
DIGITAL
RESEARCH

C
Language

Programming Guide
for CP/M-68K'

COPYRIGHT

Copyright © 1983 by Digital Rescarch. All nghts reserved. No part of this publication

may be reproduced, transmitted, transcribed, stored in a retrieval System, or translated

into any language or Computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written

permission of Digital Research, Post Office Box 579, PacificGrove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or fitness for

any particular purpose. Further, Digital Research reserves the right to revise this publi

cation and to make changes from time to time in the content hereof without Obligation

of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. CP/M-68K and DDT-68K are

trademarks of Digital Research. PDP-11 and VAX are trademarks of Digital Equipment

Corporation. ONYX is a trademark of ONYX Systems, Inc. UNIQ is a trademark of

UNIQ Computer Corpuration. UNIX is a registered trademark of Bell Laboratories.

Xenix is a registered trademark of MicroSoft Corporation. Zilog is a registered

trademark of Zilog, Inc.

The C Language Programming Guide for CP/M-6SK was prepared using the Digital

Research TEX Text Formarter and printed in the United States of America.

Second Edition: June 1983

The C Language
Programming Guide

for CP/M-68K"

Change Packet One to the
Second Edition: June 1983

1015-2309

COPYRIGHT

Copyright © 1984 by Digital Research Inc. All
rights reserved. No part of this publication tnay be

reproduced, transraitted, transcribed, stored in a

retrieval System, or translated into any language or

Computer language, in any form or by any neans,

electronic, mechanical, magnetic, optical, chemical,

manual or otherwise, without the prior written

permission of Digital Research Inc., Post Office Box

579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research Inc. makes no representations or

warranties with respect to the contents hereof and

specifically disclaims any implied warranties of

merchantabi 1 i ty or fitness for any particular

purpose. Further, Digital Research Inc. reservea

the right to revise this publication and to make

changes from time to time in the content hereof

without Obligation of Digital Research Inc. to

notify any person of such revision or changes.

TRADEMARKS

Digital Research and its logo are registered

trademarks of Digital Research Inc. CP/M-68K is a

trademark of Digital Research Inc.

The C Language Programming Guide for CP/M-68K Change

Packet One to the Second Edition" June 1983 was
prepared using the Digital Research TEX" Text

Formatter and printed in the United States of

Amer ica.

Compiled: Maren 1984

Foreword

The C language under CP/M-68K'" is easy to read, easy to

maintain, and highly portable. CP/M-68K can run most applications

written in C for the UNIX* operating System, except prograras that

U8e the UNIX fock/exec multitasking primitives or that read UNIX

file structures.

The C Language Programming Guide for CP/M-68K is not a

tutorial. This raanual describes how to program in C under the CP/M-

68K operating System, and is best used by programmers familiär with

the C language as described in The C Programming Language (Kernighan

and Ritchie, 1978).

The commonly accepted Standard for C language programming is

the Portable C Compiler (PCC), written by Stephen C. Johnson. Many

versions of the UNIX operating System use PCC, including the

Zilog» , ONYX" , Xenix* , Berkeley UNIX, and UNIQ"1 Systems.

The CP/M-68K C Compiler differs from PCC on the following
points;

• The CP/M-68K C int (default) data type is 16 bits long.

Pointers are 32 bits long. All function definitions and

function calls that use long (32-bit ints) and pointer
Parameters must use the proper declarations.

• long, int, and char reg ister variables are assigned to D

registers. Five such registers are available in each
procedure.

• Any register variable used as a pointer is assigned to an A

reg ister. There are three such registers available in each
procedure.

• All local declarations in a function body must precede the

first executable Statement of the function.

• The CP/M-68K C Compiler handles structure initialization as if
the structure were an array of Short integers, as in UNIX

version 6.

• The first eight characters of variable and function names must

be unique. The first seven characters of external names must

be unique.

iii

• The CP/M-68K C Compiler does not support floating point.

• The CP/M-68K C Compiler does not support structure assignment,

structure arguments, and structures returned from procedures.

• The CP/M-66K C Compiler does not support initialization of

automatic variables.

• The CP/M-68K C Compiler does not support enumeration types.

Section 1 of this manual describes the Conventions of using C

language under CP/M-68K. Section 2 discusses C language

compatibility with UNIX version 7 and provides a dictionary of C
library routines for CP/M-68K. Section 3 presents a style guide for

coding C language programs.

Appendix A is a table of CP/M-68K error codes. Appendix B

discusses Compiler components, teils you how to operate the

Compiler, and suggests ways to conserve the disk space used for

cotnpiling. Finally, Appendix C presents sample C modules that are

written and documented according to the style Conventions outlined

in Section 3.

IV

Table of Contents

1 Uaing C Language Under CP/M-68K

1.1 Compiling a CP/M-68K C Program 1-3

1.2 Menory Layout 1-;

1.3 Calling Conventions 1-2

1.4 Stack Frame 1-4

1.5 Conmand Line Interface 1-4

1.6 I/O Conventions 1-5

1.7 Standard Files 1-6

1.8 I/O Redirection 1-7

2 C Language Library Routines

2.1 Conpatibility with UNIX V7 2-1

2.2 Library Routines under CP/M-68K 2-2

abort 2-3

abe 2-4

access 2-5

atoi, atof, atol 2-6

brk, sbrk 2-7

calloc, malloc, realloc, free 2-8

ceil 2-9

chaod, chown 2-10

close 2-11

cos, sin 2-12

creat, creata, creatb 2-13

ctype 2-14

end, etext, edata Locations 2-16

etoa, ftoa 2-17

exit, exit 2-18

exp ." 2-19
fabs 2-20

fclose, ff lush 2-21

feof, ferror, clearerr, fileno 2-22

floor 2-23

fmod 2-24

fopen, freopen, fdopen 2-25

fread, fwrite 2-27

fseek, ftell, rewind 2-28

getc, getchar, fgetc, getw, getl 2-29

getpass 2-31

Table of Contents

(continued)

getpid 2-32

gets, fgets 2-33

index, rindex 2-34

isatty 2-35

log 2-36

lseek, teil 2-37

mktemp 2-38

open, opena, openb 2-39

perror 2-40

pow 2-41

printf, fprintf, sprintf 2-42

putc, putchar, fputc, putw, putl 2-44

puta, fputs 2-46

qsort 2-47

rand, srand 2-48

read 2-49

ocanf, fscanf, sscanf 2-50

setjmp, longjmp 2-52

Signal 2-53

sinn, tanh 2-55

sqrt 2-56

strcat, strncat 2-57

atrcap, strncmp 2-58

atrcpy, strncpy 2-59

atrlen 2-60

swab 2-61

tan, atan 2-62

ttyname 2-63

ungetc 2-64

unlink 2-65

write 2-66

3 C Style Guide

3.1 Modularity 3-1

3.1.1 Module Size 3-1

3.1.2 Intermodule Communication 3-1

3.1.3 Header Files 3-2

3.2 Mandatory Coding Conventions 3-2

3.2.1 Variable and Constant Names 3-3

3.2.2 Variable Typing 3-3

3.2.3 Expressions and Constants 3-4

Table of Contents

(continued)

3.2.4 Pointer Arithmetic 3-5

3.2.5 String Constants 3-6

3.2.6 Data and BSS Sectiona 3-6

3.2.7 Module Layout 3-7

3.3 Suggested Coding Conventions 3-8

Appendixes

A Brror Codes A-l

B Custoaising the C Compiler B-l

B.l Compiler Operation B-l

B.2 Supplied SUBMIT Files B-3

B.3 Saving Disk Space B-3

B.4 Gaining Speed B-4

C Saaple C Module C-l

D Brror Messages D-l

D.l C068 Error Messages " 0-1

D.l.l Diagnostic Error Messages D-l

D.1.2 Internal Logic Errors D-l2

D.2 C168 Brror Messages D-13

D.2.1 Fatal Diagnostic Errors D-13

D.2.2 Internal Logic Errors D-14

D.3 CP68 Error Messages D-15

D.3.1 Diagnostic Error Messages D-15

D.3.2 Internal Logic Errors D-20

D.4 C-Run-time Library Error Messages D-20

v i

Tables and Figures

Tablea

1-1. Standard File Defimtions 1-6

2-1. ctype Functions 2-14

2-2. Conversion Operators 2-43

2-3. Valid Conversion Characters 2-51

2-4. 68000 Exception Conditions 2-53

3-1. Type Defimtions 3-4

3-2. Storage Class Definitions 3-4

A-l. CP/M-68K Error Codes A-l

D-l. C068 Diagnostic Error Messages 0-2

D-2. C168 Fatal Diagnostic Errors D-13

D-3. CP68 Diagnostic Error Messages D-15

Pigures

1-1. Memory Layout 1-2

1-2. C Stack Frame 1-4

Section 1

Using C Language Under CP/M-68K

1.1 Coapiling a CP/M-68K C Prograa

To create an executable C program under CP/M-68K, use the C.SUB

and CLINK.SUB coamand files. The C.SUB file invokea the C Compiler

and the CLINK.SUB file invokea the linker. Use the following

coomand line forBat to invoke the C Compiler. Note that the command

keyword SUBMIT is optional and that the source file muat have a C

filetype. You must not specify the C filetype in the Compiler

command line.

A>[SUBMIT] C filenaae

The Compiler produces an object file with a 0 filetype. The

linker uses the object file to create the executable program. Use

the following command line format to invoke the linker. Again, the

command keyword SUBMIT is optional. You must not specify the O

filetype in the linker command line for the object file.

A>[SUBMITJ CLINK filename

You can specify multiple object file« for linking into an

executable program. For example, the flrst three comaand lines

below coapile source files named ONE.C, TWO.C, and THREE.C. The

last command line links the three object files that the Compiler

creates into an executable program named ONE.68K

A>subait c one

A>sdbmit c two

A>sabait c three

A>sulNftit clink one two three

To link C programs that use floating polnt math, substitute the

CLINKP file for CLINK in the preceding example. CLINKP uses the

Motorola PFP floating point format which is considered the fastest.

To coapile and link programs that use IEEE floating point format,

substitute the CE file for C and the CLINKE file for CLINK in the

preceding examples.

1-1

1.2 Memory Layout C Language Programming Guide

1.2 Meaory Layout

The memory aliocation of C programs running under CP/M-6ÖK is

similar to that of UNIX C programs. A program consists of three

segments: the text segment or program instruction area, the data

segment for initialized data, and the BSS or block storage segment

for uninitialized data. There are two dynamic memory areast the

Stack and the heap. Procedure calls and automatic variables use the

Stack. Data structures such as symbol tables use the heap. The

brk, sbrk, malloc, and free C functions manage the heap. Figure 1-1

shows how each of the areas are arranged in memory.

STACK (GROWS TO LOWER AODRESSES)

HEAP IGROWS TO HIGHER ADDRESSES)

BLOCK STORAGE SEGMENT

OATASEGMENT

TEXT SEGMENT

TPA HIGH

BREAK

ENO

EDATA

ETEXT

TPA LOW

Pigure 1-1. Meaory Layout

The linker determines the locations etext, edata« and end. These

locations are the ending addresses of the text, data, and BSS

segments. The oreak location is the first unused address following

the heap.

1.3 Calling Conventions

The JSR instruction (jump to subroutine) calls a C language

procedure. Register Ab acts as the frame pointer to reference local

storage. Arguments are pushed onto the A7 Stack in reverse Order.

Word and character arguments occupy 16 Dits. Long, floating point,

and pointer arguments occupy 32 bits. All function values return in

register DO. Functions that specify no return value actually return

an undefined value.

i-2

c Lianguage frogramnung uuiae

For example, the following sequence

Conventions

xyx() {

J

long a;

int b?

cha r x;

register y;

b » blivot(x.a);

generatea the following codes:

_xyz:

link a6,t-B

movem.l d6-d7,-(27)

* Space for a,b,x

*d7 used for y

*d6 reserves Space

move.1

oove.b

ext.w

nove.w

jar

add.l

mov e.w

tst.l

moven.1

unlk

rta

-4(a6),(a7)

-8(a6),dO %

dO *

dO,-(a7)

blivot i

#2,a7

dO,6(a6)

(a7) +

(a7)+,d7

a6

* Load parameter a

' Load parameter x

• Extend to word size

• Push it

' Call subroutine

* Pop arguroent list

* Store return parameter

k Purge longword

* Unsave registers

* Restore frame pointer

* Return to caller

1-3

1.3 Calling Conventions C Language Programming Guide

C coda, in which all arguments are the same length, might not

work without modif lcation because of the varying length of arguments

on the Stack.

The Compiler adds an underline character, , to the beginning of

each external variable or function naroe. ~Thia means that all
external names in C must be unique in seven characters.

The compiler-generated code cnaintains a long word at the top of

the Stack for use in subroutine calls. This shortens the Stack -

popping code required on return from a procedure call. The movem.l

instruction, which saves the registers, contains an extra reg ister

to allocate this Space.

The Compiler uses registers D3 through D7, and A3 through A5, for

register variables. A procedure called from a C program must save

and restore these registers, if they are used. The compiler-

generated code saves only those registers used. Registers 00

through D2, and A0 through A2, are scratch registers and can be

modified by the called procedure.

1.4 Stack Praae

Figure 1-2 illustrates the Standard C Stack frame.

A7.

A6-

LONGWORD FOR PROCEDURE CALLS

SAVED REGISTERS

LOCAL VARIABLE AREA

PREVIOUS VALUE OF A6

RETURN ADDRESS

ARGUMENT

ARGUMENT 2

Pigure 1-2. C Stack Prane

i-4

C Language Programming Guide 1.4 Stack Frame

Arguments are either two or four bytes depending on the argunent

type. The Compiler generated code uses reg ister A6 to reference all

variables on the Stack.

1.5 Conuuad Line Interface

The Standard C argc/argv interface for arguments typed on the

command line also works under CP/M-68K. For example, the coaunand

conmand argl arg2 arg3 ... argn

produces the following interface setup:

arge »

argCOJ

argil]

arg[2]

n+1

"C Runtime"

"argl"

"arg2"

argvCn] argn

You cannot obtain the command name under CP/M-68K. Therefore, the

argv[O] argument always contains the string "C Runtime".

Strings that contain the characters * or ? are interpreted as

wildcarded filenames. The C runtime start-up routine scans the

directory and expands each wildcarded filename into a list of

filenames that natch the specification. To pass a string that

contains * or ? characters to a C program, enclose the string in

Single or double quotation marke. Similarly, enclose argument

strings that contain embedded blanks in quotation marks to pass them

to a C program as a Single element of argv[].

1.6 I/O Conventions

UNIX C programs use two types of file and device I/O: regulär

and stream files. A unique nuraber called the file descriptor

identifies regulär fxles. In CP/M-68K, file numbers ränge from 0 to

15. The address of a user control block in the run-time System

identifies stream files. Unlike regulär files, stream files use a

form of intermediate buffering that makes 3ingle-byte I/O more

efficient.

Under UNIX, you can reference penpheral devices, such as

terminals and printers, as files using the Special names /dev/tty

for terminal and /dev/lp for printer. Under CP/M-68K, CON: is for
the console device and LST: is for the listing device.

1-5

1.6 I/O Conventions C Language Progranuning Guide

CP/M-68K Stores ASCII files with a carriage return line feed

after each line. A CTRL-Z (Oxla) character indicates end-of-file.

C programs usually end lines with only a line feed. This means that

in C for CP/M-68K, read and write operations to ASCII files must

insert and delete carriage-return characters. The CTRL-Z must be

deleted on read and inserted on close for such files. These

operations are not desirable for binary files. CP/M-68K C includes

an extra entry point to all file open and creat calls to distinguish

between ASCII and binary files.

1.7 Standard'Piles

C programs begin execution with three files already open: the

Standard input, Standard Output, and Standard error files. You can

access these files as either stream or regulär files in a C program.

The usual C library routines close and reopen the Standard files.

The following definitions are in the <stdio.h> file.

Table 1-1.

File

Standard input

Standard Output

Standard error

Standard Pile Definitions

File Descriptor

STDIN

STDOUT

STDERR

Stream Name

stdin

stdout

stderr

L-6

w uan^ua^c r l uy L d uiui i ny vjuii.«.- i . O

1.8 I/O Redirection

You can redirect C program Standard I/O using the < and >

characters. For example, the following command executes the file

TEST.68K. The Standard input comes from file DAT and the Standard

Output goes to the listing device. The argument list is C, D, E,

and F.

A>TEST <DAT >LST: C D B F

You cannot place spaces between the < or > characters and the

filename that the character refers to. Note that you cannot

redirect the Standard error file.

You can append Information to an existing file using the

following specification:

>>filename

The Standard Output from the program specified by the filename

appears after the original Contents of the file.

End of Section 1

1-7

Section 2

C Language Library Routines

The CP/M-68K C library is a collection of routines £or I/O,

dynamic memory allocation, System traps, and data conversion.

2.1 Coapatibility with UHIX V7

The C library is compatible with UNIX Version 1, allowing

programs to move easily from UNIX to CP/M-68K. CP/M-68K C sinulates

many UNIX operating System calls and featuree. However, CP/M-68K

does not support the following C functions that UNIX implementat

• the fork/exec. kill, lock, nice, pause, ptrace, sync, and wait
primitives

• the acct System call

• the alärm function, or the stime, time, ftime, and times System

calls

• the dup and dup2 duplicate file descriptor functions

• the getuid, getgid, geteuid, getegid, setuid, and setgid
functions

• the indir indirect systen call

• the ioctl, stty, and gtty System calls

• the link System call

• the chdir, chroot, mknod, mount, umount, mpx, pipe, pkon,

pkoff, profil, sync, atat, fstat, umask, and utime System calls

• the phys System call

2-1

2.1 Compatibility with UNIX V7 C Language Programming Guide

The following UNIX library functions are not available under CP/M-

68K:

Aösert

Crypt

OBM

Getenv

Getgrent, getlogin, getpw, and getpwent functions

13tol, Itol3

monitor

itom, madd, staub, mult, mdiv, min« mout, pow, gcd, and rpow
nliat

pkopen, pkclose, pkread, pkwrite, and pkfail

plot

popen, pclose

sleep

systeo

ttyslot

The CP/M-68K C language library does not contain the floating-

point routines available under UNIX.

Entry points have been added to file open and creat calls to

distinguish between ASCII and binary files. Byte level end-of-file

is unavailable for binary files. ASCII files, however, are

compatible with UNIX, and with the CP/M-68K text editors and

Utilities that use ASCII files.

The C Programming Guide for CP/M-68K does not separate the UNIX

System calls and library functions; all calls are library functions

under CP/M-68K.

2.2 Library Functions under CP/M-68K

The remamder of this section aiphabetlcally lists library

routines that C supports under CP/M-68K. The C Compiler accepts

entry in upper- and lower-case; however, type all library routines

in lower-case, as shown in the calling sequences.

2-2

C Language Programming Guide abort Funct

abort Punction

The abort function terninates the current program with an err

The error is System dependent. The 68000 uses an illei

inatruction trap. This invokes DDT-68K", if the debugger is loa<
with the object program.

Calling Sequence;

WORD code;

abor t(code);

Arguments:

code loads into register DO betöre abort

Returns:

The abort function never returns.

abs Function c Language Programming Guide

abs Punction

The abs function takes the absolute value of a Single argument.
This function is itnplemented as a macro in <stdio.h>; argumenta with
aide effects do not work as you expect. For example, the call

a «■ abs(*x++);

increaents x twice.

Calling Sequence:

WORD val;

WORD ret;

ret » abs(val);

the input value

ret the absolute value of val

-4

C Language Programming Guide

acceaa Function

access functioi

The access function checks whether the calling program can accesi

a apecified file. Under CP/M-68K, the file is acceaaible if i-

exiats.

Calling Sequence;

BYTE *name;

WORD mode;

WORD ret;

ret » acceaa{name,mode);

Arguments:

name

mode

points to the null-terminated filename

can be one of four values:

4 checke read acceas

2 checke write access

1 checks execute access

0 checks directory path access

CP/M-68K ignores the 0 argument

Returns:

ret 0 if file access is allowed or -1 if not allowed

Note:

CP/M-68K only checks to see if the specified file exista

2-

atoi, atof, atol Functions C Language Programming Guide

atoi« atof, atol Punctions

The atoi, atof, and atol functions convert an ASCII digit string

to an integer, float, or long binary number, respectively. The atoi

and atol functions convert digit strings of the form [-][+]dddddd. ..

The atof function converts digit strings of the form [-

][+]ddddd.ddd[e[-]dd]. Each "d" is a decimal digit. The Compiler

ignores all leading Spaces, but permits a leading sign. Conversion

proceeds until the number of digits in the string is exhausted.

Each function returns a 0 when there are no more digits to convert.

Calling Sequence:

BYTE

WORD

LONG

•string;

ival,atoi (

lval,atol{

FLOAT fval,atof();

ival " atoi(string);

lval » atol(string);

fval ■ atof(string)

a pointer to a null-terminated string that contains

the number to convert

Returns:

ival

lval

fval

atoi returns the converted string as an integer

atol returns the converted string as a long binary

nujnber

atof returns the converted string as a single-

precision floating-point number

Note:

The atoi, atol, and atof functions do not detect or report

overflow. Therefore, you cannot specify a limit to the number

of contiguous digits processed or determine the number of

digits a function processes.

2-b

C Language Programming Guide brk, sbrk Function

brk, sbrk Functiono

The brk and sbrk functions extend the heap portion of the us«

program. The brk function aets the upper bound of the prograa

called the break in UNIX terminology, to an absolute addresa. Th

abrk function extends the program by an ine remental amount.

Calling Sequence;

WORD brk();

BYTE *addr,*sbrk();

WORD ret;

BYTE *start?

ret - brk(addr);

Start « sbrk(incr);

Arguaentai

addr the desired new break address

incr the incremental number of bytes desired

Returns:

0 success (brk)

-1 failure (brk)

Start begins the allocated area (sbrk)

0 failure (sbrk)

2-;

calloc, malloc, realloc, free C Language Programming Guide

calloc, »alloc, realloc, free Functions

The calloc, malloc, realloc, and free functions manage the

dynamic area between the region and the Stack.

The malloc function allocates an area of contiguous bytes aligned

on a word boundary and returna the address of thia area. Malloc

uses the sbrk function to allocate additxonal heap Space, if

necessary.

The calloc function allocates space for an array of elernents,

whose size is given in bytes.

The realloc function changes the size of a block. The address of

the block returns.

The free function releases a block previously allocated by

malloc.

Calling Sequencet

WORD size,number;

BYTE *addr,»malloc(),*calloc(),*realloc();

addr » malloc(size);

addr » calloc(number, size);

addr » realloc(addr,size);

free(addr);

Arguments:

size the number of bytes desired

number the number of Clements desired

addr points to the allocated region

Returns:

Address of the allocated region if succesaful, 0 if
unsuccessful.

Jote;

Freeing a bogus address can be disastrous.

C Language Programming Guide ceil Function

ceil Function

The ceil function returns the smallest integer that is greatex

than the argument you apecify. For example, ceil(l.S) returns 2.0.

The return value is a floating-point nunber.

Calling Sequence;

PLOAT ceilO;

FLOAT arg;

FLOAT ret;

ret = ceil(arg);

Arguments:

arg a floating-point number

Returnst

ret a floating-point number

2-J

chmod, chown Functions C Language Programming Guide

chBod, chown Functions

Under UNIX, the chmod and chown System calls allow you to change

the protection and owner ID of an existing file. CP/M-68K treats
theae calls as NO-OPS if the file exists.

Calling Sequence;

BYTE *name;

WORD mode,owner,group,ret;

ret » chmod(name,mode);

ret = chown(name,owner,group);

Arguments;

name the affected filename (null-terminated)
mode the new mode for the file

owner the new owner o£ the file

group the new group number

Returns:

ret 0 if the file exists

-1 if the file does not exist

2-10

C Language Programming Guide close Functi<

close Function

The close function terminates access to a file or device. Th.

routine acts on files opened with the open or creat functioni

Specify a file descriptor, not a stream, for the Operation. Tl

fclose function closes stream flies.

Calling Sequence;

WORD fd,ret;

ret » close(fd);

Arguments;

fd the file descriptor to be closed

Returns;

0 successful close

-1 unknown file descriptor

2-1

cos, sin Functions C Language Programming Guide

cos, sin Punctions

The cos function returns the trigonometric cosine of a floating-

point number. The sin function returns the tr igonometr ic sine of a

floating-point number. You ntust express all arguments in radians,

Calling Sequence;

FLOAT cos(),sin();

FLOAT väl,ret;

ret ■ cos(val);

ret = sin(val);

Arguments;

val a floating-point number that expresses an angle in

radians

Returns:

ret the cosine or sine of the argument value expreased in
radians

Note:

The best results occur with arguments that are less than 2 pi.

You can pass numbers declared as either float or double to cos

and sin.

2-12

C Language Programming Guide creat, creata, creatb Punctio:

creat, creata, creatb Functions

The creat function addo a new file to a disk directory. The £i

can then be referenced by the file descriptor, but not as a stre

file. The creat and creata functions create an ASCII file. T!

creatb function createa a binary file.

Calling Sequence;

BYTE *name;

WORD mode,fd;

fd = creat(name,mode);

fd *> creata(name, mode);

fd » creatb(name,mode);

Arguments:

name the filename string, null-terminated

mode the UNIX file mode, ignored by CP/M-68K

Returns:

fd The file descriptor for the opened file. A fil

descriptor is an int quantity that denotes an ope

file in a read, write, or lseek call.

-1 Returned if there are any errors.

Note:

UNIX programa that use binary files compile successfully, bt

execute improperly.

2-1

ctype Functions

ctype Punctions

C Language Programming Guide

The file <ctype.h> defines a nunber of functions that classify

ASCII characters. These functions indicate whether a character

belongs to a certain character class, returning nonzero for true and

zero for false. The following table defines ctype functions.

Table 2-1. ctype Punctions

Function

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

iscntrl(c)

isascii(c)

c

c

c

c

c

c

c

c

c

c

is

is

is

is

is

is

is

is

is

is

Meaning

a letter.

upper-case.

lower-case.

a digit.

alphanumeric.

a white space character.

a punctuation character.

a printable character.

a control character.

an ASCII character (< 0x80).

The white Space characters are the space (0x20), tab (0x09),

carriage return (OxOd), line-feed (OxOa), and form-feed (OxOc)

characters. Punctuation characters are not control or alphanumeric

characters. The printing characters are the space (0x20) through

the tilde (0x7e). h control character is less than a space (0x20).

2-14

C Language Programming Guide
ctype Functior

Calling Sequence:

♦include <ctype.h>

WORD ret;

BYTE c; /* or WORD c; */

ret » isalpha(c);

ret » isupper(c);

ret = ialower(c);

ret » iadigit(c);

ret » iaalnum(c);

ret = isspace(c);

ret » ispunctic);
ret = isprint(c);

ret » iacntrl(c);

ret » iaaacii(c);

Arguments:

c the character to be classified

Returna:

ret

ret

3 0 for faise

<>0 for true

Note:

Theae functiona are xmplenented aa macroa; argumenta with aid<
effecta, auch aa *p++, work incorrectly in some caaea. Boqu

i^'V' " ar9UBent8 are not ASCIX charactera. Po«

2-15

end, etext, edata Locations C Language Progranuning Guide

end, etext, edata Locations

The linkage editor defines the labeis end, etext, and edata as

the first location past the BSS, text, and data regions,

respectively. The program-break location, which is the last used

location, is initially set to end. However, many library functiona

alter this location. sbrk{0) can retrieve the break.

2-16

C Language Programming Guide etoa, ftoa Functior

etoa., ftoa Functions

The etoa and ftoa functiona convert a f loating-point number to i

ASCII string. Both functions return the address of the converte

string buffer. The string returned in the buffer takes the for

C-]d.ddddde[-]dd. Each "d" is a decimal digit.

Calling Sequence:

FLOAT fval;

BYTE *ftoa(),*etoa{),*buf,*ret;

WORD prec;

ret = etoa(fval,buf,prec);

ret = ftoa(fval,buf,prec);

Arguments:

fval the floating point number to be converted

buf the address of the buffer for the digit string

prec the number of digits to appear to the right of the

decimal point in the converted string

Returns:

ret the address of the buffer for the converted« null

te rmi nated string

2-1

exit, _exit Punctions C Language Programming Guide

exit, exit Punctiona

The exit function passes control to CP/M-68K. An optional

conpletion code, which CP/M-68K ignores, might return. exit
deallocates all meraory and closes any open filea. exit also flushes

the buffer for stream Output files.

The _exit function iauaediately returns control to CP/M-68K,

without flushing or closing open files.

Calling Sequence:

WORD code;

exit(code);

_exit(code);

Argumentsi

code optional return code

Returns:

no returns

2-18

C Language Programming Guide exp Functi

exp Punction

The exp function returns the constant e raised to a apecifii

exponent. The constant e is the base of natural logarithima equ;

to 2.71828182845905.

Calling Sequence;

FLOAT exp();

FLOAT fval,ret;

ret « exp(fval);

Arguments»

fval the exponent expressed as a floating-point nuraber

Returnsx

ret the value of e raised to the specified exponent

Notet

You can pasa numbers declared as either float or double to exj

2-

abs Function C Language Programming Guide

aba Punction

The fabs function returns the absolute value of a floating-point

unber.

alling Sequence;

FLOAT fabs();

FLOAT fva-1 ;

FLOAT retval;

retval = fabs(fval);

rguments:

£val a floating point nunber

eturns:

etval the absolute value of the floating-point nusber

2Ü

C Language Programming Guide fclose, fflush Functiona

fclose, fflush Functions

The fclose and fflush functions close and flush stream flies

The stream address identifies the stream to be closed.

Calling Sequence:

WORD ret?

FILE *atrean;

ret * fclose(stream);

ret ■ fflush(stream) ;

Arguments;

stream the stream address

Returns:

0 successful

-1 bad stream address or write failure

2-2;

feof, ferror, clearerr, fileno C Language Programming Guide

feof, ferror« clearerr, fileno Functions

These functions manipulate file streams in a system-independent

manner.

The feof function returns noniero if a specified atream is at

end-of-file, and zero if it is not.

The ferror function returns nonzero when an error has occurred on

a specified stream. The clearerr function clears thia error. This

is usefui for functions such as putw, where no error indication

returns for Output failures.

The fileno function returns the file descriptor associated with

an open stream.

Calling Seguence:

WORD ret;

FILE *stream;

WORD fd;

ret = feof(stream);

ret » ferror{stream);

clearerr(stream);

fd *» fileno(stream);

Arguments:

stream the stream address

Returns;

ret a zero or nonzero indicator

fd the returned file descriptor

>-22

C Language Programming Guide floor Function

floor Function

The floor function returns the largest integer that ia leoe than

the argument you specify. The returned value is a floating-point

nufflber. For example, floor(1.5) returns 1.0.

Calling Sequence:

FLOAT floor();

FLOAT fval;

FLOAT retval;

retval ■ floor(fval);

Arguments;

fval a floating-point nuaber

Returns:

retval a floating-point integer value

2-23

faod function C Language Programming Guide

faod Punction

The ffflod function returns the floating-point modulus (remainder)

from a division of two argumenta. £mod dividea the firat argument

by the aecond and returns the remainder.

Calling Sequence;

FLOAT fmod();

FLOAT x,y;

FLOAT ret;

ret =■ £mod(x, y) ;

Arguaenta;

x a floating-point dividend

y a floating-point diviaor

Returns:

ret the modulua aa a floating-point nuober

2-24

C Language Programming Guide fopen, freopen, fdopen Functioi

fopen, freopen, fdopen Functiono

The fopen, freopen, and fdopen functions aasociate an I/O stret

with a file or device.

The fopen and fopena functions open an existing ASCII file f<

I/O as a atreaa. The fopenb function opens an existing binary fi.
for I/O as a atreaa.

The freopen and freopa functions substitute a new ASCII file f<

an open stream. The freopb function substitutes a new binary fi:

for an open stream.

The fdopen function associates a file that file descriptc

opened, using open or creat, with a stream.

Calling Seguencet

FILE *fopen(),fopena(),fopenb();

FILE *freopen(), freopa(), freopb();

FILE *fdopen();

FILE *atreau;

BYTE *naae, *access;

WORD fd;

stream

stream

stream

stream

stream

stream

stream

fopen(name,access);

fopena(name,access);

fopenb(nane,access);

freopen(name,access,stream)

freopa(name,access,stream);

freopb(name,access,stream);

fdopen(fd,access);

2-

fopen, freopen, fdopen Functlons

Arguments;

C Language Programming Guide

name the null-terminated filename string
atream the stream address

acceas the access string:

read the file

write the file

append to a file

Returnat

stream successful if stream address open
0 unsuccessful

Kote»

^•^kV £°pen On bicorrectly, but execute improperly. file8 and link

-26

C Language Programming Guide £read, fwrite Functioi

fread, fwrite Punctions

The fread and fwrite functiona transfer a stream of bytes betwe«

a stream file and primary memory.

Calling Sequeneej_

WORD nitems;

BYTE *buff;

WORD size;

FILE *stream;

nitems = £read(buf£,size,nitems,stream);

nitems =» fwrite(buff,size,nitems,stream);

Arguments:

buff the primary memory buffer address

size the number of bytes in each item

nitems the number of items to transfer

stream an open stream file

Returns:

nitems the number of items read or written

0 error, including EOF

2-2

fseek, ftell, rewind Functiona

fseek, ftell. rewind Punctions

C Language Programming Guide

The fseek, ftell, and rewind functiono position a atream file.

The fseek function sets the read or write pointer to an arbitrary

offset in the stream. The rewind function sets the read or write

pointer to the beginning of the stream. These calls have no effect

on the console device or the listing device.

The ftell function returns the present value of the read or write

pointer in the stream. This call returns a meaningless value for

nonfile devices.

Calling Sequence:

WORD ret;

FILE *atream;

LONG offset, f tellO ;

WORD ptrname;

ret « fseek(stream,offset,ptrname)

ret ■ rewind(atream);

offset * ftell(stream);

Arguments;

stream

offset

ptrname

the stream address

a signed offset measured in bytes

the interpretation of offset:

0 => from beginning of file

1 »> from current position

2 = > from end of file

Returns:

ret

offset

0 for success, -1 for failure

present offset in stream

Note:

ASCII file seek and teil operatxons do not account for carriage

returns that are eventually deleted. CTRL-2 characters at the

end of the file are correctly handled.

2-28

C Language Programming Guide getc, getchar, fgetc, getw, get

getc, getchar, fgetc, getw, getl Punctions

The getc, getchar, fgetc, getw, and getl functions perform inpu

from a stream.

The getc function reads a Single character from an input stream

This function is implemented as a macro in <stdio.h>, and argument.

should not have side effects.

The getchar function reads a Single character from the standarc

input. It is identical to getc(stdin) in all respects.

The fgetc function is a function implementation of getc, used t<

reduce object code size.

The getw function reads a 16-bit word from the stream, high byt<

first. This is conpatible with the read function call. No Special

alignment is required.

The getl function reads a 32-bit long from the stream, in 6800C

byte order. No Special alignment is required.

Calling Sequence:

WORD ichar;

FILE *8tream;

WORD iword;

LONG ilong,getl();

ichar = getc(stream);

ichar * getchar();

ichar ■ fgetc(stream);

iword » getw(stream);

ilong ■ getl(stream);

2-25

getc, getchar, fgetc, getw, getl C Language Programming Guide

Arguments;

stream the stream address

Returns:

ichar

iword

ilong

-1

character read from stream

word read fron stream

longword read from stream

on read failures

Note:

Error return from getchar is incompatible with UNIX prior to
Version 7. Error return from getl or getw is a valid value
that might occur in the file normally. Use feof or ferror to
detect end-of-file or read errors.

2-3U

C Language Programming Guide getpaaa Function

getpasa Function

Tha getpaaa function reads a password from the conaole devico. A

prompt is Output, and the input read without echoing to the conaole.

A pointer returna to a 0- to 8-character null-terninated atring.

Calling Sequencet

BYTE *proapt;

BYTE *getpaaa;

BYTE +paaa;

paaa - getpaaa(pronpt);

Argumentsi

prompt a null-terninated prompt atring

Returnat

paea pointa to the paaaword read

Wotei

The return value point8 to atatic data whoae content ia
overwritten by each call.

2-31

getpid Function C Language Programming Guide

getpid Punction

The getpid function ia a bogus routine that returna a falae

prcceaa ID. Thia routine ia atrictly for UNIX coapatibility; aervea

no purpoae under CP/M-68K. The return value ia unpredictable in
aoae inplementationa.

Calling Sequencet

WORD pid;

pid ■ getpid();

Argumentet

no argumenta.

Returna?

pid falae proceaa ID

2-32

C Language Programming Guide gets, fgeta Functioi

gets, fgets Punctiona

The gets and fgets functions read strings fron» streaa filea

fgets reads a string including a newline (line-feed) charactex

gets deletes the newline, and reads only fram the Standard input

Both functions terminate the strings with a null character.

You taust specify a maximum count with fgets, but not with geta

This count includes the terminating null character.

Calling Sequencet

BYTE *addr;

BYTE *s;

BYTE *gets(),*fgets{);

WORD n;

FILE *stream;

addr * gets(s);

addr » fgets(s,n,stream);

Arguments;

8 the string buffer area address

n the maximum character count

stream the input stream

Returns:

addr the string buffer address

2-3

Index, rindex Functions C Language Programming Guide

indes, rindex Punctions

The Index and rindex functiona locate a given character in a

atring. index returns a pointer to the first occurrence of the

character. rindex returns a pointer to the last occurrence.

Calling Sequence;

BYTE c;

BYTE *s;

BYTE *ptr;

BYTE *index(),*rindex();

ptr ■ index(a,c);

ptr ■ rindex(s,c);

Arguments i

s a null-terminated string pointer

c the character for which to look

Returnst

ptr the desired character address

0 character not in the string

2-34

C Language Programming Guide

isatty Punction

isatty Functio

A CP/M-68K progran can use the isatty function to deterain«
whether a file descriptor is attached to the CP/M-68K console devici
(CON:).

Calling Sequence;

WORD £d;

WORD ret;

ret = isatty(fd) ;

Arguments;

fd

Returna;

1

0

an open file descriptor

fd attached to CON:

fd not attached to CON:

2-35

log Function C Language Programming Guide

log Function

The log function returna the natural logaritha (log base e) of a

floating-point number.

Calling Sequence*

FLOAT log();

FLOAT fval,ret;

ret « log(fval);

Arguaentat

fval a floating-point number

Returnst

ret the natural logarithin of the floating-point number

Note»

You can pasa numbers declared as either float or double to log.

2-36

C Language Programming Guide lseek, teil Functions

lseek, teil Punctions

The lseek function positions a file referenced by the file

descriptor to an arbitrary offset. Do not use this function with

streao file«, because the data in the stream buffer night be

invalid. Use the fseek function instead.

The teil function determines the file offset of an open file

descriptor.

Calling Sequence:

WORD fd;

WORD ptrnaae;

LONG offset,lseek(),tell(), ret;

ret = lseek(fd,offset,ptrname);

ret = teil (fd);

Argumentsi

fd the open file descriptor

offset a signed byte offset in the file

ptrname the Interpretation of offset:

0 ■> from the beginning of the file

1 »> from the current file position

2 »> from the end of the file

Returns:

ret resulting absolute file offset

-1 error

Note:

Incompatible with versions 1 through 6 of UNIX.

2-37

mktemp Function C Language Programming Guide

akteap Punction

The mktemp function creates a temporary filename. The calling

argument io a character string ending in 6 X characters. The

temporary filename overwrites these characters.

Calling Sequence;

BYTE *string;

BYTE *mktemp();

string - mkterap(string);

Arguments;

string the address of the template string

Returnst

string the original address argument

2-38

C Language Programming Guide open, opena, openb Functiona

open, opena, openb Punctions

The open and opena functions open an existing ASCII file by file

descriptor. The openb function opens an existing binary file. The

file can be opened for reading, writing, or updating.

Calling Sequence;

BYTE *name;

WORD mode;

WORD £d;

£d = open(name,mode);

fd =» opena(name,mode);

fd = openb(name,mode);

Arguments;

name the null-terninated filename string

mode the access desiredt

0 => Read-Only

1 »> Write-Only

2 »> Read-Write (update)

Returnst

fd the file descriptor for accessing the file

-1 open failure

Note:

UNIX programs that use binary files compile correctly, but

execute improperly.

2-39

perror Function C Language Programming Guide

perror Function

The perror function writes a Short meaaage on the Standard error

file that describes the last System error encountered. First an

argument string prints, then a colon, then the message.

CP/M-68K C aimulates the UNIX notion o£ an external variable,

errno, that contains the last error returned fron the operating

System. Appendix A contains a list of the possible values of errno

and of the messages that perror prints.

Calling Sequence;

BYTE *s;

WORD err;

err » perror(a);

Arguments:

s the prefix string to be printed

Returnst

err value of "ERRNO" before call

Notet

Many messages are undefined on CP/M-68K.

2-40

C Language Programming Guide pow Punctioi

pow Punction

The pow function returns the value o£ a number raised to i

specified power; pow uaea two floating-point arguments. The firti

argument is the mantiasa and the second argument is the exponent.

Calling Sequencet

FLOAT pow();

FLOAT x,y;

FLOAT ret;

ret - pow(x,y);

Arguments:

x a floating-point mantissa

y a floating-point exponent

Returns:

ret the value of the oantissa raised to the exponent

2-41

printf, fprintf, sprintf Functions C Language Programming Guide

printf, fprintf, sprintf Punctions

The printf functions format data for Output. The printf function

Outputs to the Standard Output stream. The fprintf function Outputs

to an arbitrary streao file. The sprintf function Outputs to a

string (memory).

Calling Sequence:

WORD ret;

BYTE *fmt;

PILE *stream;

BYTE *string;

BYTE *sprintf(),rs;

/* Args can be any type •/

ret ■ printf (fnt,argl,arg2 ...);

ret ■ fprintf(streao,fnt,argl#arg2 ...);

rs ** sprintf (string, fmt,argl,arg2 ...);

Arguments:

£at format string with conversion specifiers

argn data arguments to be converted

stream Output stream file

string buffer address

Returnst

ret nunber of characters Output

-1 if error

rs buffer string address

null if error

Conversion Operators

A percent aign, %, in the format string indicates the Start of a

conversion Operator. Values to be converted come in order fron the

argument list. Table 2-2 defines the valid conversion Operators.

2-42

C Language Programming Guide pnntf, fprintf, sprintf Functior

Table 2-2. Conversion Operators

Operator

d

o

X

c

8

U

1

Mean ing

Converts a binary number to decimal ASCII

and inserts in Output stream.

Converts a binary number to octal ASCII and

inserts in Output stream.

Converts a binary number to hexadecinal

ASCII and inserts in output stream.

Uoea the argument as a Single ASCII

character.

Uses the argument as a pointer to a null-

terminated ASCII string, and inserts the

string into the output stream.

Converts an unsigned binary number to

decimal ASCII and inserts in output streaa.

Prints a % character.

You can insert the following optional directions between the t

character and the conversion Operator:

• A minus sign justifies the converted output to the left,

instead of the default right justification.

• A digit string specifles a field width. This value gives the

rainimura width of the field. If the digit string begina with a

0 character« zero padding results instead of blank padding. An

asterisk takes the value of the width field as the next

argument in the argument list.

• A period separates the field width from the precision string

• A digit string specifles the precision for floating-point

conversion, which is the number of digits following the decimal

point. An asterisk takes the value of the precision field fron

the next argument in the argument list.

• The character 1 or L specifies that a 32-bit long value he

converted. A capitalized conversion code does the same thing.

2-43

putc, putchar, fputc, putw, putl C Language Programming Guide

putc, putchar, fputc, putw, putl Punctions

The putc, putchar, fputc, putw, and putl functions output

characters and words to atrean flies.

The putc function Outputs a Single 8-bit character to a stream

file. This function ia iopleoented as a macro in <stdio.h>, so do
not use arguments with side effects. The fputc function provides

the equivalent function as a real function.

The putchar function Outputs a character to the Standard output

stream file. This function is also inplemented as a macro in

<stdio.h>. Avoid using side effects with putchar.

The putw function Outputs a 16-bit word to the specified stream

file. The word is output high byte first, coapatible with the write
function call.

The putl function Outputs a 32-bit longword to the stream file.

The bytes are output in 68000 order, as with the write function
call.

Calling Sequencet

BYTE

FILE

WORD

LONG

ret

ret

ret

ret

lret

c;

•stream;

w,ret;

lret,putl(),1;

<■ putc(c,stream);

= fputc(c,8tream)

= putchar(c);

= putw(w,stream);

=» putl (1, stream);

2-44

C Language Programming Guide putc, putchar, fputc, putw, put

Arguments:

c the character to be output

stream the Output stream address

w the word to be Output

1 the long to be output

ReturnB:

ret the word or character output

lret the long output with putl

-1 an output error

Note:

A -1 return from putw or putl is a valid integer or long value
Use ferror to detect write error».

2-45

puts, fputs Functions C Language Programming Guide

put«» fputs Punctions

The puts and fputs functions Output a null-terminated string to

an Output streao.

Th« puts function Outputs the string to the Standard Output, and

appends a newline character.

The fputs function Outputs the string to a naned Output stream.

The fputs function does not append a newline character.

Neither routine copies the trailing null to the Output stream.

Calling Seguence:

WORD ret;

BYTE *s;

FILE *stream;

ret - puts(s);

ret » fputs(s,stream);

Arguments:

s the string to be Output

stream the Output stream

Returns:

ret the last character Output

-1 error

Note:

The newline incompatibility is required for compatibility with

UNIX.

C Language Programming Guide qsort Functic

qsort Function

The qaort function is a quick sort routine. You supply a vecto.

of Clements and a function to compare two Clements, and the vecto.

returna aorted.

Calling Sequence;

WORD ret;

BYTE *base;

WORD nurober;

WORD oize;

WORD compare ();

ret ■ qsort(base, nuraber, size, cotnpare) ;

Argumentsi

base the base address of the elernent vector

number the number of elements to sort

sise size of each element in bytes

compare the address of the comparison function

This function is called by the following:

ret » compare(a,b);

The return is:

< 0 if a < b

■ 0 if a » b

> 0 if a > b

Returnat

0 always

2-4

r&nd, srand Functions C Language Programming Guide

rand, arand Punctiono

The rand and srand functions conatitute the C language random

number generator. Call srand with the aeed to initialixe the

generator. Call rand to retrieve random numbers. The random

numbers are C int quantities.

Calling Sequence:

WORD seed;

WORD rnum;

rnum » srand(seed);

rnum * rand();

Arguments:

seed an int random number seed

Returns:

rnum desired random number

2-48

C Language Programming Guide read Punction

read Punction

The read function reads data from a file opened by the file

descriptor using open or creat. You can read any number of bytes,

atarting at the current file pointer.

Under CP/M-68K, the most efficient reads begin and end on 128-

byte boundaries.

Calling Sequence;

WORD ret?

WORD fd;

BYTE *bu£fer;

WORD bytea;

ret « read(fd,buffer,bytes);

Arguments:

fd a file descriptor open for read

buffer the buffer address

bytes the number of bytes to be read

Returns:

ret number of bytes actually read

-l error

2-49

scanf, fscanf, sscanf Functions C Language Programming Guide

scanf, fscanf, sscanf Functions

The scanf functions convert input format. The scanf function

reads from the Standard input, fscanf reads fron an open stream

file, and sscanf reads fron a null-terninated string.

Calling Seguencet

BYTE *format,*string?

WORD nitems;

FILE *stream;

/* Args can be any type */

niteraa » scanf(format,argl,arg2 . ..);

nitens » fscanf(strean,fornat,argl,arg2 ...);

nitens = sscanf(string,format,argl,arg2 ...);

Arguments:

format the control string

argn pointers to converted data locations

stream an open input stream file

string null-terminated input string

Returnst

nitems the number of items converted

-1 I/O error

Control String Format

The control string consists of the following items:

• Blanks, tabs, or newlines (line feeds) that match optional

white space in the input.

• An ASCII character (not %) that matches the next character of

the input stream.

• Conversion specif ications, consisting of a leading %, an

optional * (which suppresses assignment), and a conversion

character. The next input field is converted and assigned to

the next argument, up to the next inappropriate character in

the input or until the field width is exhausted.

2-50

C Language Prograoaing Guide scanf, fscanf, sscanf Functions

Conversion characters indicate the Interpretation of the next Input

field. The following table defines valid conversion charactera.

Table 2-3. Valid Cocversion Charactera

Character

t

d

o

X

s

c

C

Meaning

A Single % Batehes in the input at this

point; no conversion is perforaed.

Converts a deciaal ASCII integer and stores

it where the next argument points.

Converts an octal ASCII integer.

Converts a hexadecinal ASCII integer.

A character string, ending with a Space, is

input. The arguaent pointer is assuaed to

point to a character array big enough to

contain the string and a trailing null

character, which are added.

Stores a Single ASCII character, including

Spaces. To find the next nonblank

character, use %la.

Stores a string that does not end with

Spaces. The character string is enclosed in

brackets. I£ the first character after the

left bracket is not ~, the input is read

until the scan coaes to the first character

not within the brackets. If the first

character after the left bracket is ~, the

input is read until the first character

within the brackets.

Note:

You cannot deteraine the success of literal aatches and

suppressed assignaents.

2-51

setjmp, longjmp Functions C Language Programming Guide

setjmp, longjap Functions

The setjmp and longjmp functions execute a nonlocal GOTO. The

setjfflp function initialLy specifies a return location. You can then

call longjmp fron the procedure that invoked setjmp, or any

subsequent procedure. longjmp simulates a return from setjmp in the

procedure that originally invoked setjmp. A setjmp return value

passes from the longjmp call. The procedure invoking setjmp must

not return before longjmp is called.

Calling Sequence;

finclude <setjmp.h>

WORD xret, ret;

jmp__buf env;

xret = setjmp(env);

longjmp(env,ret);

env contains the saved environment

ret the desired return value from setjmp

Returns:

xret 0 when setjmp invoked initially

copied fron ret when longjmp called

Note:

awkward

2-52

C Language Programming Guide Signal Functlon

Signal Punction

The signal function connects a C function with a 68000 exception

condition. Each possible exception condition is indicated by a

number. The following table defines exception conditions.

Table 2-4. 68000 Exception Conditions

Number

4

5

6

8

10

Condition

Illegal inatruction trap. Includes illegal

instructions, privilege violation, and line A

and line F traps.

Trace trap.

Trap instruction other than 2 or 3; used by

BDOS and BIOS.

Arithmetic traps: zero divide, CHK

instruction« and TRAPV instruction.

BUSERR (nonexistent memory) or addressing

(boundary) error trap.

All other values are ignored for compatibility with UNIX.

Returning from the procedure activated by the signal resuaes

normal processing. The library routines preserve registers and

condition codes.

2-53

Signal Function C Language Programming Guide

Calling Sequence:

WORD ret,Big;

WORD £unc();

ret » signal(sig,func);

Arguments;

sig the Signal number given above

func ' the address o£ a C function

Returns:

ret 0 if no error, -1 if sig out of ränge

2-54

C Language Programming Guide sinh, tanh Functions

sinh, tanh Punction

The sinh function returns the trigonometric hyperbolic sine of a

floating-point number. The tanh function returns the trigonometric

hyperbolic tangent of a floating-point number. You must express all

arguments in radians.

Calling Sequence:

FLOAT sinh().tanh{);

FLOAT fval.ret;

ret » sinh(fval);

ret = tanh(fval);

Arguments:

fval a floating-point number that expresses an angle in

radians

Returns:

ret the hyperbolic sine or hyperbolic tangent of the

argument value expressed in radians

Note:

You can pass numbers declared as either float or double to sinn

and tanh.

2-55

Bqrt Function C Language Progranming Guide

sqrt Function

The sqrt function returns the Square root of a floating-point

number.

Calling Sequence:

PLOAT sqrt();

FLOAT .fval,ret;

ret " aqrt(fvai)r

Argumentsi

£val a floating-point number

Returns x

ret the Square root of the specified argument

Note:

You can pass number3 declared as either float or double to

sqrt.

2-b6

C Language Programming Guide strcat, strncat Function!

strcat, strncat Functions

The strcat and strncat functions concatenate strings. The strcat

function concatenates two null-terminated stringa. The strncat

function copiea a specified number of characters.

Calling Sequence:

BYTE *sl,*s2,*ret;

BYTE *strcat(),*strncat();

WORD n;

ret » strcat(sl,s2);

ret « strncat(sl,s2,n);

Arguments;

sl the first string

s2 the second string, appended to sl

n the maxioum number of characters in sl

Returns:

ret a pointer to sl

Note:

The strcat (sl,al) function never terminates and usually

destroys the operating System because the end-of-string narker

is lost« so strcat continues until it runs out of neaory,

including the memory occupied by the operating systea.

2-57

strcmp, strncmp Functions

strcap, atrncnp Punctions

C Language Programming Guide

The strcmp and strncmp functions compare strings. The strcmp

function uses null termination, and strncmp limits the comparison to

a specified number of characters.

Calling Sequence;

BYTE *sl,*s2;

WORD val,n;

val * strcmp(sl,s2);

val » strncmp(sl,s2,n);

Arguments:

sl

32

n

a null-terminated string address

a null-terminated string address

the maximum number of characters to compare

Returnst

val the comparison result

Note:

< 0 =»> sl < s2

» 0 => Sl * 82

> 0 =*> sl > s2

Different machines and Compilers interpret the characters as

signed or unsigned.

2-58

C Language Progranuning Guide strcpy, strncpy Functiom

strcpy, atrncpy Functions

The atrcpy and strncpy functions copy one null-terminated atrinc

to another. The strcpy function uses null-teraination, whil«

strncpy imposes a maximum count on the copied string.

Calling Sequence:

BYTE *sl,*s2,*ret;

BYTE *strcpy(),*strncpy();

WORD n;

ret » strcpy(sl,s2);

ret =» strncpy(sl,s2,n);

Arguments;

sl the destination string

s2 the source string

n the maximum character count

Returns:

ret the address of sl

Note;

If the count is exceeded in strncpy, the destination string is
not null-terminated.

2-59

strlen Function C Language Programming Guide

atrlen Punction

The strlen function returns the length of a null-terminated
string.

Calling Seguence;

BYTE *s;

WORD len;

len » atrlen(s) ;

Arguments;

s the string address

Returns:

len the string length

2-60

C Language Programming Guide swab Punctio

swab Function

The swab function copies one area of memory to another. The hig

and low bytes in the destination copy are reversed. You can us

this function to copy binary data fron a PDP-11" or VAX"* to th

68000. The number of bytes to swap must be even.

Calling Sequence:

WORD ret;

BYTE *from,*to;

WORD nbytes;

ret 3 swab(from,to,nbytes);

Arguments:

fron the address of the source buffer

to the address of the destination

nbytes the number of bytes to copy

Returns:

ret always 0

2-6J

tan, atan Functions C Language Programming Guide

tan, atan Punctions

The tan function returns the trigonometric tangent of a floating-

point nuraber. The atan function returns the trigonoroetric

arctangent of a floating-point number. You must express argutnents

to tan in radians.

Calling Sequence;

FLOAT tan(),atan()

FLOAT val,rval,ret

ret = tan(rval);

ret =» atan(val) ;

rval a floating-point number that expresses an angle in radians

val a floating-point number

Returns:

ret the tangent or arctangent of the argument value

expressed in radians

Note:

The best precision results with arguments that are less than

two pi. You can pass numbera declared as either float or

double to tan and atan.

2-62

C Language Programming Guide ttyname Punctj

ttynaae Punction

The ttyname function returns a pointer to the null-terminat
filenane o£ the terminal device associated with an open ti
descriptor

Calling Seguence:

BYTE *nane,*ttyname();
WORD £d;

name = ttyname(fd);

an open file descriptor

Returns:

A pointer to the null-terminated string CON: if the £i
descriptor is open and attached to the CP/M-6ÖK mn«Ai« A~„i~
Otherwise, rero (NULL) returns. console devic

2-6

ungetc Function C Language Programming Guide

ungetc Function

The ungetc function pushes a character back to an input atream.

The next getc, getw, or getchar Operation incorporates the

character. One character of buffering ia guaranteed if something

has been read from the atream. The fseek function erases any

puahed-back charactera. You cannot ungetc EOF (-1).

Calling Sequencet

BYTE c;

FILE 'atream;

WORD ret;

ret » ungetc(cstream);

Arguments:

c the character to push back

atream the streao addreaa

Returnat

ret c if the character is successfully puahed back

-1 error

2-64

ye ti.-jrj.; .->«.»*ng ouide unlink Function

unlink Punction

The unlink function deletes a named file from the file System.

The removal Operation fails if the file is open or nonexistent.

Calling Seguencei

WORD ret;

BYTE *name;

ret « unlink(naae);

Arguments:

name the null-terminated filename

Returnsi

0 succeas

-1 failure

2-65

write Function C Language Programming Guide

writo Punction

The write function transfers data to a file opened by file

descriptor. Transfer begins at the present file pointer, as set by

previous transfers or by the laeek function. You can write any

arbitrary number of bytes to the file. The number of bytes actually

written returns. If the number of bytes written does not match the

nuaber requested, an error occurred.

Under CP/M-68K, the most efficient writes begin and end on 128-

byte boundaries.

Calling Sequencet

WORD fd;

BYTE *buffer?

WORD bytes;

WORD ret;

ret ■ write(fd,buffer,bytes);

Arguments t

td the open file descriptor

buffer the starting buffer address

bytes the number of bytes to write

Returnst

ret the number of bytes actually written

-1 errors

Note»

Due to the buffering scheine used, all data is not written to

the file until the file is closed.

End of Section 2

!-66

Section 3

C Style Guide

To make your C language programs portable, readable, and easy

to maintain, follow the stylistic rules presented in this section.

Kowever, no rule can predict every Situation; use your own judgment

in applying these principles to unique cases.

3.1 Modularity

Modular programs reduce porting and maintenance costs.

Modularize your programs, so that all routines that per form a

specified function are grouped in a Single module. This practice

has two benefits: first, the maintenance programmer can treat most

modules as black boxes for modification purposes; and second, the

nature of data structures is hidden from the rest of the program.

In a modular program, you can change any major data structure by

changing only one module.

3.1.1 Module Size

A good maximum size for modules is 500 lines. Do not make

modules bigger than the size required for a given function.

3.1.2 Intermodule Communication

Whenever possible, modules should communicate through procedure

calls. Avoid global data areas. Where one or more compilations

require the same data structure, use a header file.

3.1.3 Header Files

In separately combined files, use header files todefine types,

symbolic constants, and data structures the same way for all

modules. The following list gives rules for using header files.

• Use the 'tinclude "file.h"' format for header files that are

project-specific. Use 'finclude <file.h>" for' system-wide

files. Never use device or directory names in an include

Statement.

• Do not nest include files.

• Do not define variables other than global data references in a

header file. Never initialize a global variable in a header

file.

61

C Programming Guide 3.1 Modularity

• When writing macro def initions, put parentheses around each use

of the parameters to avoid precedence mix-ups.

3.2 Mandatory Coding Conventions

To make your programs portable, you must adhere strictly to the

Conventions presented in this section. Otherwise, the following

Problems can occur:

• The lengt'h of a C int variable varies from mach ine to machine.

This can cause problems with representation and with binary I/O

that involves int quantities.

• The byte order of multibyte binary variables differs from

machine to machine. This can cause problems if a piece of code

views a binary variable as a byte stream.

• Naming Conventions and the maximum length of identifiers differ

from machine to machine. Some Compilers do not distinguish

between upper- and lower-case characters.

• Seme Compilers sign-extend character and Short variables to int

during arithmetic operations; some Compilers do not.

• Some Compilers view a hex or octal constant as an unsigned int;

some do not. For example, the following sequence does not

always work as expected:

LONG catä;

orintf f'Udvr." , (data & Oxffff});

The printf Statement prints the lower 16 bits of the long data

item data. However , some Compilers sign-extend the hex

constant Oxffff.

must be careful of evaluation-order dependencies,

particularly in compound BOOLEAN conditions. Failure to

parenthesize correctly can lead to incorrect Operation.

3.2.1 Variable and Constant Names

Local variable names should be unique to eight characters.

Global variable names and procedure names should be unique to six

characters. All variable and procedure names should be completely

lower-case.

Usually, names defined with a idefine Statement should I

entirely upper-case. The only exceptions are functions defined <

macros, such as getc and isascii. These names should also be unigi

to eight characters.

You should not redefine global names as local variables with:

a procedure.

3.2.2 Variable Typing

Using Standard types is unsafe in programs designed to l

portable due to the differences in C Compiler Standard tyi

definitions. Instead, use a set of types and storage class«

defined with typedef or Idefine. The following tables define

language types and storage classes.

Table 3-1. Type Definitions

Type

LONG

WORD

UWORD

BOOLEAN

BYTE

UBYTE

VOID

DEFAULT

C Base Type

signed long

signed Short

unsigned Short

Short

signed char

unsigned char

void (function return)

int

(32 bits)

(16 bits)

(16 bits)

(16 bits)

(8 bits)

(8 bits)

(16/32 bits)

Table 3-2.

Class

REG

LOCAL

MLOCAL

GLOBAL

EXTERN

Storage Class Definitions

C Base Class

register variable

auto variable

module static variable

global variable definition

global variable reference

Additionally, you must declare global variables at tt

beginning of the module. Define local variables at the beginningc

the function in which they are used. You must always specify tt

storage class and type, even though the C language does not requii

this.

63

C Programming Guide 3.2 Mandatory Coding Conventions

3.2.3 Expressions and Constants

Write all expressions and constants to be implementation-

independent. Always use parentheses to avoid ambiguities. For

example, the construct

if (c = O6';rr.it ;} -= ' \n ')

does not assign the value returned by getchar to c. Instead, the

value returned by getchar is compared to *\n', and c receives the

value 0 or 1 -(the true/false Output of the comparison) . The value

that getchar returns is lost. Putting parentheses around the

assignment solves the problem:

lfUc = getcnarO) =- '\n')

Write constants for masking, so that the underlying int size is

irrelevant. In the following example,

LONG data;

printf("%ld\n",(data & OxffffL);

the long masking constant solves the previous problem for all

Compilers. Specifying the one's complement often yields the desired

effect, for example, "Oxff instead of OxffOO.

For portability, character constants raust consist of a Single

character. Place multicharacter constants in string variables.

Commas that separate arguraents in functions are not Operators.

Evaluation order is not guaranteed. For example, the following

function call

princf("%d %d\n",i++

can perform differently on different machines.

3.2.4 Pointer Arithmetic

Do not manipulate pointers as ints or other arithmetic

variables. C allows the addition or subtraction of an integer to or

from a pointer variable. Do not attempt logical operations, such as

AND or OR, on pointers. A pointer to one type of object can convert

to a pointer to a smaller data type with complete generality.

Converting a pointer to a larger data type can yield alignment

Problems.

You can test pointers for equality with other pointer variables

and constants, notably NULL. Arithmetic comparisons, such as >*,

do not work on all Compilers and can generate machine-dependent

code.

When you evaluate the size of a data structure, remember that

the Compiler might leave holes in a data structure to allow for

alignment. Always use the sizeof Operator.

3.2.5 String Constants

Allocate stringa so that you can easily convert programs to

foreign languages. The preferred roethod is to use an array of

pointers to constant strings, which is initialized in a separate

file. This way, each string reference then references the proper

element of the pointer array.

Never modify a specific location in a constant string, as in

the following example:

BYTE stringU «"BDOS Error On x:";

stringll4J » 'A';

Poreign-language eguivalents are not likely to be the aaioe length as

the Bnglish Version of a message.

Never use the high-order bit of an ASCII string for bit flags.

Extended character sets make extensive use of the characters above

0x7F.

3.2.6 Data and BSS 8«ctioos

uaually, C programs have thre« sectionst text (program

inatructions), data (initialized data), and BSS (uninitialized

data) . Avoid modifying initialized data if at all possible.

Programs that do not modify the data segnent can aid the swapping

Performance and disk utilization of a multiuser System.

Also, if a program does not modify the data segment, you can

place the program in ROM with no conversion. This means that the

program does not modify initialized static variables. This

restriction does not apply to the modification of initialized

automatic variables.

65

C Programming Guide 3.2 Mandatory Coding Conventions

3.2.7 Module Layout

The following list teils you what to include in a module.

• At the beginning of the file, place a conunent describing the

following items:

- the purpose of the module

- the major outside entry points to the module

- any global data areas that the module requires

- any machine or Compiler dependencies

• Include file Statements.

• Module-specific fdefine Statements.

• Global variable references and definitions. Every variable

should include a comment describing its purpose.

• Procedure definitions. Each procedure definition should

contain the following items:

- A comment paragraph, describing the procedure's function,

input Parameters, and return Parameters. Describe any

unusual coding techniques here.

- The procedure header. The procedure return type must be

explicitly specified. Use VOID when a function returns no

value.

- Argument definitions. You must explicitly declare storage

class and variable type.

- Local variable definitions. Define all local variables

before any executable code. You must explicitly declare

storage class and variable type.

- Procedure code.

Refer to Appendix C for a sample program.

3.3 Suggested Coding Conventions

The following suggestions increase program portability and make

programs easier to maintain.

• Keep source code within an 80-character margin for easier

screen editing.

• Use a Standard indention technique, such as the following:

C Programming Guide 3.3 Suggested Coding Convention:

- Begin Statements in a procedure one tab stop (column eight]

from the left margin.

- Indent Statements contcolled by an if, eise, while, do, ot

for one tab stop. If you require multiple nested

indentions, use two Spaces for each nesting level. Avoid

going more than five levels deep.

- Place the brackets succounding each compound Statement on a

separate line, aligned with the indention of the Controlling

Statement. For example,

for(i»0;i<MAXNUM;i++)

j = compute(i);

if (j > UPPER)

j = ÜPPERj

Output(j);

- Place a null Statement controlled by an if, eise, while, for,

or do on a separate line, indented for readability.

• To document your code, insert plenty of conunents. If your code

is particularly abstruse, inserting conunents helps clarify it.

• Put all maintenance documentation in the source code itself.

If you do not, the documentation will not be updated when the

code changes.

• Use blank lines, form-feeds, and white space to improve

readability.

End of Section 3

Appendix A

CPM-68K Error Codes

The perror function and the ecrno external variable determine

the cause of an error during a CP/M-68K System call. The include

file <errno.h> contains symbolic definitions for the errors that

CP/M-68K returns. The following table lists error numbers, symbolic

names, and messages available from perror.

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Table A-l.

Name

-

ENOENT
-

-

EIO

-

E2BIG

-

EBADF

-

-

ENOMEM

EACCES

-

-

-

-

-

-

-

-

EINVAL

ENFILE

EMPILB

ENOTTY

-

EFBIG

ENOSPC

-

EROFS

-

-

-

-

ENODSPC

CP/M-68K Error Codes

Error Message

Error Undefined on CP/M-68K

Error Undefined on CP/H-68K

No Such File

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

I/O Error

Error Undefined on CP/M-68K

Arg List too Long

Error Undefined on CP/M-68K

Bad file Number

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Not enough core

Permission denied

Error Undefined on CP/M-68K

Error Undefined on CP/H-68K

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Error Undefined on CP/H-68K

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Invalid argument

File table overflow

Too many open files

Not a typewriter

Error Undefined on CP/M-68K

File too big

No Space left on device

Error Undefined on CP/M-68K

Read-Only file System

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

Error Undefined on CP/M-68K

No directory space

69

C Programming Guide Appendix A Error Codes

The file <errno.h> also includes the names for all errors

defined with UNIX V7. Therefore, programs that reference these
definitions need not be changed.

End of Appendix A

Appendix B

Customizing the C Compiler

Compiling a C program requires three Compiler passes. The

output of the Compiler is assembly language, which mußt be aasembled

and linked to produce a program that runs. The Compiler, asaembler,

linker load modules, C library, and the System include files need a

substantial amount of disk storage space, minimizing atorage Space.

This appendix discusses Compiler Operation and suggests ways to

minimize the disk storage requirements for compiling.

B.l Coapiler Operation

The C Compiler has three componentst the preprocessor (CP68),

the parser (CO68), and the code generator (C168). The assembler

(AS68) and the linker (LO68) also help generate an executable

program. The following list teils you how these components operate.

1) The preprocessor/ CP68, takes the original source file and

produces a file with all idefine and #include Statements

reaolved. The preprocessor comaand line takes the formt

CP68 [-1 d:] file.C file.I

The -I flag indicates that the next argument is a CP/M-68K

drive apecification. This drive is used for all library
include statementa of the form #include <file>. Drive

specifications can also appear in the filenaae portion of

an tinclude Statement, but this procedure is not

recommended. Pile.C is the source file, and file.I is the

output file.

2) The parser, CO68, takes the file produced by the

preproceaaor and creates an intermediate code file. The

command line takes the form:

C068 file.I file.IC file.ST

File.I is the output from the preprocessor. File.IC ia the

intermediate code file that C168 usea. File.ST is a

temporäry file that collects constant data for inclusion at

the end of the intermediate code file.

71

C Programming Guide B.l Compiler Operation

3) The code generator, C168, takes the intermediate code file

from C068 and produces an assembly-language source file.

The command line takes the form:

C168 file.IC file.S [-LD]

File.IC is the intermediate code Output from CO68. Pile.S

is the assembly-language Output file. The -L flag

indicates that the compilation assumes all address

variables are 32 bits. The default is 16-bit addresses.

The -D flag causes the Compiler to include the line numbers

from the source file (file.C) as comments in the generated

assembly language. This is useful for debugging.

4) The assembler, AS68, translates the Compiler Output to a

form that the linkage editor can use. The command line

takes the form:

AS68 -L -U (-F d:J (-S d:] file.S

The -L option indicates to the linkage editor that

addresses are considered 32-bit quantities. The -U Option

means that undefined symbols are considered external

references. The -F option specifies a drive that the

assembler uses for temporary files. The -S option

specifies a drive that the assembler uses for the

initialization file (AS68SYMB.DAT). File.S is the Output

of C168, and file.O is produced by the assembler.

5) The linker, LO68, produces an executable file from the

Output of one or more assembler runs. You must also

include a start-up file and the C library when linking C

programs. The linker command line takes the form:

LO68 -R (-F d:] -0 file.68K S.O file.O clib

The -R option specifies that the file be relocatable.

Relocatable files run on any CP/M-68K System. The -F

option allows you to place linker temporary files on a disk

drive other than the default. The -0 file.68K construct

makes the linker place the executable Output in file.68K.

S.O is the run-time start-up routine. You must include

this file as the first file in every C program link.

File.O is the Output of the assembler. Specify multiple

files between S.O and clib if you want separate
compilation. clib is the C library file.

«. »»wy^oitmimy uuiae B.2 Supplied subroit Filei

B.2 Supplied subait Files

CP/M-68K includes two submit files, c.sub and clink.sub, that

compile and link C programs (see Section 1.1). Usually, these files

are located on the default drive. However, you can edit these flies

to specify different disk drives for any of the following drives:

• The disk drive on which the Compiler passes, assembler, and

linker reside.

• The disk drive that the finclude <file> Statements in the C

preprocessor reference.

• The disk drive with the assembler initialization file.

• The disk drive on which the assembler and linker create

temporary files.

• The disk drive containing the C library file.

B.3 Saving Disk Space

You can do the following things to conserve disk space:

• Use the reloc Utility on all the load modules, the Compiler,

assembler, linker, and editor. This significantly reduces file

size and load time.

• Place all the load modules on one disk and use another disk for

sources and temporary files. This requires two drives.

• On single-density disk Systems, you must place the C library

file and linker on a separate disk and swap disks before

linking.

B.4 Gaining Speed

Along with the items in Section B.3, you can speed corapilation
by implementing the following:

• Put the assembler temp files on a different drive fröre the

source and object files.

• Put the linker temp files on a different drive from the object

input, C library, and load module Output.

73

C Programming Guide B#4 Gainlng

• Use the linker -S (suppress symbol table) and -T (absolute load
raodule) Switches in place of the -R flag. If you do this, the
resulting program cannot run on an arbitrary CP/M-68K System,

End of Appendix B

Appendix C

Sample C Module

The modules in this appendix are written and documented in C

code that follows the style Conventions discussed in Section 3.

1!

fr***

/• Pcintf Module

/
/• Thia module is called thcough the Single entry point " pcintf" to

/* per form the conversions and Output for the library functiona:

/•
/* printf - Formatted print to Standard Output

/* fprintf - Formatted print to stream file

/* sprintf - Formatted print to string

/*
/• The calling routines are logically a part of this module, but are

/* compiled separately to save space in the user's prograo when only

/* one of the library routines is used.

/•
/* The followlng routines are present:

/*
/* _printf Internal printf conversion / Output

/* _prnt8 Octal conversion routine

/• "prntx Hex conversion routine
/* conv Decimal ASCII to binary routine

/* _putstr Output character to string routine

/* prntl Decimal convereion routine

/*
/• The following routines are called:

/•
/* strlen Compute length of a string

/* putc Stream Output routine

/* ftoa Floating point Output conversion routine

/*

/•
/* This routine depends on the fact that the argument list is always

/• compoaed of LONG data items.

/•
/* Configured for Whitesraith1s C on VAX. "putc" arguments are

/* reversed fron UNIX.

#*•»»*******«********»****•******

/
• Include files:

V
Iinclude <stdio.h> /• just the Standard stuff */

75

C Progranuning Guide C Sample C Module

Local DEFINEs

HIBIT 31 /• High bit number of LONG */

Local static data:

MLOCAL BYTE

MLOCAL BYTE

KLOCAL BYTE

*_ptcbf =■ 0;

♦~ fmt =» Oi

/* Buffer Pointer */

/* -> File/string (if any) */

/* Format Pointer */

76

c Programming Guide C Sample C Modu

PRINTF INTERNAL ROUTINE

Routine "_printf" is used to handle all "printf" functions, includ

"sprintf", and "fprintf".

Calling Sequence:

printf{fd,func,fmt,argl);

Where:

fd

f unc

fmt

argl

Is the file or string pointer.

Is the function to handle Output.

Is the address of the fortnat string.

Is the address of the first arg.

Returns:

Number of characters Output

Bugs:

It is assumed that args are contiguous starting at "argl", and that

all are the sarae size (LONG), except for floating point.

printf(fdrf,fmt,al)

LONG fd;

LONG (»f)«
BYTE «frat;

LONG *al;

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

EXTERN

BYTE

BYTE

BYTE

BYTE

LONG

LONG

LONG

LONG

LONG

LONG

LONG

DOUBLE

DOUBLE

LONG

c;

*s;

adj;

buf(30);

♦adx;

x;

n;

m;

width;

prec;

padchar;

zz;

*dblptr;

ccount;

putstr ()

>**••**•*•*#•»«#«

/* Not really, but ...

/* Function pointer

/* -> Format string

/* -> Arg list
/•***••••»*****••*•****»**<

/* Format character terop

/* Output string pointer

/♦ Right/Left adjust flag

/• Temporary buffer
/***»******•**•****«•*****<

/* Arg Address temporary

/* Arg Value temporary

/* String Length Terap

/* Field Length Temporary

/* Field width

/* Precision for "Ix.yf"

/* '0' or ' * (padding)

/* Floating temporary

./* Floating temp. address

/• Character count

/• Reference function

77

C Programming Guide C Sample C Module

ccount = 0;

_ptcbf = buf;

ädx = a1;
_ptcst = fd;

fmt * fmt:

/* Initially no chacacters

/* Set buffer pointer

Copy address variable

Copy file descriptor

Copy forroat address

if T fmt == 'L4 fmt ==

/

/

/

/

/* Skip long output

/• conversions

/•••••••••••♦ »..♦*....*.*.....»....*......... •/

/• This is the main format conversion loop. Load a character from the */

/* format string. If the character is '%', perform the appropriate •/

/• conversion. Otherwise, just Output the character. •/
/••••*•• * •••.••••...•#.#......•♦. • /

while(c = *

(
if(c != '% ')

I
l*f) (fd,c) ;

ccount + + ;

}
eise

x a *adx**j

if(♦ fmt =» '-')

adj = 'l'i

fmt++;

} ""
eise

adj - 'r1 ;

padchar=(* fmt^'O1) ? '0' :

width " conv ();

if(* fmt =» '.')

{ ~~
++ fmt;

prec " conv () ;

eise

prec = 0;

s = 0;

switch (c =» • fmt++)

case 'D':

case 'd':

_prtl(x);

break;

/* Pick up next format char*/

V
/.....*.»...*.... *....*...../

/* V
/* If not '%', just Output */

/• Bump character count */
/..»»•**»*»»•**•»»*»**».*•»»/

/• It is a '»', •/

/♦ convert •/

/♦ x » addcess of next arg •/
/*•*•***•**•*****•***»****•*/

/* Check for left adjust V
/*«*******»**»*•**»*•*»*•***/

/* Is left, set flag •/

/* Bump format pointer */

/* V
/* Right adjust ♦/
/***•**»****»******•****»***/

/• V
/♦ Select Pad character •/
/..»♦***.*....*..**..*....../

/* Convert width (if any) ♦/

means precision spec*/

V
Bump past '. '

Convert precision spec */

V
/• None specified •/
/****♦•*»#«•*♦**♦•*♦*»♦*##♦♦♦/

/* V
/* Assurae no output string •/

/* Next char is conversion */

/* V
/♦ Deciraal */

/• V
/• Call decimal print rtn •/

/* Go do output •/

7B

njyramming Guide C Sample C Modui

case 'o':

case '0':

_prnt8(x);

break;

case 'x':

case 'X' :

_prntx (x);

break;

case 'S':

case 's1:

s«x;

break;

case 'C :

case 'c":

_ptrbf+

break;

X60377;

case '£':

case 'e':

case 'F':

case 'f:

dblptr » adx-1;

zz = *dblptr;

adx « + 1;

ftoa (zz, buf, pcec, c)

prec ■ 0:

s « buf;

break;

default:

(*f)(fd,c);

ccount++;

adx—;

if (s 0)

*_ptrbf

s~« bu f;

strlen (s);

(prec<n fct prec

width-n;

0) ? prec

if (adj « 'r')

while (m— > 0)

(*f)(fd,padchar);

ccount++;

/• Octal

/• Print

/* Call octal printec

/* Go do Output
/•*».»*.»*»•*»»*»*»•*»».•«•

/• Hex

/• Print <

/• Call conversion routine '

/* Go do Output •
/»»•*»*••»*•***•****•»»**••<

/* String «

/• Output? *

/• Yes, (easy) •

/* Go finish up *

/• Character *

/• Output? •

/• Just load buffer •

/* Go Output •
/••*»»•*»***•*»**••*•*»»****

/* Floating point? *

/* •

/* *

/* *'.
/• Assumes 64 bit floatl •,

/♦ Load value *,

/* Bump past second word *(

/* Call floating conversion*,

/♦ Pake out paddlng routin«*/

/• just like string print *y

/* Go Output ♦/
/*•»«*»*»***»****»**•••***•»y

/• None of the above? •/

/* Just Output •/

/* Count it. */

/* Pix arg address */

/* End switch •/

/• If 8 - 0, stcing is In •/
/* "buf", */

/* Insure termination ♦/

/♦ Load addre8s */
/»***••**••**»*•••#*»*»*»*««^

/* */
/* Compute converted longth*>

n;/* Take min (prec,n) */

/• m is t of pad characters*/
/*•»*•***•••*************•*«,

/* For right adjust, */

/* Pad in front •>

/• *>
/• Thusly . »j

/• Count it •>

79

C Progcanuning Guide C Sample C Module

while (r.—

I

i' (} (f. d , * s-

CCOunt<--> ;

while [m-- > 0)

(*f)(fd,padchar

ccount+*;

ptcbf = buf;

if((*f) « putstr)

(*fT{fd,'O'

retucn(ccount);

/* Output Converted */

/• V
/• Data */

/* Count it */

/* V
/•••••*.*••#•••.#•/

/* If left adjust, */

/* V
/* Pad •/

/* Count padded chacactecs ♦/
........*..*.*...**.*.*..../

/* Reset buffec pointer ♦/

/* End eise •/

/* End while */

/* If atcing Output, */

/* Drop in terminator char */
//»****»**»****»*»**********«//

/* Return appropriate value*/

/* End printf */

80

C Programming Guide C Sample C Modul

PRNT8 PROCEDURE

Routine "_prnt8" converts a binary

The area at "_ptrbf" is used.

CaHing Sequence:

_prnt8 (n J ;

"n" is the number to be converted.

Returns:

(none)

LONG value to octal ascii.

VOID prntS (n)

LONG n;

REG WORD

REG WORD

REG WORD

P?
k;

Sw;

if (n»»0)

•_ptrbf*+ * '0'

return;

sw = 0;

for (p=HIBITj p >= 0; p =- 3)

if ({k « (n>>p)iO7) || sw)

if (p«HIBIT)

k = k {, 02:

*_ptrbf++ = '0' *■ k;

sw - 1;

/• Number to convert

/• Counts bits

/♦ Temporary 3-bit value

/* Switch 1 =«> Output

/* Handle 0 as Special case '

/* Put in one zero

/♦ And quit

/**•*•**»*»*****•••»*****•**

/* Indicate no Output yet

/*

/* Use 3 bits at a titne

/•
/* Need to output yet?

/• Ist digit has only 2 bits4

/• Mask appropriately

/• ASCIIfy digit

/* Set Output flag

/• End if

/• End prntS

81

C Pcogranuning Guide C Sample C Module

/• V
/* Prntx Function */

/• -- V
/• V
/• The " prntx" function converts a binary LONG quantity to hex ASCII */

/• and Stores the result in "*_ptrbf". Leading zeros are suppressed. */

/* " V
/* Calling sequence: */

/• V
/• prntxin); •/

/• " V
/* where "n" is the value to be converted. */

/* • */
/• Returns: */

/• */
/* (none; */

/• •/

VOID pcntx (n) /* •/

LONG n; /• 32 bits */
{ ...♦♦.♦..*♦..♦.....♦..♦♦..*♦/

REG LONG d; /* A digit •/

REG LONG a; /♦ Tempocacy value */
/***»***»*•*•**•****••*»*••*•/

if (a » r>>>4) /* Peel off low 4 bits */

_prntx (a & Oxfffffff); /♦ If <> 0, pcint first */

d » niO17j /* Take low four bits V

_ptcbf+ « d > 9 ? 'A'+d-lO : '0' + d;/* ASCIIfy into buffer */

82

rrogramming Guide C Sample C Modul

•»*••**••*'*'

/• __ConvFunction

/•

/•
/* Functlon " conv" is used to convect a decimal ASCII string in

/• the forroat to binacy.

/*
/♦ Calling Sequence:

/•
/* val » conv();

/•
/• Returns:

/•
/• "val" is the converted value

/* Zero ia retucned if no value

/•
/•*•*•••***•***•*••••*•*•»*»•**•»••••*••••••*•**»*•»••»•*••*»**«•*****»**«•*

LCNG conv() /*
| — /•*••••••*•••***•*••***•***•

REG BYTE c; /* Character temporary

REG LONG n; /* Accuraulator
/**»•********•♦••••♦♦*»#••#»♦

n ■ 0? /* Zero found so far

while(((c- • fmt+«-) >= '0') /* While c is a digit

kk (c <- '9')) /'
n - n*10+c-'0'; /* Add c to accunulator

fmt—j /* Back up format pointer to

/* character skipped abov*

return(n); /* See, wasn't that siaple?

83

t" u n c t 1 o n

Fur.ctiori " . j n .> 11 is l«cj .'jv "sprir.tf" as the Output function

argument tö " prir.tf". A sin^Le character :s copied to the buffer

at " ptrst".

Calling Seqjence:

put s tr (scr ,cr.r i :

where "str" is a dum.xy argument necessary because the other Output

functions have twc arguments.

Beturns:

(none >

V

V

V

V
V

V

V

V

V

V

V

V
V

V
V

V

V

V

rOID putstc(stc,ehr)

REG BYTE ehr;

BYTE »str;

*_ptrst++

return(0);

ehr:

/* The output character

/• Dummy argument

/• Output the character

/♦ Go back

84

C Programming Guide C Sample C Module

Prtl Function

Function " prtl" converts a LONG binary quantity to deciraal ASCII *

at the bufTer pointed to by "_ptrbf". *
*

Calling Sequence: *
*

_prtl(n); •

where "n" is the value to be converted. *

/* Returns:

/* (none)

VOID _prtl(n)

REG LONG

1

REG LONG

REG LONG

dpt » digs;

if (n >« 0)

n « -n;

eise

* ptrbf++

digs(lS);

*dpt;

for (; n !» 0; n » n/10)

*dpt++ = n*10;

if {dpt «- digs)

•dpt++ = 0;

while (dpt !=■ digs)

'0' - *dpt

--dpt;

•_ptrbf++

/* */
/• Conversion input •/

/****** •*...••••••••••/

/♦ store digits hece •/

/* Points to last digit •/
/♦*•♦**♦•**•#•♦»*##♦*♦###*#•♦/

/• Initialize digit pointer */
/#•*•****»*♦***♦#*♦***♦**•♦•#/

/* Fix •/

/• up */
/* sign */

/• stuff •/
/••*»•**»•***••#•**•***•*•*•*/

/* Divide by 10 till zero */

/* Store digit (reverse ord)*/
/.*»*»•••»*.*»»*•.••»»»•»***•/

/* Zero value? ♦/

/* Yes, store 1 zero digit */
/*•*••»**»•*••****•**•*******/

/• Now convert to ASCII •/

/* V
/* Decrement pointer •/

/♦ Note digits are negativel*/

/• V

End of Appendix C

85

Appendix D

Error Messages

This appendix lists the ercor messages returned by th<

components of the CP/M-68K C Compiler, the C Parser, C068, the C Co-

generator, C168, the C Preprocessor, CP68, and by the CP/M-68K C

Run-tirae Library. The sections are arranged alphabetically. Erroz

messages are listed within each section in alphabetical order vitfe

explanations and suggested user responses.

D.l C068 Brror Messages

The CP/M-68K C Parser, C068, returns two types of error

messages: diagnostic error messages and messages indicating errors

in the internal logic of C068. Both types of error messages take

the general form:

*line no. error message text

The asterisk (*) indicates that the error message comes from C068.

The "error message text" describes the error. You raust correct any

errors you receive from C068 before invoking C168. Uncorrected

errors from C068 cause erroneous error messages to occur when you

run C168.

D.l.l Diagnostic Brror Messages

These error messages occur mostly in response to syntax errors

in the source code. Refer to your C language manual for a complete

discussion of the C language syntax.

The error messages are listed in Table D-l in alphabetical

order with Short explanations and suggested user responses.

87

C Programming Guide 0.1 C068 Error Messages

Table D-l. C068 Diagnostic Bcror Messages

Message Meaning

*line no. addres; of register

You have attempted to take the address of

a cegister. Correct the source code

before you recompile it.

*line no. assignable Operand required

On the line indicated, the Operand to the

left of the equals sign in the assignment

Statement is not a valid Operand. Supply

a valid Operand. This error might occur

because the Operand is a constant instead

of a variable.

*line no. bad character constant

A character constant on the line indicated

is invalid. The character constant must

be a Single character between guotes. A

control character, raore than one

character, or a symbol that is not a

character will cause this error to occur.

*line no. bad indirection

You attempted to reference by address

instead of by value, but the expression

you used is not an address. Supply a

value or a valid address before you

recompile the source code.

*line no. can't open filename

Either the filename or the drive code is

incorrect. Specify the correct drive code

and filename before you recompile the

source code.

*line no. case not inside a switch block

The case on the line indicated is not

inside a switch block. Correct the source

code before you recompile it.

88

Programming Guide D.l C068 Error Mesaag«

Table D-l. (continued)

Message Meaning

*line no. character constant too long

The character constant on the line

indicated is too long. A character

conatant raust be a Single character

between quotes. Correct the source code

before you recompile it.

*line no. constant required

The Operation on the line indicated

requires a constant. Correct the error

before you recompile the source code.

*line no. declaration syntax

The syntax of the declaration on the line

indicated is incorrect. Refer to your C

language raanual. Correct the syntax

before you recompile the source code.

*line no. default not inside a switch block

The default on the line indicated is not

inside a switch block. Correct the source

code before you recompile it.

♦line no. dimension table overflow

There are too raany dimensions, at or prior

to the line indicated, for the dimension

table. The dimension table does not have

space for raore than 8 or 9 dimensions.

Structures count as dimensions. Rewrite

the source code to use fewer dimensions

and structures before you recompile it.

*line no. duplicate case value

Two cases for the same switch are

identical. Eliminate one of the cases

before you recompile the source code.

89

C Programming Guide D.l C06Ü Error Messages

Table D-l. (continued)

Message

*line

*line

*line

*line

Uine

*line

no.

no;

no.

no.

no.

no.

Meaning

expecteci labei

A go to Statement on the line indicated

does not have a label. Supply the missing

label before you recompile the source

code.

expression too complex

Due to internal limitations in C068, the

expression on the line indicated is too

complex to be evaluated. Simplify the

expression before recompiling the source
code.

external definition syntax

The syntax of the external definition on

the line indicated is incorrect. Correct

the syntax before you recompile the source

code. Refer to your C language manual for
the correct syntax.

field overflows byte

The bit field asks for raore bits than fit

in an 8-bit byte. Reduce the nuraber of
bits in the bit field before you recompile
the source code.

field overflows word

The word field asks for more bytes than

fit in a word. Reduce the number of bytes

in the byte field before you recompile the
source code.

floating point not supported

CP/M-68K does not support floating point.

Rewrite the source code before you
recompile it.

90

Programming Guide D.l C066 Error Message

Table D-l. (continued)

Message Meaning

*line no. function body syntax

There is no bracket at the beginning of

the function on the line indicated.

Supply the missing bracket before you

recoropile the soucce code.

*line no. illegal call

You attempted to call something that is

not a function. Correct the source code

before you recompile it.

*line no. illegal function declaration

The storage class of the function declaced

in the line indicated is illegal. The
only two stocage classes allowed for

functions are static and external.

Coccect the declaration before you

recompile the source code.

*line no. illegal register specification

The register specification in the line

indicated is illegal. Structures and

arrays cannot be put into a register.

Correct the source code before you

recompile it.

*line no. illegal type conversion

You made an incompatible assignment. This

error commonly occurs when attempting to

convert a pointer, 32 bits, to an int, 16
bits. Correct the source code before you
recompile it.

*line no. indirection on function invalid

You attempted to use the indirection

Operator (*) on a function. Correct the

source code before you recompile it.

91

C Programming Guide D.l C068 Error Messages

Table D-l. (continued)

Message Meaning

*line no. initializec alignment

This message usually indicates a missing

initializer value, or values out of order.

Check the initializer list and correct it

before you recompile the source code.

*line no-. initializer list too long

The initializer list is too long for C068.

Shorten the list before you recompile the

source code.

•line no. invalid break Statement

The break Statement on the line indicated
is not inside a loop or a switch. Correct

the source code before you recompile it.

*line no. invalid character

There is an invalid character in the

collating sequence in the line indicated.

Control characters or members of the

extended character set are not valid

characters. Correct the source code

before you recompile it.

♦line no. invalid continue Statement

The continue Statement on the line

indicated is not inside a loop. This

error might occur when you have used a

continue Statement in a switch. A

continue Statement is only valid in a

loop. Correct the source code before

reinvoking C068.

*line no. invalid conversion

You attempted an incompatible assignment,

for example, a pointer, 32 bits, and an

int, 16 bits. Correct the source code

before you recompile it.

92

D.l C068 Error Message

Table D-l. (continued)

Message

♦line

•line

♦line

*line

*line

*line

no.

no.

no.

no.

no.

no.

Meaning

invalid data type

The line indicated contains an expression

that attempts to equate two incompatible

quantities, £oc example, an int, 16 bits,

and a pointer, 32 bits. Correct the

source code before you recompile it.

invalid declarator

The declarator in the line indicated is

not a recognizable language element.

Supply a valid declarator before you

recompile the source code.

invalid expression

The expression in the line indicated

contains a syntax error. Correct the

syntax of the expression before you

recompile the source code.

invalid field size

The field in the line indicated is less

than or equal to zero. Correct the field

size before you recompile the source code.

invalid field type description

You attempted to put a pointer or a long

into a bit field. Correct the source code

before you recompile it.

invalid for Statement

The for Statement in the line indicated

contains a syntax error. Refer to your C

language manual for the correct syntax of

a for Statement. Correct the Statement

before you recompile the source code.

93

C Programming Guide D.l C068 Error Messages

Message

*line

*line

Mine

♦line

*line

*line

no.

no.

no.

no.

no.

no.

Table D-l. (continued)

Meaning

invalid initializer

The initializer you specified in the line

indicated is not a constant. You can only

initialize to a constant. Correct the
source code before you recompile it.

invalid label

You used a variable name as a label in the

line indicated. Correct the source code

before you recompile it.

invalid long declaration

You attempted to declare something long

that cannot be long, for example, a

character. Correct the source code before

you recompile it.

invalid Operand type

The expression in the line indicated

contains an invalid Operand. Correct the

source code before you recompile it.

invalid register specification

You attempted to put something larger than

allowed into a register, for example, a

structure or a function. Correct the

source code before you recompile it.

invalid Short declaration

You attempted to declare something Short

that cannot be Short. Correct the source

code before you recoropile it.

94

Table D-l. (continued)

Message

*line

*line

*line

*line

*line

*line

no.

no.

no.

no.

no.

no.

Meaning

invalid storage class

You specified an invalid storage class in

a declaration. Refer to your C language

manual for the allowed storage classes.

Correct the source code before you

recompile it.

invalid structure declaration: name

The size of the structure indicated by the

variable "name" has a size less than or

equal to zero. Correct the source code

before you recompile it.

invalid structure member name

The structure reference in the line

indicated is not a member of any

structure. Correct the source code before

you recompile it.

invalid structure prototype: name

In the line indicated you reference a

structure name that is not a prototype.

Correct the source code before you

recompile it.

invalid type declaration

The type declaced in the line indicated is

invalid. Refer to your C language manual

for a discussion of valid types. Correct

the source code before you recompile it.

invalid typedef Statement

The line indicated contains a Statement

with more than one typedef keyword. Only

one typedef is allowed per Statement.

Correct the source code before you

recompile it.

95

C Programming Guide D.l C068 Error Messages

Table D-l. (continued)

Message

*iine

*line

*line

*line

*line

*line

no.

no.

no.

no.

no.

no.

Meaning

invalid unsigned declaration

The quantity you declared unsigned in the

Xine indicated might not be unsigned.

Only an int can be unsigned. Correct the

declaration before you recompile the

source code.

invalid ?: Operator syntax

This inessage indicates an error in the use

of the ?: conditional Operator in the line

indicated. Refer to your C language

manual for the correct syntax. Correct

the source code before you recompile it.

label redeclaration: label

You used the sarae label for two separate

iteras. Correct the source code before you

recompile it.

missing colon

You left out a colon. Supply a colon in

the correct location before you recompile

the source code.

missing { in initialization

You neglected to put in the left curly

brace in the initialization of an array or

structure. Supply the missing brace

before you recompile the source code.

missing)

You left the right curly brace out of the

initialization of an array or structure.
Supply the missing brace before you

recompile the source code.

96

C Programming Guide D.l C068 Error Messag

Table D-l. (continued)

Message Meaning

*line no. mssing while

The do Statement at the line indicated is

missing a while at the end. Supply the

missing while before you recompile the

soucce code.

*line no. missing seir.icolon

A semicolon is missing from the line

indicated. Supply the missing semicolon

before you recompile the source code.

*line no. no structure

You referred to a structure in the line

indicated without giving the structure

name. Correct the source code before you

recompile it.

*line no. no */ before EOF

The last comment in the source code is

missing its final delimiter. Supply the

missing delimiter before you recompile the

source code.

*line no. not a structure: name

The structure referenced in the line

indicated is not a structure. Correct the

source code before you recompile it.

*line no. not in parameter list: x

In the line indicated, you declared the

something indicated by the variable "x" to

be an argument to a function, but "x" is

not in the function parameter list.

Correct the source code before you

recompile it.

97

C Programming Guide D.l C068 Error Messages

Table D-l. (continued)

Message Meaning

*line r.o. parenthesized expression syntax

The line indicated contains a syntax error

in the parenthesized expression. Correct

the source code before you recompile it.

♦line no. redeclaration: symbol

A symbol has been declared twice. Remove

on of the declarations before recompiling

the source code.

*line no. string cannot cross line

The character string at the line indicated

continues beyond one line. The closing

quote to a character string must be on the

same line as the opening quote, unless you

use a backslash (\) at the end of the

first line to indicate that the line
continues. Correct the source code before

you recompile it.

*line no. string too long

The string at the line indicated is longer

than 255 characterb. A string cannot be

longer than 255 characters on a Single

line. Break the string and use a

continuation, indicated by a backslash (\)

at the end of the line to be continued.

*line no. structure declaration syntax

The syntax of the structure declaration on

the line indicated is incorrect. Correct

the syntax before reinvoking C068.

*line no. structure Operation not yet implemented

On the line indicated, you assigned a

structure to another structure. Assigning

a structure to another structure is not

yet supported by the CP/M-68K C Compiler.

Correct the source code before reinvoking

C068.

98

Programming Guide D.l C068 Ercor Messages

Table D-l. (continued)

Message

*line

*line

*line

*line

•line

*line

no.

no.

no.

no.

no.

no.

Meaning

structure table overflow

There are too raany structures in your

program for the structure tables.

Eliminate some structures before

reinvoking the C Compiler.

symbol table overflow

Your program uses too many Symbols for the

space available on the symbol table.

Eliminate some Symbols before reinvoking
the C Compiler.

temp creation error

The drive code or filename of the

temporary file referenced in the line

indicated is incorrect. Specify the

correct drive code and filename before you

recompile the source code.

too many cases in switch

The switch at the line indicated has too

many cases. Eliminate some cases before
you recompile the source code.

too many initializers

The initializer list in the line indicated
contains more initializers than there are
raerabers of the array being initialized.

Correct the list before you recompile the
source code.

too many params

The function declaration at the line

indicated contains too many Parameters.

Rewrite the source code before you
recompile the source code.

99

C Programming Guide D.l C068 Error Messages

Table D-l. (continued)

Message Meaning

*line no. undefined label: label

The label indicated by the variable

"label" has not been defined. Correct the

source code before you recompile it.

*line no. undefined symbol: symbol

The symbol indicated by the variable
"symbol" is undefined. Correct the source
code before you recompile it.

*line no. unexpected EOF

This error usually occurs when there is no

right curly brace (}) after a function, or
when there are mismatched comment
delimiters. Locate and correct the error
before you recompile the source code.

*line no. usage: cO68 source asm str

The syntax of the C Compiler command line

is incorrect. The correct syntax is given
in the error message. Reenter the command
line using a valid syntax.

*line no. [not matched by }

A left curly brace ({) is not matched by a
right curly brace. This error frequently
occurs in an initialization seguence.

Supply the missing brace before you

recompile the source code.

*line no. ="char" assumed

You haye user a =+ type Operation with an

invalid character. When an invalid
character occurs after the » sign, C068
puts in == instead of =. Correct the

source code before you recompile the
source code.

Table D-l. (continued)

Message Meaning

*line no. & Operand illegal

You attempted to take the address of

something that is not a variable, for

exaraple, a register. Correct the source

code and recorapile it.

D.I.2 Internal Logic Brrora

These messagea indicate fatal errors in the internal logic o:

C068:

*line no. can't copy filename

*line no. invalid keyword

*line no. too many chars pushed back

*line no. too many tokens pushed back

Contact the place you purchased your System for assistance«

Provide the following Information:

o Indicate the version of the operating System you are using.

o Describe your System's hardware configuration.

o Provide sufficient Information to reproduce the error.
Indicate which program was running at the time the erroc

occurred. If possible, also provide a disk with a copy of the

program.

D.2 C168 Brror Messages

The CP/M-68K C Co-generator, C168, returns two types of fatal

error raessages: diagnostic error messages and messages indicatinc

errors in the internal logic of C168. Both types of error messagei
take the general form:

**line no. error message text

The asterisks (**) indicate that the error inessage comes from C168.

The error message text describes the error. If you run C168 beforc

correcting any errors you received from C068, you receive erroneout
errors from C168.

101

C Programming Guide 0.2 C168 Brror Messages

D.2.1 Fatal Diagnostic Errors

The C168 fatal, diagnostic error messages are listed in Table

D-2 in alphabetical order, with explanations and suggested user

responses.

Table D-2. C168 Fatal Diagnostic Brrocs

Message Neaning

**line no. can't create filename

Either the drive code or the filename for

the file indicated by the variable

"filename" is incorrect. Ensure that you

are requesting the correct drive code and

filename before you recompile the source

code.

**line no. can't open filename

Either the drive code or the filename for

the file indicated by the variable

"filename" is incorrect. Ensure that you

are requesting the correct drive code and

filename before you recompile the source

code.

**line no. divide by zero

You attempted to divide by zero in the

line indicated. Correct the source code

before you recompile it.

**line no. expression too complex

An expression on the line indicated is too

complex for C168. Simplify the expression

before you recompile the source code.

**line no. modulus by zero

The second Operand of the percent Operator

in the line indicated is zero. Correct

the source code before you recompile it.

102

cibö Error Messages

Table D-2. (continued)

Message Meaning

**line no. structure Operation not implemented

The Operation you attempted with a

structure in the line indicated is

illegal. Correct the source code before

you recompile it.

**line no. usage: cl68 icode asm [-DLmec]

The command line syntax is incorrect. The

correct command line syntax is given in

the error inessage. Correct the syntax

before you reenter the command line.

D.2.2 Internal Logic Brrors

The following messages indicate fatal errors in the internal

logic of C168:

**line no. cdsize: invalid type

**line no. code skeleton error: op

**line no. hard long to register

**line no. intermediate code error

**line no. invalid initialization
**line no. invalid Operator op

**line no. invalid register expression

**line no. invalid storage class sc

**line no. no code table for op

**line no. skelmatch type: stype

If you receive one of these messages, contact the place where you

purchased your System for assistance. Provide the following

Information:

• Indicate the Version of the operating System you are using.

• Describe your System1s hardware configuration.

• Provide sufficient Information to reproduce the error.

Indicate which program was running at the time the error

occurred. If possible, also provide a disk with a copy of the

program.

103

c jfrogramming Guide D.3 CP68 Eccor Messages

0.3 CP68 Brror Messages

The CP/M-68K C Preprocessor, CP68, returns two types of fatal
error messages: diagnostic error roessages and messages indicating

errors in the internal logic of CP68. Both types of error messages

take the general form:

line no. error message text

The pound sign (#) indicates that the error message comes from CP68.

The "error message text" describes the error.

D.3.1 Diagnostic Brror Messages

A fatal diagnostic error message prevents CP68 from processing

your file, The CP68 diagnostic error messages are listed in Table
D-3 with explanations and suggested user responses.

Table D-3. CP68 Diagnostic Brror Messages

Message Meaning

line no. argument buffer overflow

An argument list in the line indicated

contains too raany characters for the space

allocated to the argument buffer. Reduce
the number of characters in the argument

list before rerunning CP68.

I line no. bad argument: arg

In the line indicated, the argument

represented by the variable "arg" contains

an invalid character. Replace or

eliminate the invalid character before
rerunning CP66.

line no. bad character octal no.

The line indicated contains an illegal

character. The ASCII code of the invalid

character is represented by the variable

"octal no." Examine the line indicated to

locate the error. Replace the character

before rerunning CP68.

104

Table D-3. (continued)

Message

*

t

*

#

I

line

line

line

line

line

no.

no.

no.

no.

no.

Meaning

bad de£ine name: name

The naroe indicated by the variable "name"

contains one or more invalid characters.

Examine the narae to locate the error.

Replace the invalid characters before

rerunning CP68.

bad include file

The syntax of the "#include" Statement is

incorrect. The "#include" Statement must
follow one of the following two formats:

#include <filename>

iinclude "filename"

Rewrite the Statement before rerunning

CP68.

bad include file name

In the line indicated, the filename in the

"»include" Statement contains either an

invalid character or more than 8
characters, the maximum allowed. Supply a
valid filename before rerunning CP68.

can't open fname

The "iinclude" Statement in the line

indicated contains an invalid or
nonexißtent filename. Check the filename
before rerunning CP68.

can't open infile

CP68 cannot open the input file indicated

by the variable "infile". Either the
drive code or the filename is incorrect.
Check the drive code and the filename
before rerunning CP68.

105

C Programming Guide 0.3 CP68 Error Messages

Table D-3. (continued)

Message Meaning

line no. can't open outfile

CP68 cannot open the Output f ile indicated

by the variable "outfile." Bither the

drive code is incorrect, or the disk to
which CP68 is writing is füll. Check the

drive code. If it is correct, the file is

füll. Erase unnecessary files, if any, or

insert a new disk before rerunning CP68.

line no. condition Stack overflow

The source code contains too many nested

lif's for the space allocated to the

condition Stack. The Stack overflowed
before the line indicated. Rewrite the

source code before rerunning CP68.

line no. define recursion

A name or variable on the line indicated

has been defined in terras of itself.

Redefine the name before rerunning CP68.

line no. define table overflow

The source code contains one or a

combination of the following: too many

names, too many long naroes, too many

expressions, or too many large

expressions. The space allocated to the
define table was filled before the line
indicated. Simplify and rewrite the
source code before rerunning CP68.

line no. expression Operator Stack overflow

An expression in the line indicated

contains too many operations for the space

allocated to the expression Operator
Stack. Eliminate or consolidate some
operations before rerunning CP68.

106

rLuytduumng ouiae D.3 CP68 Error Messag

Table D-3. (continued)

Message Meaning

line no. expression Stack overflow

An expression in the line indicated

contains too many terms for the Space

allocated to the expression Stack.

Eliminate or consolidate some terms before

rerunning CP68.

I line no. expression syntax

The syntax of an expression in the line

indicated is incorrect. Examine the line

to locate the error. Correct the syntax

before rerunning CP68.

I line no. includes nested too deeply

The "linclude" Statement in the line

indicated contains more than 7 nested

include files, the maximum allowed.

Rewrite the source code so that no one

■linelüde" Statement contains more than 7

nested include files.

t line no. invalid leise

A "leise" Statement oecurs in the source

code without a preceding "lif" Statement.

Supply the missing "lif" Statement or

eliminate the "leise" Statement before
rerunning CP68.

I line no. invalid lendif

A "lendif" Statement oecurs in the source

code without a preceding "lif" Statement.
Supply the missing "lif" Statement or

eliminate the "lendif" Statement before
rerunning CP68.

I line no. invalid preprocessor command

The command in the line indicated is

either not valid for CP68 or is

incorrectly formatted. Correct the
command before rerunning CP68.

107

C Progranuning Guide D.3 CP68 Error Messages

Table D-3. (continued)

Message

#

1

1

1

#

#

line

line

line

line

line

line

no.

no.

no.

no.

no.

no.

Meaning

line overflow

The line indicated contains raore than 255

characters, the maximum allowed. Reduce

the line to no raore than 255 characters

before rerunning CP68.

macro argument too long

An argument name in the line indicated

contains roore than 8 characters, the

maximum allowed. üse no more than 8

characters for the argument name, and

rerun CP68.

*/ before EOF

A comraent in the source code is missing

the closing */. Supply the missing */
before rerunning CP68.

string cannot cross line

A string in the line indicated is missing

a closing quotation mark. Supply the

missing quotation mark before rerunning
CP68.

string too long

The line indicated contains a string

greater than 255 characters, the maximum

allowed. Shorten the string to no more

than 255 characters before rerunning CP68.

symbol table overflow

The source code uses too many Symbols for

the space allocated to the syrobol table.
The symbol table was filled prior to the

line indicated. Eliminate some Symbols
before rerunning CP68.

C Programming Guide D.3 CP68 Error Messages

Table D-3. (contiaued)

Message Meaning

line no. too many arguments

One of the names in the line indicated

contains more than 9 arguments, the

maximum allowed. Reduce the number of

arguments to no more than 9 per name

before rerunning CP68.

I line no. unexpected EOF

This message indicates an incomplete

program. Examine the source code to

locate the error. Correct before

rerunning CP68.

line no. unmatched conditional

A "#if" Statement occurs in the source

code without a matching "#endif"

Statement. Supply the missing "lendif"

Statement before rerunning CP68.

t line no. usage: c68 [-i x:] inputfile outputfile

This message indicates incorrect syntax in

the command line. The correct syntax is

given. Correct the command line before

rerunning CP68. Refer to your C manual

for an explanation of the command line

syntax.

D.3.2 Internal Logic Brrors

CP68 returns only one message indicating an error in the

internal logic of CP68:

f line no. too many characters pushed back

If you receive this message, contact the place where you purchased

your System for assistance. Provide the following information:

• Indicate the Version of the operating System you are using.

• Describe your System'8 hardware configuration.

109

£ Pf,oqx£&nis)q Guide C.3 GP68 Error Messages

• Provide sufficient Information to reproduce the error.

Indicate which program was running at the time the error

occurred. If possible, also provide a disk with a copy of the

program.

D.4 C-Run-time Library Brror Messages

The C-Run-time Library returns only one fatal error inessage,

Stack overflow. The Stack overflow inessage means the program you

are trying to include in the C-Run-time Library is too big. Reduce

the size of the program.

End of Appendix D

Index

2-51

2-51

2-43, 2-51

2-43, 2-51

2-43

A.68K, 1-1

abort function, 2-3

abs function, 2-4

absolute load module, B-4

access function, 2-5

addition, 3-5

address variables, B-2

addressing error trap, 2-53

alignment, 2-29

AND, 3-5

alphanumeric characters, 2-29

argc/argv interface, 1-5

argument,

absolute value of, 2-4

pointer, 2-51

saine length, 1-4

with side effects, 2-4, 2-15,

2-29, 5-35

arithmetic comparison, 3-5

arithmetic trap, 2-53

AS68, B-l, B-2

ASCII character, 2-43, 2-50

ASCII files, 2-25

in CP/M-68K, 1-6

ASCII string,

converting to integer or

binary, 2-6

null-terminated, 2-43

assembler,

initialization file, B-3

temp files, B-3

assenbly-language source file,

B-2

atan function 2-62

2-6

2-6

2-6

atof function,

atoi function,

atol function,

automatic variables, 1-1

B

binary and ASCII files,

distinguishing, 1-6

binary,

files, 1-6, 2-25

I/O, 3-2

binary numbers, converting to

decimal ASCII, 2-43

bit flags, 3-6

black boxes, 3-1

blank padding, 2-43, 2-50

block size, changing, 2-8

blocks, releasing, 2-8

bogus address, freeing, 2-8

Boolean condition, 3-3

boundaries, 128-byte,

2-49, 2-66

brackets, 2-51, 3-8

break location, 2-16

brk function, 1-2, 2-7

BSS, 1-1, 2-16, 3-8

buffer flushing, 2-18

BUSERR, 2-53

BYTE, 3-4

byte order, 2-29, 2-44

byte stream, transferring, 2-27

c character, 2-51

C Co-generator, D-l

C language,

functions implemented in, 2-2

portability, 3-1

program memory layout, 1-1

program compiling, 1-1

c Operator, 2-43, 2-51

C Parser, D-l

C Preprocessor, D-l

c.sub, 1-1, B-3

C168, B-l, D-l

calling Conventions, 1-2

calloc function, 2-8

carriage return, 2-14

carriage return line-feed, 1-6

ceil function, 2-9

character, 8-bit, 2-44

character class, 2-14

character string, 2-51

Index-1

characters, locating in

strings, 2-34

CHK instruction, 2-53

chmod function, 2-10

chown function, 2-10

clearerr function, 2-22

clib, B-2

clink.sub. 1-1, B-3

close function, 2-11

closing streamfiles, 2-21

CO68. B-l. D-l

coding Conventions,

mandatory, 3-2

suggested, 3-8

code generator, B-l, B-2

command line interface, 1-5

comoas, 3-5

comments in a raodule, 3-7

comparing two elements, 2-47

compilation, speeding, B-4

Compiler, B-l, B-2, B-3, B-4

compiler-generated code, 1-5

compiling a C program, 1-1

completion code, 2-18

compound Statement, 3-8

CON;, 1-5, 2-35, 2-63

concatenating strings, 2-57

console device, 2-28, 2-35

contiguous digits, 2-6

control charactera, 2-14

control string format, 2-50

Controlling Statement, 3-8

conversion character, 2-50

conversion code, capitalized,

2-43

conversion Operators, 2-42

optional instructions in,

2-43

conversion specifications, 2-

copying strings, 2-59

COS function, 2-12

CP68, B-l

CP/M-68K C Compiler, D-l

CP/M-68K C Run-time Library

D-l

creat function, 2-11, 2-13

creata function, 2-13

creatb function, 2-13

CTRL-Z, 1-6

ctype function, 2-14

<ctype.h> file, 2-14

-D flag, B-2

d character, 2-51

d Operator, 2-43

data,

conversion, 2-2

region, 2-16

structures, 3-1

DDT-68K, 2-3

decimal ASCII, 2-43

integer conversion, 2-51

DEFAULT, 3-4

default drive, B-3

Idefine Statement, 3-3, B-l

module-specific, 3-7

deleting a file, 2-65

destination string, 2-59

/dev/lp, 1-5

/dev/tty, 1-5
device access, terminating,

2-11

device I/O, 1-5

digit string, 2-43

disk Space, conserving,

B-l, B-3

disks, swapping, B-3

do, 3-8

documenting code, 3-8

drive changing, B-3

dynamic meraory allocation, 2-1

dynamic memory areas,

heap, 1-2

Stack, 1-2

B

E2BIG, A-l

50 EACCES, A-l

EBADF, A-l

edata location, 1-2, 2-16

editor, B-3

EFBIG, A-2

EINVAL, A-2

EIO, A-l

eise, 3-8

end, 1-2

end location, 2-16

end-of-file, 2-22

errors, 2-30

ENFILE, A-2

ENODSPC, A-2

ENOENT, A-l

ENOMEN, A-l

ENOSPC, A-2

lndex-2

ENOTTY, A-2

entry points, 2-2

EROFS, A-2

errno external variable,

2-40, A-l

<errno.h>ine lüde file, A-l

error.

in speeified stream, 2-22

system-dependent, 2-3

error file, 2-40

error messages, nuobers,

2-40, A-l

error return, from getchar,

2-29

etext location, 1-2, 2-16

etoa funetion, 2-17

exception condition, 68000,

2-53

executable file, B-2

exit funetion, 2-18

_exit funetion, 2-18

exp funetion, 2-19

extended character sets, 3-6

EXTERN, 3-4

external,

names, 1-4

reference, B-2

variable, 2-40

-F Option, B-2

faba funetion, 2-20

feetc funetion, 2-29

fclose funetion, 2-21

fdopen funetion, 2-25

feof funetion, 2-22

ferror funetion, 2-22, 2-36

fflush funetion, 2-21

fgetc funetion, 2-29

fgets funetion, 2-33

field width, 2-43

file access,

terminating, 2-11

legal, 2-5

file data, reading, 2-49

file descriptor, 2-63

file I/O, 1-5

file pointer, 2-49

file aize, reducing, B-3

file Statements, 3-7

file atreams, manipulating,

2-22

file.O, B-2

file.C, B-l

file.I, B-l

file.IC, B-l

file.S, B-2

file.ST, B-l

filenane, temporary, 2-38

fileno funetion, 2-22

files, changing protection and

ID, 2-10

floating-point,

conversion, 2-43

routines, 2-2

flushing stream files, 2-21

floor funetion, 2-23

fmod funetion, 2-24

fopen funetion, 2-25

fopena funetion, 2-25

fopenb funetion, 2-25

for, 3-8

form feed, 2-14

formatting data, 2-42

fprintf funetion, 2-42

fputc funetion , 2-44

fputs funetion, 2-46

frame pointer, 1-2

fread funetion, 2-27

free funetion, 1-2, 2-8

freopa funetion, 2-25

freopb funetion, 2-25

freopen funetion, 2-25

fscanf funetion, 2-50

fseek funetion , 2-28, 2-64

ftell funetion, 22-28

ftoa funetion, 2-17

fwrite function8, 2-27

getc funetion, 2-29, 2-64

getchar funetion, 2-29

getl funetion, 2-29

getpass funetion, 2-31

getpid funetion, 2-32

gets funetion, 2-33

getw funetion, 2-29

GLOBAL, 3-4

global data areas, 3-1

global variable, 3-3

H

header file, 3-2

heap management, 1-2

heap Space, allocating, 2-8

heap extending, 2-7

hex constant, 3-2

Index-3

hexadecimal ASCII, 2-43

integer conversion, 2-51

high bytes, reversing with low
bytes, 2-61

-I flag, B-l

finclude, B-l

•include "file.h", 3-2

I/O,

redirection, 1-7

stream, 2-25

device, 1-5

file, 1-5

single-byte, 1-5

if, 3-8

illegal instruction trap, 2-53

include files, nesting, 3-2

indention technique, 3-8

index function, 2-34

initialization file, B-2

initialized data, 1-1, 3-6

input, 1-6

format, 2-50

strean, 2-64

instruction trap, 2-3

int,

random number seed, 2-48

variable length, 3-2

intermediate code file, B-l

intermodule communication,

using procedure calls, 3-1

isalnum(c), 2-14

isalpha(c), 2-14
isascii(c), 2-14

isatty function, 2-35

iscntrl(c), 2-14
isdigit(c), 2-14

islower(c), 2-14

isprint(c), 2-14
ispunct(c), 2-14

iaspace(c), 2-14

i8upper(c), 2-14

JSR instruction, 1-2

L

L character, 2-43

-L flag, B-2

-L Option, B-2

language library, compatibility

with UNIX V7, 2-1

leading sign, 2-6

leading Spaces, 2-6

line A trap, 2-53

line F trap, 2-53

line-feed, 1-6, 2-14, 2-50

linkage editor, 1-2, B-2

linker, B-l, B-2, B-3, B-4

linker, invoking, 1-1

listing device, 2-28

literal matches, 2-51

LO68, B-l, B-2

load modules, B-3

load time, reducing, B-3

LOCAL, 3-4, 3-7

local variable names, 3-3

log function, 2-36

logical, 3-5

LONG, 3-4

long, 32-bit, 2-29, 2-43

long masking constant, 3-5

longjmp function, 2-52

low bytes, reversing with high

bytes, 2-61

lower-case, 2-2, 3-2, 3-3

lseek function/ 2-37

LST:, 1-5

macro, 2-4, 2-15, 2-29, 2-44

macro definitions, 3-2

maintenance costs, 3-1

maintenance documentation, 3-8

malloc function, 1-2, 2-8

tnandatory coding Conventions,

3-2

margin, 3-8

masking, 3-5

memory allocation, 2-15

raemory layouts of C programs,

1-1

minus sign, 2-43

mktemp function, 2-38

MLOCAL, 3-4

modular programs, 3-1

module,

layout, 3-7

size, 3-1

module-specific tdefine

Statements, 3-7

movem.l instruction, 1-4

multibyte binary variables, 3-2

i""1 *• icharacter constants, 3-5

Index-4

nesting lovel, 3-8

newline, 2-50

character, 2-33, 2-46

incompatibility, 2-46

NO-OPS, 2-10

nonlocal goto, 2-52

null otatement, 3-8

null-terminated string,

2-43, 2-46

concatenating, 2-57

printf function, 2-42, 3-2, 3-5

printing characters, 2-14

privilege violation, 2-53

procedure definitions, 3-7

procedure header, 3-7

process 10, false, 2-32

punctuation characters, 2-14

pushed-back characters, 2-64

putc function, 2-44

putchar function, 2-44

putl function, 2-44

puts function, 2-46

putw function, 2-44

o character, 2-51

o Operator, 2-43

-O £ile.68K, fi-2

object code, reducing size,

2-29

octal,

ASCII, 2-43, 2-51

constant, 3-2

open function, 2-11, 2-39,

2-25, 2-49

open atream, 2-22, 2-50

opena function, 2-39

openb function, 2-39

opening flies, 2-39

operations, 3-5

OR, 3-5

Output, 1-6

file, B-l

left-adjusted, 2-43

right-adjusted, 2-43

overflow, detection and

reporting, 2-6

padding, blank or zero, 2-43

parentheses, 3-2, 3-4

parser, B-l

pa88word, 2-31

PDP-11, 2-61

percent sign, %, 2-42

peripheral devices, 1-5

perror function, 2-40, A-l

pointer arithoetic, 3-5

portability, 3-1 to 3-7

pow function, 2-41

precision field, 2-43

precision string, 2-43

preproceasor, B-l

primary memory, 2-27

qsort function, 2-47

quick sort routine, 2-47

R

-R Option, B-2

rand function, 2-48

random number generator, 2-48

randotn numbers, retrieving,

2-48

read errors, 2-30

read function, 2-49, 2-29

read pointer, 2-28

readability, inproving, 3-8

realloc function, 2-8

referencea, global, 3-7

REG, 3-4

registers, scratch, 1-4

regulär files, 1-6

reloc Utility, B-3

relocatable files, B-2

rewind function, 2-28

rindex function, 2-34

ROM, 3-6

run-time start-up routine, B-2

s character, 2-Si

8 Operator, 2-43

-S Option, B-2

-S switch, B-4

sample C module, C-l

sbrk functxon, 1-2, 2-7, 2-16

scanf function, 2-50

screen editing, 3-8

seed, 2-48

setjmp function, 2-52

sign-extending characters, 3-2

Index-5

Signal function, 2-53

signed characters, 2-58

sin function, 2-12

single-byte I/O, 1-5

single-density disk System, B-3

sinh function, 2-55

source file, B-l

Space, 2-14

allocation for array, 2-8

sprintf function, 2-42

sqrt function, 2-56

srand function, 2-48

sscanf function, 2-50

Stack fraae, 1-4

Stack use, 1-2

stack-popping code, 1-4

Standard error file, 1-6

Standard type definitions, 3-3

start-up file, B-2

static data, 2-31

static variables, 3-6

stderr, 1-6

atdin, 1-6

<atdio.h> file. 1-6, 2-4,

2-29, 2-44

stdout, 1-6

storage class, 3-7

definitions, 3-3

strcat function, 2-57

strcmp function, 2-58

atrcpy function, 2-59

stream,

address, 2-21

buffer, 2-37

file, 2-28, 2-33

Output file, 2-18

string,

comparison, 2-58

length, 2-58

null-terminated, 2-31

variables, 3-5

strlen function, 2-60

strncat function, 2-57

strncpy function, 2-59

strncmp function, 2-58

stylistic rules in C

programs, 3-1

submit files, B-3

subroutine calls, 1-4

subtraction, 3-5

suppresoed assignments, 2-41

swab function, 2-61

swapping binary data, 2-61

symbolic constants, 3-2

symbolic names, A-l

System,

calls, 2-1

error, 2-40

inelüde files, B-l

traps, 2-1

system-wide file 3-2

-T switch, B-4

tab, 2-14, 2-50, 3-8

tan function, 2-62

tanh function, 2-5b

teil function, 2-37

temporary file, B-l

terminal device, 2-63

terminating current program,

2-3

text, 3-6

tilde, 2-14

trace trap, 2-51

trailing null, 2-46, 2-51

transferring data, 2-66

TRAPV instruetion, 2-51

ttyname function, 2-63

type, 3-2

type definitions, 3-3

typedef 3-3

U

u Operator, 2-43

-U Option, B-2

UBYTE, 3-4

underline character, 1-4

ungetc function, 2-64

uninitialized data, 1-1, 3-6

UNIX,

compatibility, 2-9, 2-40,

2-46, 2-53

versions 1 through 6, 2-37

version 7, A-2

with fopen, 2-26

with getpid, 2-32

with getchar, 2-30

UNIX programs, with binary

files, 2-39

unlink function, 2-65

unsigned characters, 2-58

unsigned int, 3-2

upper bound of program,

setting, 2-7

upper-case, 2-2, 3-2, 3-3

user conteol block, 1-5

UWORD, 3-4

Index-6

variable, 3-7

variable names,

global, 3-3

local, 3-3

lower-case, 3-3

variable type, 3-7

VAX, 2-61
vectors, sorting, 2-47

VOID, 3-4

whilo, 3-8

white Space charactera, 2-14

WORD, 3-4

word,

16-bit, 2-44

32-bit word, 2-3

word boundary, 2-8

write function, 2-44, 2-66

write pointer, 2-28

X characters, 2-38, 2-44, 2-51

X Operator, 2-43

rero divide, 2-53

zero padding, 2-43

Index-7

