K S.0 file.O clib

The -R option specifies that the file be relocatable.
Relocatable files run on any CP/M-68K system. The -F
option allows you to place linker temporary files on a disk
drive other than the default. The -0 file.68K construct
makes the linker place the executable output in file,68K.
S$.0 is the run-time start-up routine. You must include
this file as the first file in every C program link.
File.O is the output of the assembler. Specify multiple
files between S.0 and clib if you want separate
compilation. clib is the C library file.

72

v s evysamuulny LUlAE B.2 Supplied submit File:

B.2 Supplied submit Piles

CP/M-68K includes two submit files, c.sub and clink.sub, that

compile and link C programs (see Section 1.1). Usually, these filets
are located on the default drive. However, you can edit these files
to specify different disk drives for any of the following drives:

® The disk drive on which the compiler passes, assembler, and

linker reside.

e The disk drive that the #include <file> statements in the C

preprocessor reference.

® The disk drive with the assembler initialization file.

e The disk drive on which the assembler and linker create

temporary files.

e The disk drive containing the C library file.

B.3 Saving Disk Space

B.4

You can do the following things to conserve disk space:

Use the reloc utility on all the load modules, the compiler,
assembler, linker, and editor., This significantly reduces file
size and load time.

Place all the load modules on one disk and use another disk for
sources and temporary files. This requires two drives.

On single-density disk systems, you must place the C library
file and linker on a separate disk and swap disks before
linking.

Gaining Speed

Along with the items in Section B.3, you can speed compilation

by implementing the following:

e Put the assembler temp files on a different d;ive from the

source and object files.

e Put the linker temp files on a different drive from the object

input, C library, and load module output.

73

C Programming Guide B.4 Gaining Speed

® Use the linker -S (suppress symbol table) and -T (absolute load
module) switches in place of the -R flag. If you do this, the
resulting program cannot run on an arbitrary CP/M-68K system.

End of Appendix B

Appendix C
Sample C Module

code that follows the style conventions discussed in Section 3.

The modules in this appendix are written and documented in C

1
/t...t"'t‘.'i.'.i"tt‘.'.t..l‘O"Q.Q..t.'t.tQ.t.tt'.t."..t'.'t..ti't"tl'.‘

/° .
/* Printf Module *
/O --------------------------- »
/* *
/* This module is called through the single entry point "_printf® to *
/* perform the conversions and output for the library functions: *
/* .
/* printf - Pormatted print to standard output .
/* fprintf - Pormatted print to stream file "
/* gsprintf - Formatted print to string .
2 .,
/* The calling routines are logically a part of this module, but are L
/* compiled separately to save space in the user's program when only ,,
/* one of the library routines is used. .,
/* *,
/* The following routines are present: *,
/* *,
/* _printf Internal printf conversion / output .,
/* _prnt8 Octal conversion routine .,
/* _prntx Hex conversion troutine *,
/* __conv Decimal ASCII to binary routine .,
/* _putstr Output character to string routine .,
/* _prntl Decimal conversion routine *,
/* *,
/* The following routines are called: .,
/t ”
/* strlen Compute length of a string *,
/* putc Stream output routine .,
/* ftoa Floating point output conversion routine *,
* *
/e .
/* This routine depends on the fact that the argument list is always .,
/* composed of LONG data items. L)
/4 .
/* Configured for Whitesmith's C on VAX, “"putc" arguments are .,
VA reversed from UNIX, . *
/* *,
/Qt'.tlﬁtltht.t't..t.tt.'if.t.i't..ittt.ti.tn.tt'ttt"t.Qtﬁtttit""'.".'.t.‘
/i

. Include files:

*

pinclude <stdio.h> /* just the standard stuff ¢/

75

C Programming Guide

/*
. Local DEFINEs
L]

/
$define AIBIT Il

/*

L Local static data:

v/
MLOCAL BYTE ¢ _ptrbf
MLOCAL BYTE *_ptrst
MLOCAL BYTE *_ fmt

4 n 4
(==X -]

.~ ne

76

C Sample C Module

/* High bit number of LONG */

/i!'.i'.f.'t.'.."l.'i.ﬁl"f./

/* Buffer Pointer */
/* -> File/string (if any) ¢/
/* Format Pointer .

/.‘t'tttt‘t.tt.t!tﬁtt.'ﬂt.ttﬁ/

¢ rrogramming Guide C Sample C Modu

/‘it"'l'.'itl'..i’!.....i.'....&..........'.'.."ﬁ'.t..'..‘.'..l‘.t.'...l

PRINTTF INTERNAL ROUTINE

Routine " _printf® is used to handle all "printf" functions, includ
“sprintf", and "fprintf",

Calling Sequence:

_printf(fd,func,fmt,argl);

Where:
fa I1s the file or string pointer.
func I1s the function to handle output.
fmt Is the address of the format string.
argl Is the address of the first arg.
Returns:
Number of characters output
Bugs:

It is assumed that args are contiguous starting at ®argl®, and that
all are the same size (LONG), except for floating point.

L B Y RN B BN B R R NN IR 2 2 N O O B O B O B B BN I B N)

."...'.....*..’.t.....'i'.tﬁli..'.i‘.ﬁti.'tt.i.'".'Q't’.“t'.'."..‘....'

prlntf (fd,f.fmt,al VAARAAALARAZ A AR R a2l

- LONG £d; /* Not really, but ...
LONG {(*£) () /* Function polnter
BYTE *fmt; /* -> Pormat string
LONG *al; /* =-> Arg list

{ VALAAAAAA L AL AL AL RS2 A 0]
LOCAL BYTE c; /* Pormat character temp
LOCAL BYTE *s; /* Output string pointer
LOCAL BYTE adj; /* Right/left adjust flag
LOCAL BYTE buf [30); /* Temporary buffer

/t'"t't‘t..tt....i..l.'til

LOCAL LONG *adx; /* Arg Address temporary
LOCAL LONG X /* Arg Value temporary
LOCAL LONG n; /* String Length Temp
LOCAL LONG m; /* Fleld Length Temporary
LOCAL LONG width; /* Field width
LOCAL LONG prec; /* Precision for "$x.yf"
LOCAL LONG padchar; /* '0' or ' ' (padding)
LOCAL DOUBLE 22; /* Floating temporary
LOCAL DOUBLE *adblptr; /* Floating temp. address
LOCAL LONG ccount; /* Character count
EXTERN _putstr (); /* Reference function

/t."a'hl.ﬁ'.l..ﬁ...."..'i

77

C Programming Guide

ccount = O

/n
/*

C Sample C Module

-nntonottttottttﬁn.o.ooo"/
Initially no characters '/
A

_ptrbf = buf; /* Set buffer pointer
adx = al; /* Copy address variable ./
_ptrst = fd; /* Copy file descriptor v/
__fmt = fme; /* Copy format address */
/tt..'it’l'...itﬁt.t'.'tt"t/
if(*__fmt == 'L {' *_ fmt == '1*"Y /* Skip long output */
fmtes; /* conversions ./
- /* */
/'..'l.'...l'ii.."."...'0""..00Qllt.‘..".'.it ./

s is the main format conversion loop. oad a character from e

/* This i h in € i 1 Load h £ th s/
/* format string. If the character is 'ys', perform the appropriate v/
/* conversion., Otherwise, just output the character. v/
/.l"'....t..’...t"tl'.'ltﬁ.t.""'tt'.tD't'..t'l '/
/t ./

while(¢ = *_ fmt++)
if(c 1= '3

(*f) (fd,cy;
ccount++;

else
X = *adx++;
if(*__fmt == '-')

adj = '1*;
_ Emt+s;

else
adj = 'r';

padchar=(*_ fmt=='0') ? '0' :
width = _ conv();
if(*__fmt =a ')

++__ Eme;
prec = _ conv{);

else
prec = 0;

s = 0;
switch (c 3 *_ fmt++)

case 'D':

case 'd':
prel(x);
break:;

78

/e
7

79
;

Pick up next format char*/
*/

/t.Q.tt..tl'.t'.'t'.l'.'.l.'/
/* v/
/* 1f not '%', just output */
/* Bump character count s/
/tt.tti"..‘..ﬁ't.'itQt..'.t/
/* It is a '%¥', */
/* convert v/
* x = address of next arg */
/.'t'.t.tﬁtt...t...'tt.t.."/
/* Check for left adjust t/
/i.ﬁtt.ﬁt.tt.....’ti'.'..i.t/
/* 1s left, set flag */
/* Bump format pointer ./
VAd */
/* Right adjust */
/tt.t.ﬁ't..tt.itﬁtiit."ﬁ..'/
/* A
/* Select Pad character v/
/.h...t.'...Q'ﬂ..".'.ﬁ.tt'./
/* Convert width (i{f any) */
/0..Q.Q'.O't'.'tﬁ't'titl'.l'/
/* '.' means precision spec*/
/i *
/* Bump past '.' */
/* Convert precision spec */
/* */
* None specified */
/t.tl'l'itt.....tit..Iﬁtt.tt/
/* */
/* Assume no output string */
/* Next char is conversion */
/* */
/% Decimal LV4
/* W4
/* Call decimal print rtn ¢/
* Go do output e/
/t'l't'.ttli't'tt.i'tttt.tti/

v rivyramming Guide

case 'o':

case '0O':
_prnt8(x);:
break:

case ‘'x':

case 'X':
_prntx(x);:
break;

case 'S’
case 's'
S=X;

break;

. v

case 'C':

case 'c':
*_ptrbfes = x50377;
break:;

case 'E':

case 'e':

case 'P':

case 'f':
dblptr = adx-1;
zz = *dblptr;
adx =+ 1;
ftoa (zz, buf, prec, c);
prec = 0;
§ = buf;
break:

default:
(*£) (£d,c);
coount++;
adx--;
if (8 == 0)
*_ptrbf = ‘0';
s = buf;

n = gtrlen (8):

n = (prec<n && prec != 0) ? prec :

m = width-n;

if (adj == °'r')
while (a-- > 0)

(*£) (£d,padchar);
ccount++;

79

C Sample C Modu:

/* Octal

/* Print

/* Call octal printerc
/* Go do output

/....0*!0"0"".'.""..'.

/* Hex '
VA Print '
/* Call conversion routine

/* Go do output ¢
VARAREE AR NN AL R Y]]
/* String !
/* Output? '
/* Yes, (easy) ¢
/* Go finish up '
/QO."".IOQ'.'.l..'..t‘...l
/* Character ‘.
/* Output? .
/* Just load buffer .
/* Go output .
/'ti".’tit"..i't""0.'..‘
/* Floating point? *
A .
’/* *,
/* .,
/* Assumes 64 bit float! .,
/* Load value b

/* Bump past second word ¢,
/* Call floating conve:sion'
/* Pake out padding toutinc’,
/* just like string print #,
/* Go Output *

/ttttttttt.t"'.il.t.t.'..../

/* None of the above? LY
/* Just Output *
/* Count it. LY
/* Pix arg address *

/* End switch
/t.ttt.tt..0'0...."0..'..../
/* 1f 8 = 0, string i8 in ¢/
/t 'buf" L]
/* Insure termination *y
A Load addresas
/..&tt'i.t.t....."tt..'t'../
/* *
/* Compute converted lengthv,
n;/* Take min(prec,n) *,

/* m is ¢ of pad characters?,
/ttQttﬁtt'ttt't'titttﬁttt‘.'/

/* For right adjust, *,
/* Pad in front s,
/" *y
/* Thusly . .,
/* Count it .,

« t‘

/t.l.'t.'.lﬁ."‘....."."..‘

C Programming Guide

while {n--)

{
trfy(fd,*see;
ccounter;

t

while !m-- > 0)

(*f) (fd,padchar);
cecount++;

_ptrbf = buf;
]
if ((*£) == _putstr)
(*£)(£fd,'0");

return {cocount);

80

C Sample C Module

/* Output Converted s
Kad s
S Data */
/* Count it */
/* .

/t.t.tii'ﬁ".'i".'..."it'./
/* 1f left adjust, */
/* */
/* pPad */

/* Count padded characters */
/tt't'."#O'.t..ﬁ.'iﬁﬁ.t‘t.'/

/* Reset buffer pointer ¢/
/* End else v/
/* End while v/
/* 1f string output, v/

/* Drop in terminator char */
/..'.ﬁ.t..ittt..'iitt't"‘t‘/

/* Return appropriate value*/
/% Bnd _printf ./

/.t.'it?.'ittlti'ii’.ttt'tii/

C Programming Guide

C Sample C Modu:

/Q.Q't....t.t...t...l..'..t'.'..i...Qt'.'lll.t.'l"...'.."...'.0.'.'*.‘...

_PRNTS

PROCEDURE

Routine *_prnt8" converts a binary LONG value to octal ascii.

The area at ®_ptrbf" is used.
Calling Sequence:

_prnt8(n);

"n" is the number to be converted.

Returns:

(none)

/""'.QQQ"'..l.'...il..l".t"..'Ql.'tﬁt.intit.ltl't.i'.'.‘ﬁ'..l.'.".'..’

VOID _prnt8 (n)

{

LONG n;

REG WORD p

REG WORD k

REG WORD s

ff {n==0)
*_ptrbf++ = '0';
return;

}
sw = 0;
for (p=HIBIT; p >= 0; p =- 3)
if ((k = (n>>p)&07) || sw)
! if (p==HIBIT)
k = k & 02;

*_ptrbf++ = '0' + k;
sw = 1;

81

/Q

/* Number to convert

/i

/* Counts bits

/* Temporary 3-bit value

/* Switch 1 => output

/ﬁ.ttttit"t't"t.t...tt.l.t

/* Handle 0 as special case

/a 1

/* Put in one zero '

/* And quit '

/. 1

/OiQOctttt.t'ﬁ'.t.i..t.....ﬁ

/* Indicate no output yet !

/t 1

/* Use 3 bits at a time 1
1

/* Need to output yet? L

/* lst digit has only 2 bitsl
/* Mask appropriately !
/* ASCIIfy digit ‘
/* Set output flag !
/* End if !
/* End _prnts '
/t'tQQQTOt‘itctiittﬁt.t.Qt..I

C Programming Guide

C Sample C Module

‘/Q.i.ﬁ'..'..lll.'...lt.iti'..'.'Q."'.'."O'O....'QQ..O.Q.."...O..O!.'.i..i'/

/. v/
7/ Prntx Function */
/7 Z U Y
/* s/
/* The "_prntx" function converts a binary LONG quantity to hex ASCII */
/* and stores the result in "* ptrbf", Leading zeros are suppressed. v/
/* s/
/* Calling sequence: v/
/0 b
/* _prntxin); ./
/* */
/* where "n" is the value to be converted. v/
/* . */
/* Returns: */
/* */
/* {none) Y3
& ./
/'..t..'l.'.'.'l'l..Q.Qt’t't.i"'.."."tt.'...I...'....'.".'.....'i'.'..."/
VOID _pratx (n) /* */
LONG n;: /* 32 bits b
{ /"llt.".ﬁi..".ﬁ..t'.i'.i'l/
REG LONG d; /* A digit */
REG LONG a;: /* Temporary value */
/h..i"t'lt.t.t.0.'....'..'0'/
if (a = n>>4) /* Peel off low 4 bits v/
_prntx (a & OxfELEE€f); /* If <> 0, print first */
d = n&0l7; /* Take low four bits v/
* ptrbf++ = d > 9 ? 'A'+d-10 ‘0' + d;/* ASCIIfy into buffer ./

82

/0tl.Q.....t'.’tt."l't'.t.ttl

¢ rrogramming Guide C Sample C Modul

/..ttttt.Qi.lt.tt.l.!'..t'ttititl't".li.t."""ttt""t'.lt.ﬁ..tl".'it.f

/* Function "__conv" is used to convert a decimal ASCII string in
/* the format to binary.

/* Calling Sequence:
/* val = _ conv();
/* Returns:

/* “val® is the converted value
/* 2ero is returned if no value

/.'...t........‘........".."..."'.'Q.i.t..."'"'.t""'.Ii'l.t.....i""

%ONG __conv () /*

VAAALALE RS SRS A RS AR Al Al dd

REG BYTE c: /* Character temporacy
REG LONG n; /* Accumulator
/0..'tli't...t.'...'....".'
n = 0; /* Zero found so far
while(((c= *__fmt++) >= '0°) /* While c is a digit
&6 (c <= '9')) /*
n = n*l0+c-'0"'; /* Add c to accumulator
__fme--; /* Back up format pointer to
/* character skipped above
return(n); /* See, wasn't that simple?
] /tl'.tottottttﬁﬂttt'.t.".'.

83

A VARINMAE W NIVWMWLAS

’ﬁl'i!.s.l.ll.tl-n!l.onol.-)o.nl-l-ol0bo-tD00t"tl-ttt't.il..'00'.'.'.."."!/

s ./
. £ LI S b necetaion */
‘e M e e et ccccmr e c e m—— e, ————— v/
e */
. Function " _, itatt’ 1s ceea oy "sprintf" as the output function v/
A argument to * _printf{”. A single character :s copied to the buffer */
Ad at " ptrs:". v/
/* - */
e Calling Seguence: */
/e v/
’* putstristr ,onri: v/
‘e) s/
re where "str® 1s a dummy argument necessary because the other output */
. functions have twc arguments, ./
‘e t/
re Returns: -’ */
e */
re tnone) s/
re ./
'.'.t'."t..t.tlt.tttt-010..0'0..0'..00'."0'!l.t.ti"t"tt..t'.'t'.i.'t'.ﬁ.'/
701D _putstr(str,chr) /* */

REG BYTE chr; /* The output character v/

BYTE tser; /* Dummy argument */
l /t.'t.Ql.'l'....!.tl.'...t.../

* _ptrsi++ = chr: /* Output the character v/

return(0}; /* Go back .

84

/.t."'..’..I...t.."....‘l'./

C Programming Guide

Function " _prtl" converts a LONG binary
at the buffer pointed to by " _ptrbf".

Calling Sequence:
_prelin);

where "n"

Returns:

{(none)

is the value to be converted.

C Sample C Module

/it'.l....k'ﬁ..ﬁﬁk'.li.'R.i.....tt.ii..'...i..'...t.'GQ.....‘."...'."...."

*

*

L[]

quantity to decimal ASCII .
L 4

[]

*

/.i....'.tt".tﬁ.'tIt..'tt't"tttlt'.'.'t...'tt"."'.'."O"O..'.'..'....'../

VOID _prtl(n)

REG LONG n;
REG LONG digs(15);
REG LONG *dpt;
dpt = digs:;
if (n >= 0)
n = -n;
else

¢_ptrbf++ = '<';

for (; n = 0; n = n/10)
*dpt++ = n%lo;

if {(dpt == digs)
“dpte+ = 0

Thile {dpt != digs)
--dpt;
¢ _ptrbfe+ = 0 - *dpt;

)

End of

85

/* */
/* Conversion input *

/.tiiiﬁ.ht.'.'tﬁt'...'..'.."/
/* store digits here s/
/* Points to last digit ./
/ﬁt'ﬁtt'tkt.ﬁtttit'tt.'ltttt.'/

/* Initialize digit pointer ¢/

/tttii'i.0!'.'.0"'0...'..0../

/* Fix ./
/* up .

/* sign s/
7 stuff v/

/'ttt't't"tt.tt'i‘tt"t.'t.'/

/* Divide by 10 till zero ./
/% Store digit (reverse ord)*/
/Q.'Qt.'t.i..’ti."t.'.ﬁ..'../
/* Zero value? ./

/* Yes, store 1 zero digit */
/ﬁ'..t."Q.'.".'C'.Qttt.‘i../

/* Now convert to ASCII o/
/* .
/* Decrement pointer s/

/* Note digits are negativel*/
/* .

/.t'tttt'it't"tt..ttl.t...tt/

Appendix C

Appendix D
Error Messages

This appendix lists the error messages returned by th¢
components of the CP/M-68K C compiler, the C Parser, C068, the C Co-
generator, C168, the C Preprocessor, CP68, and by the CP/M-68K (
Run-time Library. The sections are arranged alphabetically. Error

‘messages are listed within each section in alphabetical order with

explanations and suggested user responses.

D.1 CO068 Brror Messages

The CP/M-68K C Parser, C068, returns two types of error
messages: diagnostic error messages and messages indicating errors
in the internal logic of C068., Both types of error messages take
the general form:

*line no. error message text

The asterisk (*) indicates that the error message comes from C068.
The "error message text" describes the error. You must correct any
errors you receive from C068 before invoking Cl68. Uncorrected
errors from C068 cause erroneous error messages to occur when you
run Cl168.

D.1.1 Diagnostic Error Messages
These error messages occur mostly in response to syntax errors
in the source code. Refer to your C language manual for a complete

discussion of the C language syntax.

The error messages are listed in Table D-1 in alphabetical
order with short explanations and suggested user responses,

87

C Programming Guide D.1 C068 Error Messages

Table D-1. C068 Diagnostic Error Messages

Message Meaning

*line no. address ¢f register

You have attempted to take the address of
a register, Correct the source cocde
before you recompile it,

*line no. assignable operand required

On the line indicated, the operand to the
left of the equals sign in the assignment
statement is not a valid operand. Supply
a valid operand. This error might occur
because the operand is a constant instead
of a variable.

*line no. bad character constant

A character constant on the line indicated
is invalid. The character constant must
be a single character between quotes. A
control character, more than one
character, or a symbol that is not a
character will cause this error to occur.

*line no. bad indirection

You attempted to reference by address
instead of by value, but the expression
you used is not an address. Supply a
value or a valid address before you
recompile the source code.

*line no. can't open filename

Either the filename or the drive code is
incorrect. Specify the correct drive code
and filename before you recompile the
source code.

*line no. case not inside a switch block

The case on the line indicated is not
inside a switch block. Correct the source
code before you recompile it.

88

. rrogramming Guide D.l1 CO068 Error Message

Table D-1. (continued)

Message Meaning

*line no. character constant too long

The character constant on the 1line
indicated is too long. A character
constant must be a single character
between quotes. Correct the source code
before you recompile it.

*line no. constant required

The operation on the line indicated
requires a constant. Correct the error
before you recompile the source code.

*line no, declaration syntax

The syntax of the declaration on the line
indicated is incorrect. Refer to your C
language manual. Correct the syntax
before you recompile the source code.

®*line no. default not inside a switch block

The default on the line indicated is not
ingide a switch block. Correct the source
code before you recompile it.

*line no. dimension table overflow

There are too many dimensions, at or prior
to the line indicated, for the dimension
table. The dimension table does not have
space for more than 8 or 9 dimensions.
Structures count as dimensions. Rewrite
the source code to use fewer dimensions
and structures before you recompile it.

*line no. duplicate case value

Two cases for the same switch are
identical. Eliminate one of the cases
before you recompile the source code,

89

C Programming Guide D.l1 CO068 Error Messages

Table D~1. (continued)

Message Meaning

*line no. expected label

A go to statement on the line indicated
does not have a label. Supply the missing
label before you recompile the source
code.

*line no: expression too complex

Due to internal limitations in C068, the
expression on the line indicated is too
complex to be evaluated., Simplify the
expression before recompiling the source
code.

*line no. external definition syntax

The syntax of the external definition on
the line indicated is incorrect. Correct
the syntax before you recompile the source
code. Refer to your C language manual for
the correct syntax.

*line no. field overflows byte

The bit field asks for more bits than fit
in an 8-bit byte. Reduce the number of
bits in the bit field before you recompile
the source code.

*line no. field overflows word

The word field asks for more bytes than
fit in a word. Reduce the number of bytes
in the byte field before you recompile the
source code.

*line no. floating point not supported

CP/M-68K does not support floating point.
Rewrite the source code before you
recompile it.

90

v rrogramming Guide D.1 CO068 Error Message

Table D-1. (continued)

Message Meaning

*line no. function body syntax
There is no bracket at the beginning of
the function on the line indicated.
Supply the missing bracket before you
recompile the source code.

*line no. 1illegal call
You attempted to call something that is
not a function. Correct the source code
before you recompile it.

*line no. 1illegal function declaration
The storage class of the function declared
in the line indicated is illegal. The
only two storage classes allowed for
functions are static and external.
Correct the declaration before you
recompile the source code.

*line no. 1illegal register specification
The register specification in the line
indicated is illegal. Structures and
arrays cannot be put into a register.
Correct the source code before you
recompile it.

*line no. illegal type conversion
You made an incompatible assignment. This
error commonly occurs when attempting to
convert a pointer, 32 bits, to an int, 16
bits. Correct the source code befote you
recompile it.

*line no. indirection on function invalid

You attempted to use the indirection
operator (*) on a function. Correct the
source code before you recompile it.

91

C Programming Guide D.l CO068 Error Messages

Table D-1. (continued)

Message Meaning

*line no. initializer alignment

This message usually indicates a missing
initializer value, or values out of order.
Check the initializer list and correct it
before you recompile the source code.

*line no. initializer list too long

The initializer 1list is too long for C068.
Shorten the list before you recompile the
source code.

#line no. 1invalid break statement

The break statement on the line indicated
is not inside a loop or a switch. Correct
the source code before you recompile it.

*line no. invalid character

There is an invalid character in the
collating sequence in the line indicated.
Control characters or members of the
extended character set are not valid
characters. Correct the source code
before you recompile it.

*line no. 1invalid continue statement

The continue statement on the line
indicated is not inside a loop. This
error might occur when you have used a
continue statement in a switch. A
continue statement is only valid in a
loop. Correct the source code before
reinvoking C068.

*line no. invalid conversion

You attempted an incompatible assignment,
for example, a pointer, 32 bits, and an
int, 16 bits. Correct the source code
before you recompile it.

92

v eavysumunany VULUE D.l1 C068 Error Message

Table D-1l. (continued)

Message Meaning

*line no, invalid data type

The line indicated contains an expression
that attempts to equate two incompatible
quantities, for example, an int, 16 bits,
and a pointer, 32 bits. Correct the
source code before you recompile it.

*line no. invalid declarator

The declarator in the line indicated is
not a recognizable language elenment.
Supply a valid declarator before you
recompile the source code.

*line no. invalid expression

The expression in the line indicated
contains a syntax error. Correct the
syntax of the expression before you
recompile the source code.

*line no. invalid field size

The field in the line indicated is less
than or equal to zero. Correct the field
size before you recompile the source code.

*line no., invalid field type description

You attempted to put a pointer or a long
into a bit field. Correct the source code
before you recompile it.

*line no. invalid for statement

The for statement in the line indicated
contains a syntax error. Refer to your C
language manual for the correct syntax of
a for statement. Correct the statement
before you recompile the source code.

93

C Programming Guide D.l CO068 Error Messages

Table D-1. (continued)

Message Meaning

*line no. invalid initializer

The initializer you specified in the line
indicated is not a constant. You can only
initialize to a constant. Correct the
source code before you recompile it.

*line no. invalid label

You used a variable name as a label in the
line indicated. Correct the source code
before you recompile it.

*line no. 1invalid long declaration

You attempted to declare something long
that cannot be 1long, for example, a
character. Correct the source code before
you recompile it.

*line no. 1nvalid operand type

The expression in the line indicated
contains an invalid operand., Correct the
source code before you recompile it.

*line no. invalid register specification

You attempted to put something larger than
allowed into a register, for example, a
structure or a function. Correct the
source code before you recompile it,

*line no. invalid short declaration

You attempted to declare something short
that cannot be short. Correct the source
"code before you recompile it.

94

Table D-1. (continued)

Message Meaning

*line no. invalid storage class

You specified an invalid storage class in
a declaration. Refer to your C language
manual for the allowed storage classes.
Correct the source code before you
recompile it.

*line no. invalid structure declaration: name

The size of the structure indicated by the
variable "name® has a size less than or
equal to zero. Correct the source code
before you recompile it.

*line no. 1invalid structure member name

The structure reference in the 1line
indicated is not a member of any
structure. Correct the source code before
you recompile it,

*line no. invalid structure prototype: name

In the line indicated you reference a
structure name that is not a prototype.
Correct the source code before you
recompile it.

*line no. invalid type declaration

The type declared in the line indicated is
invalid. Refer to your C language manual
for a discussion of valid types. Correct
the source code before you recompile it.

*line no. 1invalid typedef statement

The line indicated contains a statement
with more than one typedef keyword. Only
one typedef is allowed per statement,
Correct the source code before you
recompile it.

95

C Programming Guide D.1 CO068 Error Messages

Table D-1. (continued)

Message Meaning

*Line no. 1invalid unsigned declaration

The quantity you declared unsigned in the
line indicated might not be unsigned.
Only an int can be unsigned. Correct the
declaration before you recompile the
source code.

*line no. 1invalid ?: operator syntax

This message indicates an error in the use
of the ?: conditional operator in the line
indicated. Refer to your C language
manual for the correct syntax. Correct
the source code before you recompile it.

*line no. label redeclaration: label

You used the same label for two separate
items., Correct the source code before you
recompile it,

*line no. missing colon

You left out a colon. Supply a colon in
the correct location before you recompile
the source code.

*line no. missing | in initialization

You neglected to put in the left curly
brace in the initialization of an array or
structure. Supply the missing brace
before you recompile the source code.

*line no. missing |

You left the right curly brace out of the
initialization of an array or structure.
Supply the missing brace before you
recompile the source code.

96

C Programming Guide D.l CO068 Error Messag

Table D-1. (continued)

Message Meaning

*1ine no. missing while
The do statement at the line indicated is
missing a while at the end. Supply the
missing while before you recompile the
source code.

*line no. missing semicolon
A semicolon is missing from the line
indicated. Supply the missing semicolon
before you recompile the source code.

*line no. no structure namns
You referred to a structure in the line
indicated without giving the structure
name. Correct the source code before you
recompile it.

*line no. no */ before EOF
The last comment in the source code is
missing its final delimiter. Supply the
nissing delimiter before you recompile the
source code.

*line no., not a structure: name
The structure referenced in the line
indicated is not a structure. Correct the
source code before you recompile it.

*line no. not in parameter list: x

In the line indicated, you declared the
something indicated by the variable "x" to
be an argument to a function, but "x" is
not in the function parameter 1list,
Correct the source code before you
recompile it.

97

C Programming Guide D.l CO068 Error Messages

Table D-1. (continued)

Message Meaning

*line no. parenthesized expression syntax

The line indicated contains a syntax error
in the parenthesized expression. Correct
the source code before you recompile it, Nt

*line no, redeclaration: symbol

A symbol has been declared twice. Remove
on of the declarations before recompiling
the source code,

*line no. string cannot cross line

The character string at the line indicated
continues beyond one line. The closing
quote to a character string must be on the
same line as the opening quote, unless you
use a backslash (\) at the end of the
first line to indicate that the line
continues. Correct the source code before
you recompile it,

T

*line no. string too long

The string at the line indicated is longer

than 255 characters. A string cannot be
longer than 255 characters on a single
line. Break the string and use a .
continuation, indicated by a backslash (\)

at the end of the line to be continued.

*line no. structure declaration syntax

The syntax of the structure declaration on
the line indicated is incorrect. Correct
the syntax before reinvoking C068.

*line no. structure operation not yet implemented

On the line indicated, you assigned a
structure to another structure. Assigning
a structure to another structure is not ~—
yet supported by the CP/M-68K C compiler.
Correct the source code before reinvoking
Cco68.

98

v rrogramming Guide

D.1 C068 Error Messages

Table D-1. (continued)

Message Meaning

*line no. structure table overflow
There are too many structures in your
program for the structure tables.
Eliminate some structures before
reinvoking the C compiler.

*line no. symbol table overflow
Your program uses too many symbols for the
space available on the symbol table,
Eliminate some symbols before reinvoking
the C compiler.

*line no. temp creation error
The drive code or filename of the
temporary file referenced in the line
indicated is incorrect. Specify the
correct drive code and filename before you
recompile the source code.

*line no. too many cases in switch
The switch at the line indicated has too
many cases, Eliminate some cases before
you recompile the source code.

*line no. too many initializers
The initializer 1ist in the line indicated
contains more initializers than there are
members of the array being initialized.
Correct the list before you recompile the
source code.

*line no. too many params

The function declaration at the 1line
indicated contains too many parameters,
Rewrite the source code before you
recompile the source code.

99

C Programming Guide D.1 CO068 Error Messages

Table D-1. (continued)

Message Meaning

*line no. undefined label: label

The label indicated by the variable
"label” has not been defined. Correct the
source code before you recompile it.

*line no. undefined symbol: symbol

The symbol indicated by the variable
"symbol® is undefined. Correct the source
code before you recompile it.

*line no. unexpected EOF

This error usually occurs when there is no
right curly brace (}) after a function, or
when there are mismatched comment
delimiters. Locate and correct the error
before you recompile the source code.

*line no. usage: c068 source asm str

The syntax of the C compiler command line
is incorrect. The correct syntax is given
in the error message. Reenter the command
line using a valid syntax.

*line no. { not matched by |}

A left curly brace ({) is not matched by a
right curly brace. This error frequently
occurs in an initialization sequence.
Supply the missing brace before you
recompile the source code.

*line no. ="char" assumed

You have user a =+ type operation with an
invalid character. When an invalid
character occurs after the = sign, C068
puts in == instead of =. Correct the
source code before you recompile the
source code.

san

—-e = wwww e~masawvese NITSODAEYS

Table D~1. (continued)

Message Meaning

*line no. & operand illegal

You attempted to take the address of
something that is not a variable, for
example, a register. Correct the source
code and recompile it.

D.1.2 1Internal Logic EBrrors

These messages indicate fatal errors in the internal logic o:
c068:

*line no. can't copy filename

*line no. invalid keyword

*line no. too many chars pushed back
*line no. too many tokens pushed@ back

Contact the place you purchased your system for assistance.
Provide the following information:

o Indicate the version of the operating system you are using.
o Describe your system's hardware configuration.

o Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, also provide a disk with a copy of the

program.

D.2 C168 Brror Messages

The CP/M-68K C Co-generator, Cl68, returns two types of fatal
error messages: diagnostic error messages and messages indicating
errors in the internal logic of Cl168. Both types of error messages
take the general form:

**line no. error message text
The asterisks (**) indicate that the error message comes from C168.
The error message text describes the error. If you run Cl68 before

correcting any errors you received from C068, you receive erroneous
errors from C168.

101

C Programming Guide

D.2.1 Patal Diagnostic Errors

The C168 fatal, diagnostic error messages are listed in Table

D-2 in alphabetical order, with explanations and suggested user

responses.

Table D-2. Cl168 Fatal Diagnostic Errors

Message

Meaning

**line no.

can't create filename

Either the drive code or the filename for
the file indicated by the variable
*filename" is incorrect. Ensure that you
are requesting the correct drive code and
filename before you recompile the source
code.

**]line no.

can't open filename

Either the drive code or the filename for
the file indicated by the variable
"filename" is incorrect. Ensure that you
are requesting the correct drive code and
filename before you recompile the source
code.

**line no.

divide by zero

You attempted to divide by zero in the
line indicated. Correct the source code
before you recompile it,

*+]line no.

expression too complex

An expression on the line indicated is too
complex for C168., Simplify the expression
before you recompile the source code.

**]ine no.

modulus by zero

The second operand of the percent operator
in the line indicated is zero. Correct
the source code before you recompile it.

102

D.2 Cl68 Error Messages

v.4 ClobY EIror mMessages

Table D-2., (continued)

Message Meaning

**line no. structure operation not implemented

The operation you attempted with a
structure in the line indicated is
illegal. Correct the source code before
you recompile it.

**line no. usage: cl68 icode asm [-DLmec]

The command line syntax is incorrect. The
correct command line syntax is given in
the error message. Correct the syntax
before you reenter the command line.

D.2.2 Internal Logic Brrors

The following messages indicate fatal errors in the internal
logic of C168:

**line no. cdsize: invalid type

**line no. code skeleton error: op
**]ine no. hard long to register
**line no. intermediate code error
**line no. invalid initialization
**line no. invalid operator op

**line no. invalid register expression
*#line no. 1invalid storage class sc
**]1ine no. no code table for op

**line no. skelmatch type: stype

If you receive one of these messages, contact the place where you
purchased your system for assistance. Provide the following
information:

e Indicate the version of the operating system you are using.

e Describe your system's hardware configuration,

e Provide sufficient information to reproduce the error.

Indicate which program was running at the time the error
occurred. If possible, also providé a disk with a copy of the

program.

103

¢ rrogramming Guide D.3 CP68 Error Messages

D.3 CP68 Brror Messages

The CP/M-68K C Preprocessor, CP68, returns two types of fatal
error messages: diagnostic error messages and messages indicating
errors in the internal logic of CP68. Both types of error messages
take the general form:

line no. error message text

The pound sign (#) indicates that the error message comes from CP68.
The "error message text" describes the error.
D.3.1 Diagnostic Error Messages

A fatal diagnostic error message prevents CP68 from processing

your file. The CP68 diagnostic error messages are listed in Table
D-3 with explanations and suggested user responses.

Table D-3. CP68 Diagnostic Error Messages

Message Meaning

line no. argument buffer overflow

An argument list in the line indicated
contains too many characters for the space
allocated to the argument buffer. Reduce
the number of characters in the argument
list before rerunning CPé68.

t line no. bad argqument: arg

In the line indicated, the argument
represented by the variable "arg” contains
an invalid character. Replace or
eliminate the invalid character before
rerunning CPé68.

line no. bad character octal no.

The line indicated contains an illegal
character. The ASCII code of the invalid
character is represented by the variable
"octal no."” Examine the line indicated to
locate the error. Replace the character
before rerunning CP68.

104

Table D-3. (continued)

Message Meaning

$ line no. bad define name: name

The name indicated by the variable "name*
contains one or more invalid characters.
Examine the name to locate the error.
Replace the invalid characters before
rerunning CPé68.

$ line no. bad include file

The syntax of the "#include” statement is
incorrect. The "#include" statement must
follow one of the following two formats:

f#include <filename>
#include "filename”

Rewrite the statement before rerunning
CPé68.

$ line no. bad include file name

In the line indicated, the filename in the
"#include”™ statement contains either an
invalid character or more than 8
characters, the maximum allowed. Supply a
valid filename before rerunning CP68.

line no. can't open fname

The "#include" statement in the 1line
indicated contains an invalid or
nonexistent filename. Check the filename
before rerunning CP68.

4 line no. can't open infile

CP68 cannot open the input file indicated
by the variable "infile". Efther the
drive code or the fllename is incorrect.
Check the drive code and the filename
before rerunning CP68.

105

C Programming Guide D.3 CP68 Error Messages

Table D-3. (continued)

Message Meaning

line no. can't open outfile

CP68 cannot open the output file indicated
by the variable "outfile." Either the
drive code is incorrect, or the disk to
which CP68 is writing is full. Check the
drive code. 1If it is correct, the file is
full. Erase unnecessary files, if any, or
insert a new disk before rerunning CP68.

$# line no. condition stack overflow

The source code contains too many nested
#if's for the space allocated to the
condition stack. The stack overflowed
before the line indicated. Rewrite the
source code before rerunning CP68.

line no. define recursion

A name or variable on the line indicated
has been defined in terms of itself.
Redefine the name before rerunning CP68.

line no. define table overflow

The source code contains one or a
combination of the following: too many
names, too many long names, too many
expressions, or too many large
expressions. The space allocated to the
define table was filled before the line
indicatead. Simplify and rewrite the
source code before rerunning CP68.

¥ line no. expression operator stack overflow

An expression in the line indicated
contains too many operations for the space
allocated to the expression operator
stack. Eliminate or consolidate some
operations before rerunning CP68,

106

o riuytamning suae D.3 CP68 Error Messag

Table D-3. (continued)

Message Meaning

$ line no. expression stack overflow
An expression in the line indicated
contains too many terms for the space
allocated to the expression stack.
Eliminate or consolidate some terms before
rerunning CP68.

¢ line no. expression syntax
The syntax of an expression in the line
indicated is incorrect. Examine the line
to locate the error. Correct the syntax
before rerunning CPé68.

$ line no. 1includes nested too deeply

The "#include®™ statement in the line
indicated contains more than 7 nested
include files, the maximum allowed.
Rewrite the source code so that no one
"#include” statement contains more than 7
nested include files.

line no.

invalid felse

A "felse” statement occurs in the source
code without a preceding "§if" statement.
Supply the missing "$#if” statement or
eliminate the "j§else” statement before
rerunning CP68.

line no.

invalid #endif

A "fendif™ statement occurs in the source
code without a preceding "#if"™ statement.
Supply the nmissing "#if" statement or
eliminate the "#endif" statemeént before
rerunning CP68.

§ line no.

invalid preprocessor command

The command in the line indicated is
either not valid for CP68 or is
incorrectly formatted. Correct the
command before rerunning CP68.

107

C Programming Guide D.3 CP68 Error Messages

Table D-3. (continued)

Mesgsage Meaning

line no. 1line overflow

The line indicated contains more than 255
characters, the maximum allowed. Reduce
the line to no more than 255 characters
before rerunning CP68.

line no. macro argument too long

An argument name in the line indicated
contains more than 8 characters, the
maximum allowed. Use no more than 8
characters for the argument name, and
rerun CP68.

line no. */ before EOF

A comment in the source code is missing
the closing */. Supply the missing */
before rerunning CP68.

line no. string cannot cross line

A string in the line indicated is missing
a closing quotation mark. Supply the
missing quotation mark before rerunning
CP68.

$# line no. string too long

The line indicated contains a string
greater than 255 characters, the maximum
allowed. Shorten the string to no more
than 255 characters before rerunning CP68.

line no. symbol table overflow

The source code uses too many symbols for
the space allocated to the symbol table.
The symbol table was filled prior to the
line indicated. Eliminate some symbols
before rerunning CP68.

C Programming Guide D.3 CP68 Error Messages

Table D~-3. (continued)

Message

Meaning

line no.

too many arguments

One of the names in the line indicated
contains more than 9 arguments, the
maximum allowed. Reduce the number of
arguments to no more than 9 per name
before rerunning CP68.

$# line no.

unexpected EOF

This message indicates an incomplete
program. Examine the source code to
locate the error. Correct before
rerunning CP68.

line no.

unmatched conditional

A "$#if" statement occurs in the source
code without a matching "g#endif"
statement. Supply the missing "#endif"
statement before rerunning CP68.

line no.

usage: c68 [~i x:] inputfile outputfile

This message indicates incorrect syntax in
the command line. The correct syntax is
given. Correct the command line before
rerunning CP68. Refer to your C manual
for an explanation of the command line
syntax.

D.3.2 Internal Logic Brrors

CP68 returns only one message indicating an error in the
internal logic of CP68:

line no. too many characters pushed back

If you receive this message, contact the place where you purchased
your system for assistance. Provide the following information:

® Indicate the version of the operating system you are using.

o Describe your system's hardware configuration.

109

€ Programping Guide D.3 €P68 Error Messages

® Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, also provide a disk with a copy of the
program.

D.4 C-Run-time Library Error Messages
The C-Run-time Library returns only one fatal error message,
stack overflow. The stack overflow message means the program you

are trying to include in the C-Run-time Library is too big. Reduce
the size of the program.

End of Appendix D

1N

Index

(. 2-51
4, 2-51
2-43,
*, 2-43,
-, 2-43

2-51
2-51

A.68K, 1-1
abort function, 2-3
abs function, 2-4
absolute load module,
access function, 2-5
addition, 3-5
address variables, B-2
addressing error trap,
alignment, 2-29
AND, 3-5
alphanumeric characters, 2-29
argc/argv interface, 1-5
argument,
absolute value of,
pointer, 2-51
same length, 1-4
with side effects,
2-29, 5-35
arithmetic comparison,
arithmetic trap, 2-53
AS68, B-1, B-2
ASCII character,
ASCII files, 2-25
in CP/M-68K, 1-6
ASCII string,
converting to integer or

B-4

2-53

2-4

2-4, 2-15,

3-5

2-43, 2-50

binary, 2-6
null-terminated, 2-43
asgsembler,

initialization file, B-3
temp files, B-3
asaemb%y-language gource file,
B~

atan function 2-62

atof function, 2-6

atoi function, 2-6

atol function, 2-6

automatic variables, 1-1

binary and ASCII1 files,

distinguishing, 1-6
binary.

files, 1-6, 2-25

1/0, 3-2
binary numbers, converting to

decimal ASCII, 2-43
bit flags, 3-6
black boxes, 3-1
blank padding, 2-43, 2-50
block size, changing, 2-8
blocks, releasing, 2-8
bogus address, freeing, 2-8
Boolean condition, 3-3
boundaries, 128-byte,
2-49, 2-66

brackets, 2-51, 3-8
break location, 2-16
brk function, 1-2, 2-7
Bss, 1-1, 2-16, 3-8
buffer flushing, 2-18
BUSERR, 2-53
BYTE, 3-4
byte order,
byte stream,

2-29, 2-44

transferring, 2-27

C

2-51
D-1

c character,
C Co-generator,
C language,
functions implemented in,
portability, 3-1
program memory layout,
program compiling, 1-~1
c operator, 2-43, 2-51
C Parser, D-1
C Preprocessor,
c.sub, 1-1, B-3
clé68, B-1, D-1
calling conventions,
calloc function, 2-8
carriage return, 2-14
carriage return line-feed,
ceil function, 2-9
character, 8-bit,
character class,
character string,

2-2

1-1

D-1

1-2

1-6

2-44

2-14
2-51

Index-1

characters, locating in
strings, 2-34

CHK instruction, 2-53

chmod function, 2-10

chown function, 2-10

clearerr function, 2-22
clib, B-2
clink.sub, 1-1, B-3

close function, 2-11
closing streamfiles, 2-21
co68, B-1, D-1
coding conventions,
mandatory, 3-2
suggested, 3-8
code generator, B-1, B-2
command line interface, 1-5
commas, 3-5
comments in a module, 3-7
comparing two elements, 2-47
compilation, speeding, B-4
compiler, B-l, B-2, B-3, B-4
compiler-generated code, 1-5
compiling a C program, 1l-1
completion code, 2-18
compound statement, 3-8
CON;, 1-5, 2-35, 2-63
concatenating strings, 2-57
congole device, 2-28, 2-35
contiguous digits, 2-6
control characters, 2-14
control string format, 2-50
controlling statement, 3-8
conversion character, 2-50
conversion code, capitalized,
2-43
conversion operators, 2-42
optional instructions in,
2-43

convergion specifications, 2-50

copying strings, 2-59

COS function, 2-12

cP68, B-1

CP/M-68K C compiler, D-1

CP/M-68K C Run-time Library,
D-1

creat function, 2-11, 2-13

creata function, 2-13

creatb function, 2-13

CTRL-2, 1-6

ctype function,

<ctype.h> file,

2-14
2-14

Index-2

D

-D flag, B-2
d character, 2-51
4 operator, 2-43
data,
conversion, 2-2
region, 2-16
structures, 3-1
DDT-68K, 2-3
decimal ASCII, 2-43
integer conversion, 2-51
DEFAULT, 3-4
default drive, B-3
tdefine statement, 3-3, B-1
module-specific, 3-7
deleting a file, 2-65
destination string, 2-59
/dev/lp, 1-5
/dev/tty, 1-5
device access,
2-11
device 1/0, 1-5
digit string, 2-43
disk space, conserving,

terminating,

B-1, B-3
disks, swapping, B-3
do, 3-8

documenting code, 3-8
drive changing, B-3

dynamic memory allocation, 2-1

dynamic memory areas,
heap, 1-2
stack, 1-2

E2BIG, A-l

EACCES, A-l

EBADF, A-1l

edata location, 1-2, 2-16

editor, B-3

EFBIG, A-2

EINVAL, A-2

EIO, A-1

else, 3-8

end, 1-2

end location, 2-16

end-of-file, 2-22
errors, 2-30

ENFILE, A-2

ENODSPC, A-2

ENOENT, A-1l

ENOMEN, A-1l

ENOSPC, A-2

»

ENOTTY, A-2

entry points, 2-2

EROFS, A-2

errno external variable,
2~-40, A-l

<arrno.h>include file, A-1
error,
in specified stream, 2-22
system~-dependent, 2-3
error file, 2-40
error messages, numbers,
2-40, A-1
error return, from getchar,
2-29
etext location, 1-2, 2-16
etoa function, 2-17
exception condition, 68000,
2-53
executable file, B-2
exit function, 2-18
_exit function, 2-18
exp function, 2-19
extended character sets, 3-6
EXTERN, 3-4
external,
names, l-4
reference, B-2
variable, 2-40

P

-F option, B-2

fabs function, 2-20

fcetc function, 2-29

fclose function, 2-21

fdopen function, 2-25

feof function, 2-22

ferror function, 2-22, 2-36

fflush function, 2-21

fgetc function, 2-29

fgets function, 2-33

field width, 2-43

file access,
terminating, 2-11
legal, 2-5

file data, reading, 2-49

file descriptor, 2-63

file 1/0, 1-5

file pointer, 2-49

file size, reducing, B-3

file statements, 3-7

file streams, manipulating,

2-22
file.0, B-2
file.C, B-1

file.I, B-l

file.1C, B-1

file.S, B-2

file.ST, B-1

filename, temporary, 2-38

fileno function, 2-22

files, changing protection and

1D, 2-10

floating-point,
conversion, 2-43
routines, 2-2

flushing stream files, 2-21

floor function, 2-23

fmod function, 2-24

fopen function, 2-25

fopena function, 2-25

fopenb function, 2-25

for, 3-8

form feed, 2-14

formatting data, 2-42

fprintf function, 2-42

fputc function , 2-44

fputs function, 2-46

frame pointer, 1-2

fread function, 2-27

free function, 1-2, 2-8

freopa function, 2-25

freopb function, 2-2%

freopen function, 2-25

fscanf function, 2-50

fseek function , 2-28, 2-64

ftell function, 22-28

ftoa function, 2-17

fwrite functions, 2-27

G

getc function, 2-29, 2-64
getchar function, 2-29
getl function, 2-29
getpass function, 2-31
getpid function, 2-32
gets function, 2-33

getw function, 2-29
GLOBAL, 3-4

global data areas, 3-1
global variable, 3-3

H

header file, 3-2

heap management, 1-2

heap space, allocating, 2-8
heap extending, 2-7

hex constant, 3-2

Index-3

hexadecimal ASCII, 2-43
integer conversion, 2-51
high bytes, reversing with low
bytes, 2-61

I

‘I flag:
¢include,
$include
1/0,
redirection,
stream, 2-25
device, 1-5
file, 1-5
single-byte,
if, 3-8
illegal instruction trap, 2-53
include files, nesting, 3-2
indention technique, 3-8
index function, 2-34
initialization file, B-2
initialized data, 1-1, 3-6
input, 1-6
format, 2-50
stream, 2-64
instruction trap,
int,
random number seed,
variable length, 3-2
intermediate code file, B-1l
intermodule communication,
using procedure calls, 3-1
isalnum(c), 2-14
isalpha(c), 2-14
isascii(e), 2-14
isatty function,
iscntrl(c), 2-14
isdigit(c), 2-14
islower(c), 2-14
isprint(c), 2-14
ispunct(c), 2-14
isspace(c), 2-14
isupper(c), 2-14

B-1
B-1

"file.h", 3-2

1-7

1-5

2-3

2-48

2-35

J
JSR instruction, 1-2
L

L character, 2-43

-L flag, B-2
-L option, B-2

Index-4

language library, compatibility
with UNIX V7, 2-1

leading sign, 2-6

leading spaces, 2-6

line A trap, 2-53

lipe F trap, 2-53

line-feed, 1-6, 2-14, 2-50

linkage editor, 1-2, B-2

linker, B-l1, B-2, B-3, B-4

linker, invoking, 1l-1

listing device, 2-28

literal matches, 2-51

Lo68, B-1, B-2

load modules,

load time, reducing,

LOCAL, 3-4, 3-7

local variable names,

log function, 2-36

logical, 3-5

LONG, 3-4

long, 32-bit, 2-29, 2-43

long masking constant, 3-35

longjmp function, 2-52

low bytes, reversing with high
bytes, 2-6l

lower-case, 2-2,

lseek function,

LST:, 1-5

B-3
B-3

3-3

3-2, 3-3

2-37

M
macro, 2-4, 2-15, 2-44
macro definitions, 3-2
maintenance costs, 3-1
maintenance documentation,
malloc function, 1-2, 2-8
mandatory coding conventions,
3-2
macrgin, 3-8
masking, 3-5
memory allecation, 2-15
memory layouts of C programs,
1-1
minus sign, 2-43
mktemp function,
MLOCAL, 3-4
modular programs,
module,
layout, 3-7
size, 3-1
module-specific #define
statements, 3-7
movem.l instruction, 1-4
multibyte binary variables, 3-2
m Y - jcharacter constants, 3-5

2-29,

3-8

2-38
3-1

nesting level, 3-8

newline, 2-50
character, 2-33, 2-46
incompatibility, 2-46

NO-OPS, 2-10

nonlocal goto, 2-52

null statement, 3-8

null-terminated string,

2-43, 2-46

concatenating, 2-57

o

© character, 2-51
© operator, 2-43
-0 file.esx, 5-2
object code, reducing size,
2-29
octal,
ASCIL, 2-43, 2-51
constant, 3-2
open function, 2-1i, 2-39,
2-25, 2-49
open stream, 2-22, 2-50
opena function, 2-39
opendb function, 2-39
opening files, 2-39
operations, 3-5
OR, 3-5
output, 1-6
file, B-1l
left-adjusted, 2-43
right-adjusted, 2-43
overflow, detection and
reporting, 2-6

P

padding, blank or zeco, 2-43
parentheses, 3-2, 3-4
parser, B-l

password, 2-31

PDP-~11l, 2-61

percent sign, 8, 2-42
peripheral devices, 1-5
perror function, 2-40, A-1l
pointer arithmetic, 3-5
portability, 3-1 to 3-7
pow function, 2-41
precision field, 2-43
precision string, 2-43
preprocessor, B-l

primary memory, 2-27

prantf function, 2-42, 3-2, 3-5
printing characters, 2-14
privilege violation, 2-53
proceduce definitions, 3-7
procedure header, 3-7
process 1D, false, 2-32
punctuation characters, 2-14
pushed-back characters, 2-64
putc function, 2-44

putchar function, 2-44

putl function, 2-44

puts function, 2-46

putw function, 2-44

Q

qsort function, 2-47
quick sort routine, 2-47

-R Opl‘. ion' B-2

rand function, 2-48

random number generator, 2-48

random numbers, retrieving,
2-48

read errors, 2-30

read function, 2-49, 2-29

read pointer, 2-28

readability, improving, 3-8

realloc function, 2-8

references, global, 3-7

REG, 3-4

registers, scratch, 1-4

regular files, 1-6

reloc utility, B-3

relocatable files, B-2

rewind function, 2-28

rindex function, 2-34

ROM, 3-6

run-time start-up routine, B-2

S

8 character, 2-51

8 operator, 2-43

-$ option, B-2

-S switch, B-4

sample C module, C-l

sbrk function, 1-2, 2-7, 2-16
scanf function, 2-50

screen editing, 3-8

seed, 2-48

setjmp function, 2-52
sign-extending characters, 3-2

Index-5

signal function, z-53
signed characters, 2-58
8in function, 2-12
single~byte I/0, 1-5
single~density disk system,
sinh function, 2-55
source file, B-l
space, 2-14

allocation for array, 2-8
sprintf function, 2-42
sqrt function, 2-56
srand function, 2-48
sscanf function, 2-50
stack frame, 1-4
stack use, 1-2
stack-popping code, 1-4
standard error file, L~6

standard type definitions, 3-3

start-up file, B-2
static data, 2-31
static variables, 3-6
stderr, 1-6
stdin, 1-6 -
<stdio.h> file, 1-6, 2-4,
2-29, 2-44

stdout, 1-6
storage class, 3-7

definitions, 3-3
strcat function, 2-57
stremp function, 2-58
strcpy function, 2-59
strean,

address, 2-21

buffer, 2-37

file, 2-28, 2-33

output file, 2-18
string,

comparison, 2-58

length, 2-58

null-terminated, 2-31

variables, 3-5
strlen function, 2-60
strncat function, 2-57
strnepy function, 2-59
strncmp function, 2-58
stylistic rules in C

programs, 3-1

submit files, B-3
subroutine calls, 1-4
subtraction, 3-5
suppressed assignments, 2-41
swab function, 2-61
swapping binary data, 2-61
symbolic constants, 3-2
symbolic names, A-l

Index-6

system,
calls, 2-l
error, 2-40
include files, B-l
traps, 2-1
system-wide file, 3-2

T

-T switch, B-4

tab, 2-14, 2-50, 3-8

tan function, 2-62

tanh function, 2-55

tell function, 2-37

temporary file, B-l

terminal device, 2-63

terminating current program,
2-3

text, 3-6

tilde, 2-14

trace trap, 2-51

trailing null, 2-46, 2-51

transferring data, 2-66

TRAPV instruction, 2-51

ttyname function, 2-63

type, 3-2

type definitions, 3-3

typedef 3-3

U

u operator, 2-43
-U option, B-2
UBYTE, 3-4
underline character, 1-4
ungetc function, 2-64
uninitialized data, 1-~1, 3-6
UNIX,
compatibility, 2-9, 2-40,
2-46, 2-53
versions 1 through 6, 2-37
version 7, A-2
with fopen, 2-26
with getpid, 2-32
with getchar, 2-30
UNIX programs, with binary
files, 2-39
unlink function, 2-65
unsigned characters, 2-58
unsigned int, 3-2
upper bound of program,
setting, 2-7
upper-case, 2-2, 3-2, 3-3
user control block, 1-5
UWORD, 3-4

v °

variable, 3-7
variable names,
global, 3-3
local, 3-3
lower-case, 3-3
variable type, 3-7
vaX, 2-61
vectors, sorting, 2-47
voip, 3-4

while, 3-8
white space characters, 2-14
WORD, 3-4
word,
16-bit, 2-44
32-bit word, 2-3
word boundary, 2-8
write function, 2-44, 2-66
write pointer, 2-28

X

X characters, 2-38, 2-44, 2-51
X operator, 2-43

2z

zero divide, 2-53
zero padding, 2-43

Index-7

