
Advance Information

M C68000

16-BIT

MICROPROCESSOR

APRIL, 1983

This documant contams in1o>mai<an cn a neiv producl Soecilcations anc inloifiaiion
am subjeci to change withojt noiice Reprint December 1983

TABLE OF CONTENTS

Paragraph Page

Number Title Number

Section 1

Introduction

1.1 Data Types and Addressing Modes 1-1

1.2 Instruction Sei Overview 1-3

Section 2

Data Organization and Addressing Capabilities

2.1 Operand Size 2-1

2.2 Data Organization in Registers 2-1

2.2.1 Data Registers 2-1

2.2.2 Address Registers 2-1

2.3 Data Organization in Memory 2-1

2.4 Addressing 2-2

2.5 Instruction Format 2-2

2.6 Program/Data References 2-2

2.7 Register Specification 2-2

2.8 Effective Address 2-4

2.8.1 Register Direct Modes 2-4

2.8.1.1 Data Register Direct 2-4

2.8.1.2 Address Register Direct 2-4

2.8.2 Memory Address Modes 2-4

2.8.2.1 Address Register Indirect 2-4

2.8.2.2 Address Register Indirect with Postincrement 2-5

2.8.2.3 Address Register Indirect with Predecrement 2-5

2.8.2.4 Address Register Indirect with Displacement 2-5

2.8.2.5 Address Register Indirect with Index 2-5

2.8.3 Special Address Modes 2-5

2.8.3.1 Absolute Short Address 2-5

2.8.3.2 Absolute Long Address 2-5

2.8.3.3 Program Counterwith Displacement 2-5

2.8.3.4 Program Counter with Index 2-6

2.8.3.5 immediateData 2-6

2.8.3.6 Implicit Reference 2-6

2.9 Effective Address Encoding Summary 2-6

2.10 System Stack 2-6

TABLE OF CONTENTS

(Continued)

Paragraph

Number Title Number

Section 3

Instruction Set Summary

3.1 Data Movement Operations 3-1

3-2. Integer Arithmetic Operations 3-2

3-3 Logical Operations 3-3

3.4 Shiftand Rotate Operations 3-3

3.5 Bit Manipulation Operations 3-4

3.6 Binary Coded Decimal Operations 3-4

3.7 Program Control Operations 3-4

3.8 System Control Operations 3-5

Section 4

Signal and Bus Operation Description

4.1 Signal Description 4-1

4.1.1 AddressBusiAl through A23) 4-1

4.1.2 Data Bus (DO through D15) 4-2

4.1.3 Asynchronous Bus Control 4-2

4.1.3.1 Address StrobejAS) ■ 4-2

4.1.3.2 Read/Write(R/W} 4-2

4.1.3.3 Upper and Lower Data Strobe (UDS, LDS) 4-2

4.1.3.4 Data Transfer Acknolwedge (DTACK) 4-2

4.1.4 Bus Arbitration Control 4-2
4.1.4.1 . BusReques_tJ_BR) 4-3

4.1.4.2 BusGrant(BG) 4-3

4.1.4.3 Bus Grant Acknowledge (BGACK) 4-3

4.1.5 Interrupt Control I1PL0, IPL1, IPL2) 4-3

4.1.6 System Control 4-3

4.1.6.1 BusErroriBERR) 4-3

4.1.6.2 'Reset(RESET) 4-3

4.1.6.3 Halt (HALT) 4-4

4.1.7 M6800 Peripheral Control 4-4

4.1.7.1 EnablelE) „^ 4-4
4.1.7.2 Valid Peripheral Address (VPA) 4-4

4.1.7.3 Valid Memory Address (VMA) 4-4

4.1.8 Processor Status (FCO, FC1, FC2) 4-4

4.1.9 ClockICLK) 4-5

4.1.10 Signal Summary 4-5

4.2 Bus Operation 4-5

4,2.1 Data Transfer Operations 4-5

4.2.1.1 ReadCycle 4-6

IV

TABLE OF CONTENTS

(Continued)

Paragraph Page

Number Trtie Number

4.2.1.2 WriteCycle 4-8

4.2.1.3 Read-Modify-WriteCycle 4-10

4.2.2 BusArbitration 4-11

4.2.2.1 RequestingtheBus 4-13

4.2.2.2 ReceivingtheBusGrant 4-13

4.2.2.3 Acknowledgementof Mastership 4-13

4.2.3 BusArbitrationControl 4-14

4.2.4 Bus Errorand Halt Operation 4-14

4.2.4.1 Bus Error Operation 4-18

4.2.4.2 Re-Run Operation 4-18

4.2.4.3 Halt Operation 4-19

4.2.4.4 Double Bus Faults 4-20

4.2.5 Reset Operation 4-20

4.3 The Relationship of DTACK, BERR, and HALT 4-21

4.4 Asynchronous versus Synchronous Operation 4-23

4.4.1 Asynchronous Operation 4-23

4.4.2 Synchronous Operation 4-23

Section 5

Processing States

5.1 Privilege States 5-1

5.1.1 Supervisor State 5-2

5.1.2 User State 5-2

5.1.3 Privilege State Changes 5-2

5.1.4 Reference Classification 5-2

5.2 Exception Processing 5-3

5.2.1 Exception Vectors 5-3

5.2.2 Kinds of Exceptions 5-4

5.2.3 Exception Processing Sequence 5-5

5.2.4 Multiple Exceptions 5-5

5.3 Exception Processing Detailed Discussion 5-6

5.3.1 Reset 5-6

5.3.2 Interrupts 5-7

5.3.3 Uninitialized Interrupt 5-9

5.3.4 Spurious Interrupt 5-9

5.3.5 Instruction Traps 5-9

5.3.6 Illegal and Unimplemented Instructions 5-9

5.3.7 Privilege Violations 5-10

5.3.8 Tracing 5-10

5.3.9 Bus Error 5-10

5.3.10 Address Error 5-11

TABLE OF CONTENTS

(Continued)

Paragraph page

Number Title Number

Section 6

Interface with M6800 Perpherals

6.1 Data Transfer Operation 6-2

6.2 Interrupt Interface Operation 6-3

Section 7

Instruction Set and Execution Times

7.1 Instruction Set 7-1

7.1.1 Addressing Categories 7-1

7.1.2 Instruction Prefetch 7-4

7.2 Instruction Execution Times 7-4

7.2.1 Effective Address Operand Calculation Timing 7-4

7.2.2 Move Instruction Execution Times 7-4

7.2.3 Standard Instruction Execution Times 7-6

7.2.4 Immediate Instruction Execution Times 7-6

7.2.5 Single Operand Instruction Execution Times 7-7

7.2.6 Shift/Rotate Instruction Execution Times 7-8

7.2.7 . Bit Manipulation Instruction Exeuction Times 7-8

7.2.8 Conditional Instruction Execution Times 7-8

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-9

7.2.10 Multi-Precision Instruction Execution Times 7-9

7.2.11 Miscellaneous Instruction Execution Times 7-10

7.2.12 Exception Processing Execution Times 7-11

Section 8

Electrical Specifications

8.1 Maximum Ratings 8-1

8.2 Thermal Characteristics 8-1

8.3 DC Electrical Characteristics 8-1

8.4 Power Considerations 8-2

8.5 AC Electrical Specifications - Ctock Timing 8-3

8.6 AC Electrical Specifications - Read and Write Cycles 8-4

8.7 AC Electrical Specifications - MC68000 to M6800 Peripheral 8-6

8.8 AC Electrical Specifications - Bus Arbitration 8-8

Section 9

Ordering Information

9.1 Standard MC68000 Ordering Information 9-1

9-2 "BETTER" Processing - Standard Production Plus 9-2

9.3 Hi-RelMIL-STD-883B MC68000 Ordering Information 9-3

VI

TABLE OF CONTENTS

(Concluded)

Paragraph Page

Number Title Number

Section 10

Mechanical Data

10.1 Pin Assignments ig-,

10.2 Package Dimensions 1q_3

LISTOF ILLUSTRATIONS

Figure Pa9e
Number Title Number

1-1 Programming Model 1
1 -2 Status Register 1 "2

2-1 Word Organization in Memory 2-2

2-2 Memory Data Organization 2-3
2-3 Instruction Operation Word General Format 2-4

2-4 Single-Effective-Address Instruction Operation Word 2-4

4-1 Inputand Output Signals 4'1

4-2 Word Read Cycle Flowchart 4"6
4-3 Byte Read Cycle Flowchart 4-7
4-4 Read and Write Cycle Timing Diagram 4-7
4-5 Word and Byte Read Cycle Timing Diagram 4-8

4-6 Word Write Cycle Flowchart 4-8
4-7 Byte Write Cycle Flowchart 4-9
4-8 Word and Byte Write Cycle Timing Diagram 4-9

4-9 Read-Modify-Write Cycle Flowchart 4-10

4-10 Read-Modify-Write Cycle Timing Diagram 4-11

4-11 Bus Arbitration Cycle Flowchart 4-12

4-12 Bus Arbitration Cycle Timing Diagram 4-13
4-13 MC68000 Bus Arbitration Unit State Diagram 4-15

4-14 Timing Relationship of External Asynchronous Inputsto Internal Signals 4-16

4-15 Bus Arbitration Timing Diagram - Processor Active 4-16
4-16 Bus Arbitration Timing Diagram - Buslnactive 4-17

4-17 Bus Arbitration Timing Diagram - Special Case 4-17

4-18 BusErrorTiming Diagram 4-"18
4-19 Re-Run Bus Cycle Timing Diagram 4-19

4-20 Halt Processor Timing Diagram 4~19
4-21 Reset Operation Timing Diagram 4"21

5-1 Format of VectorTable Entries 5*3

5-2 Vector Number Format 5-3
5-3 Exception Vector Address Calculation 5-3
5-4 Exception Stack Order (Groups 1 and 2) 5-5

5-5 Vector Acquisition Flowchart 5-8
5-6 Interrupt Acknowledge Cycle Timing Diagram 5-8

5-7 Interrupt Processing Sequence 5-9

5-8 Exception Stack Order (GroupO) 5-11
5-9 Address Error Timing Diagram 5-12

VIII

LIST OF ILLUSTRATIONS

(Continued)

Figure

Number Title Number

6-1 M6800lnterfacingFlowchart 6-1

6-2 MC68000 toM6800Peripheral Timing - Best Case 6-2

6-3 MC68000 to M6800 Peripheral Timing - Worst Case 6-2

6-4 Autovector Operation Timing Diagram 6-4

8-1 RESETTestLoad 8-2

8-2 HALT Test Load 8-2

8-3 TestLoads 8-2

8-4 MC68000 Power Dissipation (PdI vs AmbientTemperature (Ta) 8-3
8-5 Clock Input Timing Diagram 8-3

8-6 Read Cycle Timing Diagram Foldout 1

8-7 Write Cycle Timing Diagram Foldout 2

8-8 MC68000 to M6800 Peripheral Timing Diagram - Best Case 8-6

8-9 MC68000 to M6800 Peripheral Timing Diagram - Worst Case 8-7

8-10 Bus Arbitration Timing Diagram 8-8

ix

LIST OF TABLES

Table Page

Number Titte Number

1-1 Addressing Modes 1-3

1-2 Instruction Set Sumrnary 1-4

1-3 Variations of Instruction Types 1-4

2-1 Effective Address Encoding Summary 2-6

3-1 Data Movement Opera tions 3-1

3-2 Integer Arithmetic Operations 3-2

3-3 Logical Operations 3-3

3-4 Shiftand Rotate Operations 3-3

3-5 Bit Manipulation Operations 3-4

3-6 Binary Coded Decimal Operations 3-4

3-7 Program Control Operations 3-5

3-8 System Control Operations 3-5

4-1 Data Strobe Control of Data Bus 4-2

4-2 Function Code Outputs 4-4

4-3 Signal Summary 4-5

4-4 DTACK, BERR, and HÄLT Assertion Results 4-22

4-5 BERR and HALT Negation Results 4-22

5-1 Bus Cycle Classification 5-3

5-2 Exception Vector Table 5-4

5-3 Exception Grouping and Priority 5-6

7-1 Effective Addressing Mode Categories 7-1

7-2 Instruction Set 7-2

7-3 Effective Address Calculation Times 7-5

7-4 Move Byte and Word Instruction Execution Times 7-5

7-5 Move Long Instruction Execution Times 7-5

7-6 Standard Instruction Execution Times 7-6

7-7 Immediate Instruction Execution Times 7-7

7-8 Single Operand Instruction Execution Times 7-7

7-9 Shift/Rotate Instruction Execution Times 7-8

7-10 Bit Manipulation Instruction Execution Times 7-8

7-11 Conditional Instruction Execution Times 7-9

7-12 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-9

LISTOFTABLES

(Continued)

Table Page

Number Titie Number

7-13 Multi-Precision Instruction Execution Times 7-10

7-14 Miscellaneous instruction Execution Times 7-10

7-15 Move Peripheral Instruction Execution Times 7-10

7-16 Exception Processing Execution Times 7-11

xi/xii

SECTION 1

INTRODUCTION

The MC68000 is the first in a family of advanced microprocessors from Motorola. Utilizing VLSI

technology, the MC68000 is a fully-implemented 16-bit microprocessor with 32-bit registers, a rieh

basic instruetion set, and versatile addressing modes.

The MC68000 possesses an asynchronous bus structure with a 24-bit address bus and a 16-bit data

bus.

The resources availabie to the MC68000 user consist of the following:

• 17 32-Bit Data and Address Registers

• 16 Megabyte Direct Addressing Range

• 56 Powerful Instruetion Types

• Operations on Five Main Data Types

• Memory Mapped I/O

• 14 Addressing Modes

As shown in the programming modef (Figure 1-11, the MC68000 offers seventeen 32-bit registers, a

32-bit program counter, and a 16-bit Status register. The first eight registers 1D0-D7) are used as

data registers for byte (8-biU, word 116-bit), and iong word (32-bit) operations. The second set of

seven registers (A0-A6) and the System Stack pointer may be used as Software Stack pointers and

base address registers. In addition, the registers may be used for word and Iong word operations.

All of the 17 registers may be used as index registers.

The Status register (Figure 1-2) contains the interrupt mask (eight levels availabie) as well as the

condition codes: extend (XI, negative (N), zero (Z), overflow (V), and carry (C). Additional Status

bits indicate that the processor is in a trace (T) mode and in a Supervisor (S) or user State.

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:

• Bits

• BCD Digits (4 bits)

• Bytes (8 bits}

• Words(16 bits)

• Long Words (32 bits)

In addition, operations on other data types such as memory addresses, Status word data, etc., are

provided in the instruetion set.

1-1

31

-

1-1
-

31

-

-

1615

1

1

1

1

1

1

1

|

1615

1

1

1
1

1

1

87

1

1

1

1

1

1

1

1

User Stack Pointer IUSPI

Supervisor Stack Pointer ISSPI

0

-

c

-

-

-

DO

01

D2

D3

D4

D5

D6

D7

AO

AI

A2

A3

A4

A5

A6

A7

Eight

Data

Registers

Seven

Address

Registers

Two Stack

Pointers

Program

Counter

87
Status

[System Byte, User BynT] Regjste[

Figure 1-1. Programming Model

System Byte

•v 13 ifi__

User Byte

(Condition Code Register!

Trace Moda

Supervisor

State Interrupt

Mask

Extenü

Negative

Zsro

Overflow

Carry

Figure 1-2. Status Register

The 14 address modes, shown in Table 1-1, include six basic types:

• Register Direct

• Register Indirect

• Absolute

• Program Counter Relative

• Immediate

• Implied

Included in the register indirect addressing modes is the capability to do postincrementing,

predecrementing, offsetting, and indexing. The program counter relative mode can also be

modified via indexing and offsetting.

1-2

Table 1-1. Addressing Modes

Mode

Register Direct Addressing

Data Register Direct

Address Register Direct

Absolute Data Addressing

Absolute Shoil

Absolute Long

Program Counter Relative Addressing

Relative wiih Offset

Relative with Index and Offset

Register Indirect Addrassing

Register Indirect

Postmcrement Register Indirect

Predecremeni Register Indirect

Register Indirecl with OHset

indexed Register Indirect wiih Offset

Immediate Data Addressing

Immediate

Quick ImmBdiate

Implied Addressing

Implied Register

Generation

EA-Dn

FiA = An

EA=INexi Word!

EA = (Nexi Two Wordsl

EA = (PC) + die
EA = IPC) HXnl + dg

EA = IAn)

EA = IAnl: An —An + N

An —An-N, EA = (An)

EA=(Anl + d]g

EA = (AnJ + (Xn] i-dg

DATA = Next Wordfsl

Inheiem Data

EA=SR, USP, SP. PC

NOTES;

EA = Effective Address

An = Address Register

Dn ■• Data Register

Xn ■ Address ar Data Register Used as Index Register

SR ■ Status Register

PC ■ Program Counter

I I ■ Contents of

dg - 8-Bit OHset (Displacementl

di6 = 16-Bn Offset (Deplacement)

N = 1 for byte, 2 for word, and 4 for long word. If An is

the Stack pointer and the Operand size is byie. N = 2

to koQD

the Stack pointer on a word boundary.

— = Replaces

1.2 INSTRUCTION SET OVERVIEW

The MC68000 instruction set is shown in Table 1-2. Some additional instructions are variations, or

subsets, of these and they appear in Table 1-3. Special emphasis has been given to the instruction

set's support of structured high-level languages to facilitate ease of programming. Each instruction,

with few exceptions, operates on bytes, words, and fong words and most instructions can use any

of the 14 addressing modes. Combining instruction types, data types, and addressing modes, over

1000 useful instructions are provided. These instructions include signed and unsigned, multiply and
divide, "quick" arithmetic operations, BCD arithmetic, and expanded operations (through traps).

1-3

Table 1-2. Instruction Set Summary

Mnemonic

ADBC

ADD

AND

ASL

ASR

BCC
BCHG

BCLR

BRA

BSET

BSR

BTST

CHK

CLR

CMP

DBCC
D!VS

DIVU

EOR

EXG

EXT

JMP

JSR

LEA

LINK

LSL

LSR

Description

Add Decimal Wuh Extend

Add

Logical And

Arithmetic Shift Left

Anihmetic Shifi Righl

Branch Conditionally

Bit Test and Change

Bit Test and Clear

Branch Always

Bit Test and Set

Branch 10 Subtouline

Bit Tesi

Check Register Againsi Bounds

Clear Operand

Compare

Test Condition, Decrement and Branch

Signed Divide

Unsigned Divide

Exclusive Oi

Exchange Regisiers

Stgn Exlend

Jump

Jump to Subroutme

Load Effecuve Address

Link Siack

Logical Shifi Lell

Logical Shifl Righl

Mnemonic

MOVE

MULS

MULU

NBCD

NEG

NOP

NOT

OR

PEA

RESET

ROL

ROR

ROXL

ROXR

RTE

RTR

RTS

SBCD

See
STOP

SUB

SWAP

TAS

TRAP

TRAPV

TST

UNLK

Description

Move

Signed Multiplv

Unsigned Mulnpiy

Negale Decimal with Extend

Negate

No Operalion

One's Complemenl

Logical Or

Push Effective Address

Reset Externai Devices

Rotate Lett without Extend

Roiate Righl wilhout Exiend

RoiatG Left with Extend

Rotate Rignl with Extend

Return from Excepuon

Reium and Restore

Relurn Irom Subrouline

Subtract Decimal with Extend

Sei Conditional

Stop

Subiracl

Swap Data Register Halves

Test and Set Operand

Trap

Trap on Overftow

Tosi

Unhnk

Table 1-3. Variations of Instruction Types

Instruction

Typo

ADD

AND

CMP

EOR

Variation

ADD

ADDA

AODQ

ADOI

ADDX

AND

ANDI

AND1 to CCR

ANDI lo SR

CMP

CMPA

CMPM

CMP1

EOR

EORI

EORI to CCR

EORI to SR

Descriplion

Add

Add Address

Add Quick

Add Immediate

Add wtih Extend

Logical And

And Immediate

And Immediate to

Condilion Codes

And Immediate to

Status Register

Compare

Compare Address

Compare Memory

Compare Immediate

Enclusive Or

Exclusive Of Immediale

Exclusive Or Immediale

to Condition Codes

Exclusive Or Immediate

to Status Register

Insiruction

Type

MOVE

NEG

OR

SUB

Variation

MOVE

MOVEA

MOVEM

UOVEP

MOVEQ

MOVE from SR

MOVE to SR

MOVE to CCR

MOVE USP

NEG

NEGX

OR

ORI

OR) to CCR

ORI to SR

SUB

SUBA

SUBI

SUSQ

SUBX

Description

Move

Move Address

Move Multiple Registers

Move Peripheral Data

Move Quick

Move from Status Register

Möwe to Status Register

Move lo Condition Codes

Move User Slack Pointer

Negate

Negate with Exiend

Logical Or

Or Immediate

Or Immediale to

Condition Codes

Or Immediale to

Status Register

Subtract

Subtract Address

Subtract Immediate

Subtract Quick

Subtraci wilh Extend

1-4

SECTION 2

DATA ORGANISATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the MC68000.

2.1 OPERAND SI2E

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a long word

equals 32 bits. The Operand size for each instruction is either explicitly encoded in the instruction or

implicitly defined by the instruction Operation. Implicit insiructions support some subset of all three
sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers

together with the Stack pointers support address operands of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the Iow order 8 bits, word operands the

Iow order 16 bits, and long word operands the entire 32 bits. The least signtficant bit is addressed as

bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination Operand, only the appropriate Iow

order portion is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and the Stack pointer is 32 bits wide and holds a füll 32-bit address. Address

registers do not support the sized operands. Therefore, when an address register is used as a source

Operand, either the Iow order word or the entire long word Operand is used depending upon the

Operation size. When an address register is used as the destination Operand, the entire register is af-

fected regardless of the Operation size. If the Operation size is word, any other operands are sign ex-

tended to 32 bits before the Operation is performed.

2.3 DATA ORGANIZATfON IN MEMORY

Bytes are individually addressable with the high order byte having an even address the same as the

word, as shown in Figure 2-1. The Iow order byte has an odd address that is one count higher than

the word address. Instructions and multibyte data are accessed only on word (even byte) boun-

daries. If a long word datum is located at address n (n even), then the second word of that datum is

located at address n +2.

2-1

15 14 13 12 11

ByieQOÜOOü

8vte 000002

10 9 8

Word

Word

7

OOOOCO

000002

Ö b 4 3

Bvte 000001

Byte 000003

2 0

z
Word FFFFFE

FFFFFE I Byle FFFFFF

Figure2-1. Word Organization in Memory

The data types supported by the MC68000 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad-

dresses and binary coded decimal data. Each of these data types is put in memory, as shown in

Figure 2-2. The numbers indicate the order in which the data would be accessed from the

processor.

2.4 ADDRESSING

Instructions for the MC68000 contain two kinds of information: the type of function to be per

formed and the location of the operand(s) on which to perform that function. The methods used to

locate (address} the operand(s) are explained in the following paragraphs.

Instructions specify an Operand location in one of three ways:

Register Specification — the number of the register is given in the register field of

their instruction.

Effective Address — use of the different effective addressing modes.

Implicit Reference — the definition of cerlain instructions implies the use of specific registers.

2.5 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2-3. The length of the instruc

tion and the Operation to be performed is specified by the first word of the instruction which is

called the Operation word. The remaining words further specify the operands. These words are

either immediate operands or extensions to the effective address mode specified in the Operation

word.

2.6 PROGRAM/ DATA REFERENCES

The MC68000 separates memory references into two classes: program references and data

references. Program references, as the name implies, are references to that section of memory that

contains the program being executed. Data references refer to that section of memory that contains

data. Operand reads are from the data Space except in the case of the program counter relative ad

dressing mode. All Operand writes are to the data Space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in

struction specify whether the register selected is an address or data register and how the register is

to be used.

2-2

Bit Data - 1 Byte =8 Bils

7 6 5 4 3 2 10

Integer Data - 1 Byte=8 Bits

MSB

Byte 2

LSB

7 6 5 4 3

Byte t

Byte 3

2 1 0

1 Word = 16 Bits

MSB

a 8 7

Word 0

Word 1

Word 2

6 5 4 3 2 1 0

LSB

1 Long Word = 32 Bits

15 14 13 12 11 10 9 3 7 6 5 4 3 2 1 0

MSB

— — Long Word 0-

High Ordei

Low Order
LSB

— —Long Word 1— — — — — — — — —■ — — — — — — — — — — — —■

— — Long Word 2 — ___ _ __ __ _ ___

Addresses - 1 Address = 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

MSB

— — Address 0

High Order

Low Order
I.S6

— — Address 1

Address 2

MSB = Most Significant Bit LSB=Leas1 Signilicant Bit

Decimal Data — 2 Binary Coded Decimal Oigils= 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSD
BCD0

BCD 4

BCD 1 LS0

BCD 5

BCD 2

BCD 6

BCD 3

8CD7

MSD= Mosl Significant Oigil LSD = Least Significant Digi!

Figure 2-2. Memory Data Organization

2-3

Operation Word

[fitsi Word Scecilies Ooerauo" and Modes]

Immediaie Operana

Any, One or Two Wordsl

Soutce Elleciive Address Exiensior

(If Any, One or Two Wordsl

Destination Effective Address Extension

(II Any. One or TmO Words)

Figure 2-3. Instruction Operation Word General Format

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an Operand by using the effective address field in the

Operation word. For example, Figure 2-4 shows the general formal of the single-effective-address

instruction Operation word. The effective address is composed of two 3-bit fields: the mode field

and the register field. The value in the mode field selects the different address modes. The register

field contains the number of a register.

The effective address field may require additional information to fully specify the Operand. This ad

ditional information, called the effective address extension, is contained in the following word or

words and is considered part of the instruction, as shown in Figure 2-3. The effective address

modes are grouped into three categories: register direct, memory addressing, and Special.

15

X

14

X

13

X

12

X

11

X

10

X

9

X

8

X

7

X

6

X

5 4 3 2 1 0

Effecuve Address

Mode j Register

Figure 2-4. Single-Effective-Address Instruction Operation Word

2.8.1 Register Direct Modes

These effective addressing modes specify that the Operand is in one of 16 multifunction registers.

2.8.1.1 DATA REGISTER DIRECT. The Operand is in the data register specified by the effective ad

dress register field.

2.8.1.2 ADDRESS REGISTER DIRECT. The Operand is in the address register specified by the ef

fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the Operand is in memory and provide the specific

address of the Operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the Operand is in the address register

specified by the register field. The reference is classified as a data reference with the exception of

the jump and jump-to-subroutine instructions.

2-4

2.8.2.2 ADDRESS REGISTER INDIRECT WITH P0ST1NCREMENT. The address of the Operand is

in the address register specified by the register field. After the Operand address is used, it is in-

cremented by one, two, or four depending upon whether the size of the Operand is byte, word, or

long word. If the address register is the Stack pointer and the Operand size is byte, the address is in-

cremented by two rather than one to keep the Stack pointer on a word boundary. The reference is

classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the Operand is in

the address register specified by the register field. Before the Operand address is used, it is

decremented by one, two, or four depending upon whether the Operand size is byte, word, or long

word. If the address register is the Stack pointer and the Operand size is byte, the address is

decremented by two rather than one to keep the Stack pointer on a word boundary. The reference is

dassified as a data reference.

2.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addressing mode requires

one word of extension. The address of the Operand is the sum of the address in the address register

and the sign-extended 16-bit displacement integer in the extension word. The reference is dassified

as a data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This addressing mode requires one word of

extension. The address of the Operand is the sum of the address in the address register, the sign-

extended displacement integer in the Iow order eight bits of the extension word, and the contents

of the index register. The reference is dassified as a data reference with the exception of the jump

and jump-to-subroutine instructions.

2.8.3 Special Address Modes

The Special address modes use the effective address register field to specify the Special addressing

mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension- The

address of the Operand is the extension word. The 16-bit address is sign extended before it is used.

The reference is dassified as a data reference with the exception of the jump and jump-to-

subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension. The

address of the Operand is developed by the concatenation of the extension words. The high order

part of the äddress is the first extension word; the Iow order part of the address is the second exten

sion word. The reference is dassified as a data reference with the exception of the jump and jump-

to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word

of extension. The address of the Operand is the sum of the address in the program counter and the

sign-extended 16-bit displacement integer in the extension word. The value in the program counter

is the address of the extension word. The reference is dassified as a program reference.

2-5

2.8.3.4 PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of exten-
sion. The address is the sum of the address in the program counter, the sign-extended displace-
menl integer in the Iower efght bits of the extension word, and the contents of the Index register

The value in the program counter is the address of the extension word. This reference is classified
as a program reference.

2.8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on the size of the Operation.

Byte Operation - Operand is Iow order byte of extension word

Word Operation - Operand is extension word

Long Word Operation - Operand is in the two extension words, high order 16 bits are in the
first extension word, Iow order 16 bits are in the second extension
word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
(PC), the System Stack pointer (SP), the Supervisor Stack pointer (SSP), the user Stack pointer
(USP), or the Status register (SR). A selected set of instructions may reference the Status register by
means of the effective address field. These are:

ANDI to CCR EORI to SR MOVE to CCR

ANDI to SR ORI to CCR MOVE to SR

EORI to CCR ORI to SR MOVE from SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.

Table 2-1. Effective Address Encoding Summary

Addressing Mode

Data Register Direct

Address Register Direcl

Address Register

Address Register

Posiinctemeni

ndirect

ndirect with

Address Register Indirect wtth

Predecremeni

Address Regisier Indirect with

Displacement

Mode

000

001

010

011

100

101

Register

Register Number

Register Number

Register Number

Register Number

Register Number

Register Number

Addressing Mode

Address Register Indirect with

Index

Absolute Short

Absolute Long

Program Counter with

Dispiacemen;

Pragram Counter with Index

immediate

Mode

110

111

111

111

111

111

Register Number

000

001

010

011

100

2.10 SYSTEM STACK

The System Stack is used implicitly by many instructions; user Stacks and queues may be created
and mamtamed through the addressing modes. Address register seven <A7} is the System Stack
pointer (SP). The System Stack pointer is either the Supervisor Stack pointer (SSP) or the user Stack
pointer (USP), depending on the State of the S bit in the Status register. If the S bit indicates Super
visor State, SSP is the active System Stack pointer and the USP cannot be referenced as an address
register. If the S bit indicates user State, the USP is the active System Stack pointer, and the SSP
cannot be referenced. Each System Stack fills from high memory to Iow memory

2-6

SECTION 3

INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MC68000 instruction set The
instructions form a set of tools that include all the machine functions to perform the followinq
operations:

Data Movement Bit Manipulation

Integer Arithmetic Binary Coded Decimal

Logical Program Conlrol

Shift and Rotate System Control

The complete ränge of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provtded by the move (MOVE) in
struction. The move instruction and the effective addressing modes allow both address and data

manipulation. Data move instructions allow byte, word, and long word operands to be transferred

from memory to memory, memory to register, register to memory, and register to register. Address
move instructions allow word and long word Operand transfers and ensure that only legal address
manipulations are executed. In addition to the general move instruction there are several Special
data movement instructions: move multiple registers (MOVEM), move peripheral data fMOVEP)
exchange registers (EXG), load effective address (LEA), push effective address (PEA), link Stack

(LINK), unlink Stack (UNLKt, and move quick (MOVEQ). Table 3-1 is a summary of the data move
ment operations.

Table 3-1. Data Movement Operations

Inatruction

EXG

LEA

LINK

MOVg

MOVEM

Operand Siie

32

32

-

8. 16, 32

16, 32

Operation

Rx —Ry

EA —An

An— -ISP)

SP—An

SP + displacement— SP

s— d

(EA) —An. Dn

An, Dn—EA

NOTES.

s= source

d=destinaiion

[] = bil number

- (l= indireci wrth predecrement

(1+ = indireci wiih postdecremem

= immediate data

Instruction

MOVEP

MOVEQ

PEA

SWAP

UNIK

Operand Size

16, 32

8

32

32

-

Operation

<EA}— On

Dn —IEA!

txxx—• Dn

EA— -(SP)

Dn!31:l6I — Dn[15:0]

An— Sp

(SPI + —An

3-1

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract ISUB), multiply

(MUL), and divide (DIV) as well as arithmetic compare (CMP), cleariCLR), and negate (NEG). The

add and subtract instructions are available for both address and data operations, with data opera

tions accepting all Operand sizes. Address operations are limited to legal address size operands (16

or 32 bits). Data, address, and memory compare operations are also available- The clear and negate

instructions may be used on all sizes of data operands.

The multiply and divide operations are available for signed and unstgned operands using word

multiply to produce a long word product, and a long word dividend with word divisor to produce a

word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.

These instructions are: add extended (ADDX), subtract extended (SUBXl, sign extend (EXT), and

negate binary with extend (NEGX).

A test Operand (TST) instruction that will set the condition codes as a result of a compare of the

Operand with zero is also available. Test and set (TAS) is a synchronization instruction useful in

multiprocessor Systems. Table 3-2 is a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instruclion

ADD

ADDX

CLR

CMP

DIVS

DIVU

EXT

MULS

MULU

NEG

NEGX

SUB

SUBX

TAS

TST

Operand Size

8, 16, 32

16, 32

8, 16, 32

16, 32

8. 16, 32

8, 16, 32

16, 32

32"!- 16

32^" 16

8—16

16—32

16x 16— 32

!6x 16— 32

8, 16. 32

8. 16. 32

8, 16, 32

16, 32

8, 16, 32

8

8, 16, 32

Operation

Dn-MEA) — Dn

IEA) + Dn— IEA)

IEA) + Jxxx— (EA)

An + IEA)—An

Dx + Dv + X— Dx

-(Axl+ -lAyl + X— (Ax>

0—EA

Dn-(EAI

(EA)--fxxx

IAx)+ -lAy)-

An-(EA)

Dn-MEAI — Dn

Dn-*- IEA) —Dn

(Dnig— Oniß

(On!i6— Dnsj

DnxfEAl — Dn

DnxlEAi — Dn

0-IEA)— 1EAI

0-fEAI-X— IEA)

Dn-IEA}—Dn

(EAI-Dn—(EA1

(EA)-fxxx— IEA)

An-IEA) — An

Dx-Dy-X—Dx

-<Ax)- -(Ay)-X—■<Ax)

IEA1-0, 1 —EA[7|

IEA1-G

NOTES:

(] = bil number

-1 l = indirec! wuh predecrement

(1+= inditec! wilh posldücrement

I = immediate daia

3-2

3.3 LOGICAL OPERATIONS

Logical Operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data

operands. A simüar set of immediate instructions IANDI, ORI, and EORI) provide these logical

operations with all sizes of immediate data. Table 3-3 is a summary of the logical operations.

Table 3-3. Logical Operations

Instruction

AND

OR

EOR

NOT

Operand Size

8, 16, 32

8. 16, 32

8. 16, 32

8, 16, 32

Operation

DnAIEA) —Dn

lEWADn—(EA)

IEAIAIxxx—<EA)

Dn v IEA>— Dn

(EAI v Dn—(EA)

IEA) v #xxx— (EAI

(EAI e Dy— (EA)

fEAi ffifxxx— IEA)

-(EA) —(EA)

NOTES.

- = invert

/ = immediaie öata

A = logical AND

V= logical OR

<B= logical exclusive OR

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and ASL and

logical shift instructions LSR and LSL. The rotate instructions [with and without extend) available

are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in either

registers or memory. Register shifts and rotates Support all Operand sizes and allow a shift count

specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.

Table 3-4 is a summary of the shift and rotate operations,

Table 3-4. Shift and Rotate Operations

nslruc-

tion

Operand

Size

ASL 8, 16, 32

ASR

LSi. B. 16. 32

LSR

ROL

ROR

ROXL

ROXR

8. 16, 32

8. 16. 32

8. 16. 32

8, 16. 32

8. 16. 32

8. 16, 32

Operation

&
x/cH-H -*■

C K-H -*■

3-3

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test IBTST}, bit

testandset(BSET), bit test and clear (BCLRI, and bit lest and change IßCHG). Table 3-5 is a sum-

mary of the bit manipulation operations. (2 is bit 2 of the Status register.)

Table 3-5. Bit Manipulation Operations

instruction

BTST

BSET

BCLH

BCHG

Operand Size

6. 32

8, 32

a. 32

8. 32

Operation

-DU Oi (EA) —Z

-DU o) (EA1 —Z

1 — bit of EA

-bil ol (EA) — Z

0— bit of EA

-bit of (EAI—-Z

-bit of lEAl —bu of EA

NOTE: - = mvert

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accompüshed using the

following instructions: add decimai with extend IABCD}, subtract decimal with extend (SBCDI,

and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal

operations.

Table 3-6. Binary Coded Decimal Operations

Instruction

ABCD

SBCD

NBCD

Operand

Size

8

8

B

Operation

DxtQ + Dyio+X— Dx

-IAxlio+ -IAyl]n+x—• (Ax)

Dx,n-Dvio-X— Dx
-lAxlio- -IAv>10-X— (Ax)

0-IEAI]0-X— (EAI

NOTE: -I)= indirect with predecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional

branch instructions and return instructions. These instructions are summarized in Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC -

CS -

EQ -

F -

GE -

GT -

Hl -

carry clear

carry set

equal

never true

greater or equal

greater than

high

LE — less or equa!

LS -

LT -

MI -

NE -

PL -

T -

VC -

VS -

Iow or same

less than

minus

not equal

plus

always true

no overflow

overflow

3-4

Tabte 3-7. Program Control Operations

Instruction

Conditional

BCC

DScc

See

Unconditional

SRA

BSR

JMP

JSP

Returns

RTR

RTS

Operation

Branch Conditionally 114 Conditions)

8- and 16-Bit Displacemen;

Test Condiiion, Decrement, anfl Branch

16-Bit Deplacement

Set Bvie Conditionally (16 Conditions)

Branch Always

8- and 16-Bit Disnlacemem

Branch to Subroutine

6- and 16-Bit Displacement

Jump

Jump to Subroutine

Beturn and Restore Condiiion Codes

Return frorn Subioutme

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in

structions, and instructions that use or modify the Status register. These instructions are summariz-

ed in Table 3-8.

Tabfe 3-8. System Control Operations

Instruction

Privileged

ANDI lo SR

EORI io SR

MOVE EA to SR

MOVE USP

ORI iq SR

RESET

RTE

STOP

Trap Generaiing

CHK

TRAP

TRAPV

Status Register

ANDI to CCR

EORI to CCR

MOVE EA lü CCR

MOVE SR \o EA

ORI to CCR

Operation

Logical AND to Status Register

Logical EOR to Status Register

Load New Status Register

Move User Stack Pointer

Logical OR to Siatus Register

Resei Ex;ernal Devices

Retum frorn Excepuori

Sxo Program Execution

Check Data Register Agamst Upper Sounds

Trap

T'ap on Overtlow

Logical AND to Condition Codes

Logical EOR to Condition Codes

Load New Condition Codes

Store Slalus fegister

Logicat OR to Condiiion Codes

3-5/3-6

SECTION 4

SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output Signals. A discussion of bus Opera

tion during the various machine cycles and operations is also given.

NOTE

The terms assertion and negation will be used extensively. This is done to avoid confu-

sion when dealing with a mixture of "active-low" and "active-high" Signals. The term

assert or assertion is used to indicate that a Signal is active or true, independent of

whether that level is represented by a high or iow voltage. The term negate or negation is

used to indicate that a Signal is inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output Signals can be functionally organized into thegroups shown in Figure4-1. The

following paragraphs provide a brief description of the Signals and a reference (if applicable) to

other paragraphs that contain more detail about the function being performed.

A1-A23

Z1 >\
(Dala Bus>DO-D15

AS__

R/W r ,
Qpg Asynchronous

cos r >
DI Ä"CK Control

ISus Arbitraiion

•,K I Control

Figure 4-1. Input and Output Signals

4.1.1 Address Bus (AI through A23)

This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of data. It provides

the address for bus Operation during all cycles except Interrupt cycles. During interrupt cycles, ad

dress lines A1, A2, and A3 provide information about what level inlerrupt is being serviced while ad

dress lines A4 through A23 are all set to a logic high.

4-1

4.1.2 Data Bus (DO through D15)

This 16-bit, bidirectional, three-state bus is the general purpose data path. It can transfer and accepi
data in either word or byte length. During an interrupt acknowledge cycle, the external device sup-
plies the vector number on data lines D0-D7.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control Signals: address strobe,
read/write, upper and Iower data strobes, and data transfer acknowledge. These Signals are ex-
plamed in the following paragraphs.

4.1.3.1 ADDRESS STROBE (AS). This Signal indicates that there is a valid address on the address
bus.

4.1.3.2 READ/WRITE (R/W). This Signal defines the data bus transfer as a read or write cycle. The
R/W signal also works in conjunction with the data strobes as explained in the following paragraph.

4.1.3.3 UPPER AND LOWER DATA STROBE (IJDS\CDS). These Signals controi the flow of data
on the data bus, as shown in Tabfe 4-1. When the R/W line is high, the processor will read from the
data bus as indicated. When the R/W line is low, the processor wilf write to the data bus as shown.

Table 4-1. Data Strobe Control of Data Bus

UDS

High

High

Low

Low

High

Low

LDS

High

Low

Low

High

Low

Low

High

R/W

High

High

High

Low

Low

Low

O8-D15

No Valid Data

Valid Data Bus

8-15

Nc Valid Data

Valid Daia Bus

8-15

Valid Data Bits

8-15

Valid Daia Bits

0-7'

Valid Data Bus

8-15

D0-D7

No Valid Daia

Valid Data 3ns

0-7

Valid Data 3ns

0-7

No Valid Data

Valid Da;a Bits

0-7

Vahd Data Bus

0-7

Valid Data Bus

8-15*

" These condmons are a resuli ol current Implementation and may
not aopear on future devices

4.1.3.4 DATA TRANSFER ACKNOWLEDGE (DTÄCK). This input indicates that the data transfer is
compieted. When the processor recognizes DTACK during a read cycle, data is latched and the bus
cycle terminated. When DTACK is recognized during a write cycle, the bus cycle is terminated
(Refer to 4.4 ASYNCHRONOUR VERSUS SYNCHRONOUS OPERATION).

4.1.4 Bus Arbitration Control

The three Signals, bus request, bus grant, and bus grant acknowledge, form a bus arbitration circuit
to determine which device will be the bus master device.

4-2

4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be hus
masters. This mput mdicates to the processor that some other device desires to become the bus
master.

4.1.4.2 BUS GRANT (BG). This outpul mdicates to all other poteniial bus master devices that the
processor will release bus control at the end of the current bus cycle.

4.1.4.3 BUS GRANT ACKNOWLEDGE (BGÄCK). Th,s input mdicates that some other device has
become the bus master. This signal should not be asserted until the following four conditions are
met.

1. a bus grant has been received,

2. address strobe is inactive which mdicates that the microprocessor is not using the bus,

3. data transfer acknowledge is inactive which indicates that neither memory nor peripherals are
usmg the bus, and

4. bus grant acknowledge is inactive which indicates that no other device is still claiminn bus
mastership.

4.1.5 Interrupt Control (fPLÖ, FpO, TPL2)

These input pins indicate the encoded prionty level of the device requesting an Interrupt Level
seven is the highest pnonty while level zero indicates that no Interrupts are requested Level seven
cannot be masked. The least significant bit is given in IPLO and the most significant bit is contained
in IHLZ These hnes must remain stable until the processor Signals Interrupt acknowledqe (FC0-FC2
are all high) to insure that the interrupt is recognized.

4.1.6 System Controf

The System control inputs are used to either reset or halt the processor and to indicate to the pro-
cessor that bus errors have occurred. The three system control inputs are explained in the followinq
paragrapns.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cvcle
currently bemg executed. Problems may be a result of:

1. nonresponding devices,

2. Interrupt vector number acquisition failure,

3. illegal access request as determined by a memory managemenl unit, or
4. other application dependent errors.

The bus error Signal interacts with the halt signal to determine if the current bus cycle should be re-
executed or if exception processing should be performed.

4.1.6.2 RESET (RESETJ. This bidirectional signal Ime acts to reset (start a System initialization se-
quence) the processor in response to an external reset signal. An internally generated reset (result

4-3

of a RESET instruction) causes all external devices to be reset and the internal State of the processor

is not affected A total System reset (processor and external devices) is the result of external HALT
and RESET Signals applied at the same tirne. Refer to 4.2.5 Reset Operation for further information.

4 16 3 HALT (HALT). When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the processor has been halted
using this input all control Signals are inactive and all three-state ünes are put in their high-
impedance State Irefer to Table4-3). Refer 104,2.4 Bus Error and Halt Operation for addittonal Infor
mation about the interaction between the HALT and bus error Signals.

When the processor has stopped executing instructions, such as in a double bus fault condition
(refer to 4.2.4.4 DOUBLE BUS FAULTS), the HALT line is driven by the processor to mdicate to ex

ternal devices that the processor has stopped.

4.1.7 M6800 Peripheral Control

These control Signals are used to allow the interfacing of synchronous M6800 peripheral devices

with the asynchronous MC68000. These Signals are explained in the following paragraphs.

4 17 1 ENABLE (E). This Signa! is the Standard enable signal common to all M6800 type peripheral
devices The period for this Output is ten MC68000 dock periods (six clocks low, four clocks highl.
Enable is generated by an internal ring counter which may come up in any State (i.e., at power on, it

is impossible to guarantee phase relationship of E 10 CLK}. E is a free-running dock and runs

regardless of the State of the bus on the MPU.

4 17 2 VALID PERIPHERAL ADDRESS (VPAf. This input indicates that the device or region ad-
dressed is an M6800 Family device and that data transfer should be synchronized with the enable (E)
Signal This input also indicates that the processor should use automatic vectoring for an Interrupt.

Refer to SECTION 6 INTERFACE WITH M6800 PERIPHERALS.

4 1 7 3 VALID MEMORY ADDRESS (VMÄ). This Output is used to indicate to M6800 peripheral
devices that there is a valid address on the address bus and theprocessor is synchronized to enable.
This Signal only responds to a valid peripheral address (VPA} input which indicates that the

peripheral is an M6800 Family device.

4.1.8 Processor Status (FCO, FC1, FC2I

These iunction code Outputs indicate the State (user or Supervisor) and the cycle type currently be-
ing executed, as shown in Table 4-2. The information indicated by the function code Outputs is valid

whenever address strobe (AS) is active.

Table 4-2. Function Code Outputs

Function Code Output

FC2

Low

Low

Low

Low

FC!

Low

Low

High

Hiqh

FCO

Low

High

Low

High

Cycle Type

lUndefined, Reserved)

User Data

Usot Pragram

(Undadned, Reserved)

Function Code Output

PC2

High

High

High

High

FC!

Low

Low

High

High

FCO

Low

High

Low

High

Cycle Type

lUndefmeü. Reservod)

Supervisor Data

Supervisor Program

Interrupt Acknowledge

4-4

4.1.9 ClockICLK}

The dock input is a TTL-compatible signal that is internally buffered for development of the internal

clocks needed by the processor. The dock inpul should not be gated off at any time and the dock

signal musl conform to minimum and maximum pulse width times.

4.1.10 Signal Summary

Table 4-3 is a summary of all the Signals discussed in the previous paragraphs.

Table4-3. Signal Summary

Signa! Name

Address Bus

Dala Bus

Address Sttobe

Read/Write

Upper and Lower Data Stobes

Data Transfer Acknowledge

Bus Requesi

Bus Gram

Bus Gram Acknowledge

Interrupt Prioritv Level

Bus Error

Reset

Hall

Enable

Valid Memory Address

Valid Penpheral Address

Function Code Output

Clock

Power Input

Ground

Mnemonic

A1-A23

D0-D15

A3

R/W

UDS. LOS

DTA«

M

B5

BGACK

IPLÜ, IPL1, IPL2

BERR

RESCT

HALT

E

VMA

V !■■■■.

rCJ. FCl FC2

CLK

vcc

GND

Input/Output

Outpul

Inpui/Ompiji

Output

Oulput

Oulput

Inpul

Input

Output

Input

Input

Input

Inpul/Outpul

Inpui/Outpm

Output

Outpul

Input

Output

Input

Input

Input

Active State

High

Hiqh

Low

Read-High

Write- Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

High

Low

Low

High

High

-

-

w-z

On HALT

Yes

Yas

No

No

No

No

No

No

No

No

No

No'

No1

No

No

No

No2

No

_

-

On BGACK

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No1

No'

No

Yes

No

Yes

No

-

NOTES

1 Open drain

2. Function codes are placed in high-irnpedance State during HALT for R9M, T6E, and BR mask seis

4.2 BUS OPERATION

The following paragraphs explain control Signal and bus Operation during data transfer operations,

bus arbitration, bus error and halt conditions, and reset Operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:

1. address bus A1 through A23,

2. data bus DO through D15, and

3. control Signals.

The address and data buses are separate parallel buses used to transfer data using an asynchronous

bus structure. In all cycfes, the bus master assumes responsibility for deskewing all Signals it issues

at both the Start and end of a cycle. In addition, the bus master is responsible for deükewing the

acknowledge and data Signals from the slave device.

4-5

The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible

read-modifv-write cycle is the method used by the MC68000 for interlocked muitiprocessor com-

munications.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a

peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word

(or double word) Operation, the processor reads both upper and Iower bytes simultaneousty by

asserting both upper and Iower data strobes. When the instruction specifies byte Operation, the

processor uses an internal AO bit to determine which byte to read and then issues the data strobe re-

quired for that byte. For byte operations, when the AO bit equals zero, the upper data strobe is

issued. When the AO bit equals one, the Iower data strobe is issued. When the data is received, the

processor correctly positions it internally.

A word read cycle flowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.

Read cycle timing is given in Figure 4-4. Figure 4-5 details word and byte read cycle operations.

BUS MASTER

Address the Device

1) SbI R/W lo Read
21 Ptace Function Code on FC0-FC2

31 Place Address on A1-A23_

4} Assert Address Sttobe (AS)

5) Assert Upper Data Strebe IUDS) and

Lower Data Strobe (LDSI

Acquire the Data

!l Laich Data

2) Negate UDS and LDS

3) Negate A"S~

Start Next Cycle

SLAVE

fnput the Data

11 Decode Address

21 Place Dala on D0-D15

31 Assen Data Transfer Acknowledge

(DTACK)

Terminate the Cycle

1) Remove Data from D0-D15

2) Negate DTACK

Figure 4-2. Word Read Cycle Flowchart

4-6

BUS MASTER

Address tho Device

11 Set R/W io Read

21 Place Function Code on FC0-FC2

31 Place Aödress on A1-A23

41 Assert Address Suobe IAS)

51 Assert Upper Data Sirobe IUDS) or

Lowet Data Strebe ILDS)

tbased on AOI

Acquire the Data

1) Latch Daia

2) Negaie UDS or LÜS
31 Negate AS

Start N ext Cycte

SLAVE

Input the Data

1) Decode Address

21 Place Data on OD-D7 ot D8-D15 Ibased on

UDS oi LDS)

31 Assert Data Transfer Acknowledqe

(DTACK)

Terminate the Cycle

1) Remove Data irom D0-D7 oi D8-D15

2) Negaie DTACK

Figure4-3. Byte Read Cycle Flowchart

SO Sl S2 S3 Sd S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO Sl S2 S3 S4 w w w w S5 S6 S7

CLK

FC0-FC2 X"

■Read.

>

-Write ■Sloiv Read-

Figure 4-4. Read and Write Cycle Timing Diagram

4-7

SO Sl S2 S3 S4 S5 S6 S7 SO Sl S2 S3 S4 S5 Sfi S7 SO Sl S2 S3 $4 S5 S6 S7

CLK
I I 1 l—l L_l l_

A1A23 ~>-< >—(

AO* I

ÄS

UDS

LÖS

R/w

"Internal Signal Only

* Woid Read >f4 Orld Byte Read >j~4 Even Byte RBad *]

Figure 4-5. Word and Byte Read Cycle Timing Diagram

4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a

peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word

Operation, the processor writes both bytes. When the instruction specifies a byte Operation, the

processor uses an internal AO bit to determine which byte to write and then issues the data strobe

required for that byte. For byte operations, when the AO bit equals zero, the upper data strobe is

issued. When the AO bit equals one, the Iower data strobe is issued. A word write flowchart is given

in Figure 4-6. A byte write cycle flowchart is given in Figure 4-7. Write cycle timing is given in Figure

4-4. Figure 4-8 details word and byte write cycle Operation.

aUS MASTER

Address the Device

11 Place Function Code on FC0-FC2

2) Place Address on A1-A23

31 Assen Address Slrobe !A~S"l

4) Set R/W to Wrne

51 Place Data on O0-D15

61 Assen Upper Data Strobe lOüSl and
Lowar Data Strobe (LDSJ

Tarminate Outpul Transfer

1) Negaie UDS and LDS

2) Negate AS

3) Remove Data trom D0-OI5

41 Sbi R/W to Read

Start Next Cycle

SLAVE

*■ Input the Data

1) Decode Address

2} Store Data on D0-D15

31 Assert Data Transfer Acknowledge IDTACK)

Terminate tha Cycle

1) Negaie DTACK

Figure 4-6. Word Write Cycle Flowchart

4-8

BUS MASTER

Addross the Device

11 Place Funciion Code on FCO-FC2

2) Place Address on A1-A23

3) Assert Address Sirobe IAS)

4) Set R/W to Wrile

5) Place Data on D0-D7 or D8-DI5

laccotding lo AO)

61 Assen Upper Data Strobe (UOSI or

Lower Data Strabe (LDS)

(based on AOi

Terminata Outpul Transfer

5) Negate UDS and LDS

2) Negate AS

3) Remove Data from 00-D7 or D8-D15

41 Set H/W lo Read

Start Next Cycle

SLAVE

Inpul the Data

1) Decode Address

21 Store Data on D0-D7 if LDS is Asseried

Siore Data on D8-D15 ii ÜßS is Assened

31 Assort Data Transfer Acknowledge

(DTACKI

Terminate the Cycle

11 Negaie DTACK

Figure 4-7. Byte Write Cycle Flowchart

SO Sl S2 S3 S4 S5 S6 S7 SO Sl S2 S3 S4 55 S6 S7 SO Sl S2 S3 S4 S5 S6 S7

CLK

FC0-FC2

*lnternal Signal Only

[•* Word Wnte *"[•< Odd Bvie Wrne en Byte Write-

Figure 4-8. Word and Byte Write Cycle Timing Diagram

4-9

4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies the

data in the arithmetic-logic unit, and writes the data back to the same address. In the MC68000, this

cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set

(TAS) inslruction uses this cycle to provide meaningfui communication between processors in a

multiple processor environment. This instruction is the only instruction that uses the read-modify-

write cycles and since the test and set instruction only operates on bytes, all read-modify-write

cycles are byte operations. A read-modify-write flowchart is given in Figure 4-9 and a timing

diagram is given in Figure 4-10.

BUS MASTER

Address the Device

t) Set R/W lo Read

2) Place Function Code on FC0-FC2

31 Place Address on A1-A23

41 Assen Address Strobe IAS1

51 Assen Upper Data Strobe iUDSI or

Lower Dala Strobe ILDS)

AcquiiB the Data

1) Laich Data

21 Negaie UDSor LOS

3) Start Daia Modificanon

Start Output Transfer

11 Set R/W to Wfite

2) Place Data on DO-07 or DS-D15

31 Assen Upper Data Strobe IUOSI or Lower

Data Strobe ILDSI

Terminate Oulput Transfer

1) Negaie ÜTJS or LDS

21 Negaie ÄS"
31 Rernove Data Irom D0-D7 or D8-D15

4) Sei R/W lo .Read

Start Next Cvcle

«(

1)

2)

31

1)

2)

1)

1)

SLAVE

Inpul the Data

Decode Address

Place Daia on D0-D7 or D8-D15

Assen Data Transfer AcknowlBdfle

(DTACK)

Terminete the Cycie

RemovB Data from 00-D7 or DB-D15

Nogaie DTACK

l. ir..ii the Data

Siore Daia on D0-D7 or D8-D15

IDTACKI

Terminate the CvcIb

Negate DTACK

Figure 4-9. Read-Modify-Weite Cycle Flowchart

4-10

SO SI S2 S3 S4 55 S6 S7 S8 S9 S1QS11 S12 S13S14S15SI6517S18S19

■indivisible Cycle

Figure4-10. Read-Modify-Write Cycle Timing Diagram

4.2.2 Bus Arbitration

Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request,

2. receiving a grant that the bus is available at the end of the current cycle, and

3. acknowledging that mastership has been assumed.

Figure4-11 is a flowchart showing the detail involved in a request from a Single device. Figure4-12
is a timing diagram for the same Operation. This technique ailows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is
asserted. This type of Operation would be true for a System consisting of the processor and one

device capable of bus mastership. In Systems having a number of devices capable of bus master
ship, the bus request line from each device is wire ORed to the processor. In this System, it is easy
to see that there could be more than one bus request being made. The timing diagram shows that

the bus grant signal is negated a few dock cycles after the transition of the acknowledge (BGACk!)
Signal.

However, if the bus requests are still pending, the processor will assert another bus grant within a
few dock cycles after it was negated. This additional assertion of bus grant allows external arbitra
tion circuitry to select the next bus master before the current bus master has completed its re-

quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4-11

PROCESSOR

Granl Bus Aröitration

1) Asserl Bus Granl IBGI

_,

REQUESTING DEVICE

RequesttheBus

1) Assen Bus Request IBRi

Terminata Arbilration

1) Negale 8G fand Wan toi BGACK lo be

Negated)

Acknowledge Bus Maetership

1) External Arbitralion

Master

2) Next Bus Master W,

Complete

3) Next Bus Master As

3etermmes Next Bus

ts for Current Cycle to

;erts Bus Gram

Acknowledge IBGACK) to Become New

Mastsi

4) Bus Master Negales

Operato as Bus Master

11 Pcrform Data Transfers IRead and Write

Cycles) Accordmg to !he Same Rules the

Processor Uses

Re-Arbitrata or Resume

Processor Operation

1

Release Bub Mastership

1) Negate BGACK

Figure4-11. Bus Arbitration Cycle Flowchart

4-12

JTJTrLRnnjinnrui^

Processoi

Figure 4-12. Bus Arbitration Cycle Timing Diagram

4.2.2.1 REQUESTING THE BUS. Externa! devices capable of becoming bus masters request the
bus by asserting the bus request IBR) signal. This is a wire-ORed signal (although it need not be
constructed from open-collector devicesi that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a Iower bus priority level than the
external device and will relinquish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request Signal goes inactive, the processor will
continue processing when it detects that the bus request is inactive. This allows ordinary process-

ing to continue if the arbitration circuitry responded to noise inadvertently.

4.2.2.2 RECEIVING THE BUS GRANT. The processor asserts bus grant IBG) as soon as possible
Normally this is immediately after internal synchronization. The only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into thecycle to have asserted the address strobe (AS) signal. In this case bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a specific priority-
encoded network. The processor is not affected by the external method of arbitration as lonq as the
protocol is obeyed.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
dev.ce waits until address strobe, data transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the address strobe indicates that the
previous master has completed its cycle; the negation of bus grant acknowledge indicates that the

previous master has released the bus. (While address strobe is asserted, no device is allowed to

"break tnto" a cycle.) The negation of data transfer acknowledge indicates the previous slave has
termmated its connection to the previous master. Note that in some applications data transfer
acknowledge might not enter into this function. General purpose devices would then be connected
such that they were only dependent on address strobe. When bus grant acknowledge is issued, the

4-13

device is a bus master until it negates bus grant acknowledge. Bus grant acknowledge should not

be negated until after the bus cycle(s) is (are) completed. Bus mastership is terminated at the nega-

tion of bus grant acknowledge.

The bus request from the granted device should be dropped after bus grant acknowledge is

asserted. If a bus request is still pending, another bus grant will be asserted within a few clocks of

the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control. Note that the processor does

not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the MC68000 is implemented with a finite State machine. A State

diagram of this machine is shown in Figure 4-13. All asynchronous Signals to the MC68000 are syn-

chronized before being used internally. This synchronization is accomplished in a maximum of one

cycle of the System dock, assuming that the asynchronous input Setup time (#47) has been met

(see Figure 4-14). The input Signal is sampied on the falling edge of the dock and is valid internally

after the next falling edge.

As shown in Figure 4-13, input Signals labeled R and A are internally synchronized on the bus re

quest and bus grant acknowtedge pins respectively. The bus grant output is labeled G and the inter-

nal three-state control Signal T. If T is true, the address, data, and control buses are placed in a

high-impedance State when AS is negated. All Signals are shown in positive logic (active highl

regardless of thetr true active voltage levet. State changes <valid Outputs) occur on the next rising

edge after the internal Signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure

4-15. The bus arbitration sequence while the bus is inactive (i.e., executing internal operations such

as a multiply instruction) is show in Figure 4-16.

If a bus request is madeat a time when the MPU has already begun a bus cycle but AS has not been

asserted Ibus State SO), BG will not be asserted on the next rising edge. Instead, BG will be delayed

until the second rising edge following its internal assertion. This sequence is shown in Figure 4-17.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that

the handshake might not occur. Since different Systems will require a different maximum response

time, a bus error input is provided. External circuitry must be used to determine the duration be-

tween address strobe and data transfer acknowledge before issuing a bus error Signal. When a bus

error signal is received, the processor has two options: initiate a bus error exception sequence or try

running the bus cycle again.

4-14

State Diagram for R9M. T6E, BF4, CC1,

and 0L6 Mask Sets

RÄ

State Diagram for GN7 and Later Mask Sets

1-iA

RA

R= Bus Reqest Iniernal

A = Bus Grant Acknowledge Internal

G = Bus Grant

T = Three-State Control 10

Bus Control Logic2
X = Don't Care

NOTE:

1. State machine will not change if the bus

is SO or 81. Refer to4.2.3 Bus

Arbitration Contol.

2 The address bus will be placed in Ihe high-

impedance State it T is asserted and AS

is negated

Figure 4-13. MC68000 Bus Arbitration Unit State Diagram

4-15

InlernaiSignalValid

ExternalSignalSampled

CLK

BR(External]

BR(Iruemal)

Figure4-14.TimingRelationshipofExternalAsynchronousInputs

toInternalSignals

BusThreeStaied

BGAsseried

ÜRValidinternal

BRSampled

BRAsseried

BusReleased(romThreeStaieand

ProcessorStartsNexlSusCycle—

SOStS2S3S4S556S7SOS1

Figure4-15.BusArbitrationTimingDiagram—ProcessorActive

4-16

Bus Released Irom Three Siaic and Processor Siaris Next Bus Cycle-

BG'ÄC'k Negated-
§5 Asseried and Bus Three Siated

BR Valtd Iniernal

BR Samplett

BR Asserted

CLK

>\< Bus Inactive *T*

Figure 4-16. Bus Arbitration Timing Diagram — Bus Inactive

Processor-

Bus Three Staied.

BG Asserted

B~F Valid IniernaU

SR Samplec

BR Asseried

Bus Released from Three Siate and

Processor Siarts Nexi Bus Cvde—

BGACK Negated Iniernal—

Figure 4-17. Bus Arbitration Timing Diagram — Special Case

4-17

4.2.4.1 BUS ERROR OPERATION. When the bus error Signal is asserted, the current bus cycle is

terminated. If BERR is asserted before the falling edge of S2, Ä~3 will be negated in S7 in either a

read or write cycle. As long as BERR remains asserted, the data and address buses will be in the

high-impedence State. When BERR is negated, the processor will begin stacking for exception pro-

cessing. Figure4-18 is a timing diagram for the exception sequence. The sequence is composed of

the following elements:

1. stacking the program counter and Status register,

2. stacking the error Information,

3. reading the bus error vector table entry, and

4. executing the bus error handler routine.

The stacking of the program counter and the Status register is the same as if an interrupt had occur-

red. Several additional items are stacked when a bus error occurs. These items are used to deter-

mine the nature of the error and correct it, if possible. The bus error vector is vector number two

located at address $000008. The processor loads the new program counter from this location. A

Software bus error handler routine is then executed by the processor. Refer to 5.2 EXCEPTION

PROCESSING for additional Information.

Road Error Slacking

Figure 4-18. Bus Error Timing Diagram

4.2.4.2 RE-RUN OPERATION. When, during a bus cycle, the processor receives a bus error signal

and the halt pin is being driven by an externat device, the processor enters the re-run sequence.

Figure 4-19 is a timing diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address and data output lines in the high-

impedence State. The processor remains "halted", and will noi run another bus cycle until the halt

signal is removed by external logic. Then the processor will re-run the previous cycle using the same

function codes, the same data (for a write Operation), and the same controls. The bus error signal

should be removed at least one dock cycle before the halt signal is removed.

NOTE

The processor will not re-run a read-modify-write cycle. This restriction is made to

guarantee that the entire cycle runs correctiy and that the write Operation of a test-and-

set Operation is performed without ever releasing ÄS. If BERR and HALT are asserted

during a read-modify-write bus cycle, a bus error Operation results.

4-18

SO S2 S4 S6 SB SO S2 SA S6

R/W

DTÄCK

D0-D15

FCO-FC2

BERR \
HALT

>1 Clock Period—W

Read- -Re-Run-

Figure 4-19. Re-Run Bus Cycle Timing Diagram

4.2.4.3 HALT OPERATION. The halt input Signal to the MC68000 performs a halt/run/single-step

function in a similar fashion to the M6800 halt function. The halt and run modes are somewhat seif

explanatory in that when the halt Signal is constantly active the processor "halte" (does nothing)

and when the halt Signal is constantly inactive the processor "runs" (does something).

This singie-step mode is derived from correctly timed transitions on the halt Signal input. It forces

the processor to execute a Single bus cycle by entering the run mode until the processor Starts a bus

cycle then changing to the halt mode. Thus, the singie-step mode allows the user to proceed

through (and therefore debug) processor operations one bus cycle at a time.

Figure 4-20 details the timing required for correct singie-step operations. Some care must be exer-

cised to avoid harmful interactions between the bus error Signal and the halt pin when using the

single-cycle mode as a debugging tool. This is also true of interactions between the halt and reset
lines since these can reset the machine.

so

CLK

R/W

DTACK

DO-D 15

FC0-FC2 X~

HALT

-Read- Hal! Read

Figure 4-20. Halt Processor Timing Diagram

4-19

When the processor completes a bus cycle after recogntzing that the halt signal is active, most

three-state signais are put in the high-impedence State, Ihese include:

1. address lines, and

2. data lines.

This is required for correct Performance of the re-run bus cycle Operation.

Whüe the processor is honoring the halt request, bus arbitration performs as usual. That is, halting

has no effect on bus arbitration. tt is the bus arbitration function that removes the control Signals

from the bus.

The halt function and the hardware trace capabilitv allow the hardware debugger to trace Single bus

cycles or Single instructions at a time. These processor capabilities, along with a Software debugg-

ing package, give total debugging flexibility.

4.2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor will attempt to

Stack several words containing information about the State of the machine. If a bus error exception

occurs during the stacking Operation, there have been two bus errors in a row. This is commonly

referrecj to as a double bus fault. When a double bus fault occurs, the processor will halt. Once a

bus error exception has occurred, any bus error exception occurring before the execution of the

next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and does not con-

tribute to a do»ble bus fault. Note also that this means that as long as the external hardware re-

quests it, the processor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor Operation after the processor receives an external

reset input. The processor reads the vector table after a reset to determine the address to Start pro-

grarn execution. If a bus error occurs while reading the vector table (or at any time before the first

instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only

an external reset will Start a halted processor.

4.2.5 Reset Operation

The reset Signal is a bidirectionai Signal that aliows either the processor or an external signal to reset'

the System. Figure 4-21 is a timing diagram for the reset Operation. Both the halt and reset lines

must be asserted to ensure total reset of the processor.

When the reset and halt lines are driven by an external device, it is recognized as an entire System

reset, including the processor. The processor responds by reading the reset vector table entry (vec

tor number zero, address $000000} and loads it into the Supervisor Stack pointer (SSP). Vector table

entry number one at address $000004 is read next and loaded into the program counter. The pro

cessor initializes the Status register to an Interrupt level of seven. No other registers are affected by

the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 dock periods. In this

case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the

4-20

internal slate of the processor. All of the processor's internal registers and the slatus register are

unaffected by the execution of a reset instruction. All external devices connected to the reset line

will be reset at the compietion of the reset instruction.

Asserting the reset and halt lines for ten dock cycles will cause a processor reset, except when

is initially appiied to the processor. In this case, an external reset must be apptied for at least 100

milliseconds.

jiruiniinjmnjinnjinjijWinj^^
Plus 5 Volts

\- > 100 Milliseconds

HALT

1<4 Clocks

>OOWO0OOOQOO0

NOTES

11 Internal start-up time

2) 5SP Hign read in heie

31 SSP Low read in here

Bus State Unknown;)QQQ(

_ All Conirol Signals (nactive

Da a Bus In Read Mode } {

41 PC High read in here

5) PC Low read in here

Ftgure 4-21. Reset Operation Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, ^FJR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error condition, DTACK,

6ERR, and HALT should be asserted and negated on the rising edge of the MC68000 dock. This

will assure that when two Signals are asserted simultaneously, the required Setup time (#47) for

both of them will be met during the same bus State.

This, or some equivalent precaution, should be designed external to the MC68000. Parameter #48

is intended to ensure this Operation in a totally asynchronous System, and may be ignored if the

above conditions are met.

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table

4-4):

Normal Termination:

Halt Termination:

Bus Error Termination:

DTACK occurs first (case 1).

HALT is asserted at the same time or before DTACK and BERR remains

negated (cases 2 and 3).

BERR is asserted in Neu of, at the same time, or before DTACK (case

4); BERR is negated at the same time or after DTACK.

Re-Run Termination: HALT and BERR are asserted in lieu of, at the same time, or before

DTACK (cases 6 and 7); HALT must be held at least one cycle after

iERR may precede HAL"BERR. Case 5 indicates BERR may precede HALT on all except R9M,

T6E, and BF4 early mask sets which allows fully asynchronous asser-

tion.

4-21

Table 4-4 details the resulting bus cycle termination under various combinations of control Signal se-

quences. The negation of these same control Signals under several conditions is shown in Table 4-5

(DTACK is assumed to be negated normally in all cases; for best results, both DTACK and BERR

shouid be negated when address strobe is negated).

Table 4-4. DTACK, BERR, and HALT Assertion Results

Case

Nd.

1

2

3

4

5

6

7

Control

SignBl

DTACK

BERR

HALT

DTACK

BERR

HALT

DTACK

BERR

HALT

DTACK

6E1TR"

HALT

DTACK

BERR

HALT

DTACK

BERR

HALT

DTACK

BERR

HALT

Asserted on Rising

Edrje of State

rJ

A

NA

NA

A

NA

A

NA

NA

A

X

A

NA

NA

A

NA

X

A

A

NA

NA

A

N + 2

S

X

X

S

X

A

NA

S

X

S

NA

X

s

A

X

S

s

A

S

Rosull

Normal cvcle terminaie and coniinue

Normal cvcle termmate and hall Commue whe^ HALT removed

Normal cycle terminaie and nali Contmue when HALT removed

Terminaie and lake bus error !iap

R9M, T6E, BF4: Unprediciable resulis, no re-run, no error trap;

usually traps w vecior number 0

All others: terminaie and re-run

Termjnate and re-run when HALT removed.

Termmate and re-run when HALT removed

Legend

N -

A -

NA -

X -

S -

the number ol the current cven hus siaie le g . S4. S6, eic !

Signal is asseried in this bus siate

- Signal is not asserted in ihis siaie

don't care

Signal was asseried in prevous siatß and remams assened m Uns stnio

Table 4-5. BERR and HALT Negation Results

ConditionE of

Tarmination in

Table 4-4

Bus Error

Re-run

Re-run

Normal

Normal

Conttol

Signal

BERR

HALT

BtRR

HALT

BERR

HALT

BERH

HALT

BEflR

HALT

Negated on Rising

Edna of Staie

N N + 2

• or •

• or •

> Of ■

•

•

•

• or •

•

• or none

Results - Next Cycle

Takes bus error trap

Illegal sequence. usually traps to

voctoi number 0

Re-runs tho bus cvcle.

Mav lengthen nent cvcle.

If neut cvcle is started it will

be termmaled as a bus error

• = Signal is negated in ihis bus State.

4-22

EXAMPLE A:

A System uses a walch-dog timer to terminate accesses to unpopulated address Space. The

timer asserts DTACK and BERR simultaneously after time out (case 4).

EXAMPLE B:

A System uses .error detection on RAM contents. Designer may (a) delay DTACK unlil
data verified and return BERR and HALT simultaneously to re-run error cycle (case 6), or if

valid, return DTACK (case 1}; (b) delay DTACK until data verified and return BERR at same

time as DTACK if data in error (case 4).

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve dock frequency independence at a System level, the MC68000 can be used in an asyn-

chronous manner. This entails using oniy the bus handshake lines (AS, UDS, LDS, DTACK, BERR,

HALT, and VFÄ) to control the data transfer. Using this method, SS Signals the Start of a bus cycle

and the data strobes are used as a condition for valid data on a write cycle. The slave device

(memory or peripheral) then responds by placing the requested data on the data bus for a read cycle

or latching data on a write cycle and asserting the data transfer acknowlege Signal (DTACK) to ter

minate the bus cycle. If no slave responds or the access is invalid, extemal control logic asserts the

BERU, or BERR and HALT, signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a slave device is valid on a read

cycle. The length of time that DTACK may precede data is given as parameter #31 and it must be

met in any asynchronous System to insure that valid data is latched into the processor. Notice that

there is no maximum time specified from the assertion of XS to the assertion of DTACK. This is

because the MPU will insert wait cycles of one dock period each until DTACK is recognized.

The BERR signal is allowed to be asserted after the DTACK signal is asserted. BERR must be

asserted within the time given as parameter #48 after DTACK is asserted in any asynchronous

System to insure proper Operation. If this maximum delay time is violated, the processor may exhibit

erratic behavior.

4.4.2 Synchronous Operation

To allow for those Systems which use the System dock as a signal to generate DTACK and other

asynchronous inputs, the asynchronous input setup time is given as parameter #47. If this setup is

met on an input, such as DTACK, the processor is guaranteed to recognize that signal on the next

falling edge of the System dock. However, the converse is not true - if the input signal does not

meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized

on a falling edge, valid data will be iatched into the processor Ion a read cycle) on the next falling

edge provided that the data meetsjhe setup time given as parameter #27. Given this, parameter #31

may be ignored. Note that if DTACK is asserted, with the required setup time, before the falling

edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four

dock periods.

4-23

In order to assure proper Operation in a synchronous System when BERR is asserted after DTACK,

BERR must meet the setup time parameter #27A prior to the failing edge of the dock one dock

cyde after DTACK was recognized. This setup time is critical to proper Operation, and the MC68000

may exhibit errattc behavior if it is violated.

NOTE

During an active bus cycle, WÄ~ and BERR are sampied on every falling edge of the dock

starting with SO. DTACK is sampied on every falling edge of the dock starting with S4

and data is latched on the falling edge of S6 during a read. The bus cycie will then be ter-

minated in S7 except when BERR is asserted in the absence of DTACK, in which case it

will terminate one dock cyde later in S9.

■...-;-■■-:'■>,- •'<..:■-'.-v::1 ■■>.-;!.■;■ ,■ . '-'. - .■■••;:•.■■'' ■:. - ■- - . ■ '■ ■.

.

4-24

SECTION 5

PROCESSING STATES

This section describes the actions of the MC68000 which are outside the normal processing
associated wilh the execution of instructions. The functions of the bits in the Supervisor portion of
the Status register are covered: the supervisor/user bit, the trace enable bit, and the processor Inter

rupt priority mask. Finally, the sequence of memory references and actions taken by the processor

on exception conditions are detailed.

The MC68000 is always in one of three processing states: normal, exception, or halted. The normal
processing State is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to störe results. A Special case of the normal State is the stopped
State which the processor enters when a stop instruction is executed. In this State, no further

references are made.

The exception processing State is associated with Interrupts, trap instructions, tracing, and other
exceptional conditions. The exception may be internally generated by an instruction or by an
unusual condition arising during the execution of an instruction. Externally, exception processing

can be forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to pro-
vide an efficient context switch so that the processor may handle unusual conditions.

The halted processing State is an indication of catastrophic hardware failure. For example, if during

the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and halts. Only an external reset can restart a halted processor. Note that a pro

cessor in the stopped State is not in the halted State, nor vice versa.

5.1 PRIVILEGE STATES

The processo'f operates in one öf two states of privilege>the "Supervisor" State or the/?usB^,statfeS;-■-:.
The privilege State determines which operations are legal, are used to choose between the Super

visor Stack pointer and the user Stack pointer in instruction references, and may by used by an ex

ternal memory management device to control and translate accesses.

The privilege State is a mechanism for providing security in a Computer System. Programs should
access only their own code and data areas, and ought to be restricted from accessing information

which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user State. In
this State, the accesses are controlled, and the effects on other parts of the System are limited. The
operating System executes in the Supervisor State, has access to all resources, and performs the

overhead tasks for the user State programs.

5-1

5.1.1 Supervisor State

The Supervisor State is the higher State of privilege. For instruction execution, the Supervisor State is

determined by the S bit of the Status register; if the S bit is asserted (high), the processor is in the

Supervisor State. All instructions can be executed in the Supervisor State. The bus cycles generated

by instructions executed in the Supervisor State are classified as Supervisor references. While the

processor is in the Supervisor privilege State, those instructions which use either the System Stack

pointer implicitly or address register seven explicitiy access the Supervisor Stack pointer.

All exception processing is done in the Supervisor State, regardless of the setting of the S bit. The

bus cycles generated during exception processing are classified as Supervisor references. All Stack-

ing operations during exception processing use the Supervisor Stack pointer.

5.1.2 User State

The user State is the Iower State of privilege. For instruction execution, the user State is determined

by the S bit of the Status register; if the S bit is negated (low), the processor is executing instruc

tions in the user State.

Most instructions execute the same in user State as in the Supervisor State. However, some instruc

tions which have important System effects are made privileged. User programs are not permitted to

execute the stop instruction or the reset instruction. To ensure that a user program cannot enter the

Supervisor State except in a controlled manner, the instructions which modify the whole State

register are privileged. To aid in debugging programs which are to be used as operating Systems,

the move to user Stack pointer (MOVE to USP) and move from user Stack pointer (MOVE from

USP) instructions are also privileged.

The bus cycies generated by an instruction executed in the user State are classified as user State

references. This aliows an external memory management device to translate the address and to

control access to protected portions of the address Space. While the processor is in the user

privilege State, those instructions which use either the System Stack pointer implicitly or address

register seven explicitiy, access the user Stack pointer.

5.1.3 Privilege State Changes

Once the processor is in the user State and executing instructions, only exception processing can

change the privilege State. During exception processing, the current setting of the S bit of the

Status register is saved and the S bit is asserted, putting the processor in the Supervisor State.

Therefore, when instruction execution resumes at the address specified to process the exception,

the processor is in the Supervisor privilege State.

5.1.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made, using the en-

coding on the three function code Output lines. This aliows external translation of addresses, con

trol of access, and differentiation of Special processor State, such as interrupt acknowledge. Table

5-1 lists the classification of references.

5-2

Table 5-1. Bus Cycle Classification

Fund on Code Output

FC2

0

0

0

0

FC1

0

0

1

1

FCO

0

1

0

1

Refeienee Class

tUnassignedl

User Data

User Program

(Unassignedl

Function Code Output

FC2

1

1

1

1

FC1

0

0

1

1

FCO

0

1

0

1

Roference Class

lünassigned)

Supervisor Data

Supervisor Program

Interrupt Acknowledge

5.2 EXCEPTION PROCESSING

Before discussing the details of Interrupts, traps, and tracing, a general description of exception

processing is in order. The processing of an exception oecurs in four Steps, with variations for dif-

ferent exception causes. During the first step, a temporary copy of the Status register is made and

the Status register is set for exception processing. In the second step the exception vector is deter-

mined and the third step is The saving of the current processor context. In the fourth step a new

context is obtained and the processor Switches to instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine

which will handle that exception. All exception vectors are two words in length IFigure 5-1), except

for the reset vector which is four words. All exception vectors lie in the Supervisor data Space, ex

cept for the reset vector which is in the Supervisor program Space. A vector number is an 8-bit

number which, when multiplied by four, gives the address of an exception vector. Vector numbers

are generated internally or externally, depending on the cause of the exception. In the case of inter-

rupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number

IFigure 5-2) to the processor on data bus lines DO through D7. The processor translates the vector

number into a füll 24-bit address, shown in Figure 5-3. The memory layout for exception vectors is

given in Table 5-2.

ao=o. ai=

A0= 0, AI ="

WordO

Word 1

New Program Counter (High)

New Pfogram Counier ILowl

Figure 5-1. Format of Vector Table Entries

D15 D8D7

Ignored v7 v6 v5 v4 v3 v2 vl

DO

vO

Where:

v7 is the MSB of the Vector Number

«0 is ihe LSB ol the Vector Number

A23

Figure 5-2. Vector Number Format

A10 A0

All Zeroes v7 v6 v5 v4 v3 v2 vl vO 0 0

Figure 5-3. Exception Vector Address Calculation

5-3

AsshowninTable5-2, the memory lavout is 512 words long (1024 bytes}. It Starts at addressO and

proceeds through address 1023. This provides 255 unique vectors; some of these are reserved for

TRAPS and other System functions. Of the 255, there are 192 reserved for user interrupt vectors.

However, there is no protection on the first 64 entries, so user Interrupt vectors may overlap at the

discretion of the Systems designer.

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep

tions are the interrupts and the bus error and reset requests. The Interrupts are requests from

Table 5-2. Exception Vector Table

Vector

Numberdl

0

-

2

3

4

5

6

7

ß

g

10

n

12*

13"

14"

15

16-23"

24

25

26

27

28

29

30

31

32-47

48-63*

64-255

Address

Dec

0

4

8

12

16

20

24

2B

32

36

40

44

48

52

56

60

64

95

96

100

104

108

112

116

120

124

128

191

192

255

256

1023

Hex

000

00-1

008

OOC

010

014

018

01C

020

024

028

02 C

030

034

038

03C

CMC

05f

060

064

068

06C

070

074

07B

07 C

060

OBF

OCO

OFF

100

3FF

Space

SP

SP

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SO

SD

SD

SD

Assignment

Reset In.nal SSP

Resei Initial PC

Bus Error

Address Enor

Illegal Instruction

Zero Divide

CHK Instruction

TBAPV Insiruction

Pnvilege Violation

Trace

Lins 1010 Emulator

Line 1111 Emulator

lUnassigned, Reserved)

lUnassignad, Reservedi

lUnassigned, Rcserved)

Uninihalizecl Interrupt Vecicr

lUnassigned, Reserved)

Spunous Interrupt

Level 1 Interrupt Autavector

Level 2 Interrupt Autovector

Level 3 Interrupt Autovectoi

Level 4 Interrupt Autovectoi

Level 5 Interrupt Aulovector

Lrjvel 6 Interrupt Auiovecior

Level 7 Interrupt Autovector

TRAF Instruktion Vectors

-

(Unassigned, Reserved)

-

Usei Interrupt Vectors

-

"Vector numbers 12, 13, 14, 16 through 23, and 48 ihrough 63 are re

served for luture enhancements bv Motorola. No user peripheral devices

should be assigned these numbers.

5-4

peripheral devices for processor action while the bus error and reset inputs are used for access con-

trol and processor restart. The internally generated exceptions come from instructions, or from ad-

dress errors or tracing. The trap (TRAP), trap on overflow (TRAPV), check data register against up-

per bounds (CHK), and divide (DIV) instruclions all can generaie exceptions as pari of their instruc-

tion execution. In addition, illegal instructions, word fetches from odd addresses, and pnvilege

violations cause exceptions- Tracing behaves like a very high-priority internafly-generated interrupt

after each instruction execution.

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable Steps. In the first step, an internal copy is made of

the Status register. After the copy is made, the S bit is asserted, putting the processor into the

Supervisor privilege State. Also, the T bit is negated which will altow the exception handler to ex-

ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is

also updated.

In the second step, the vector number of the exception is determined. For interrupts, the vector

number is obtained by a processor fetch and classified as an interrupt acknowtedge. For all other ex

ceptions, internal logic provides the vector number. This vector number is then used to generate the

address of the exception vector.

The third step is to save the current processor Status, except for the reset exception. The current

program counter value and the saved copy of the Status register are stacked using the Supervisor

Stack pointer as shown in Figure 5-4. The program counter value stacked usually points to the next

unexecuted instruction; however, for bus error and address error, the value stacked for the program

counter is unpredictable, and may be incremented from the address of the instruction which caused

the error. Additional information defining the current context is stacked for the bus error and ad

dress error exceptions.

The last step is the same for ad exceptions. The new program counter value is fetched from the ex

ception vector. The processor then resumes instruction execution. The instruction at the address

given in the exception vector is fetched, and normal instruction decoding and execution is started.

SSP Slatus Register

High Highe-

Addresses
Prograrn Counier — — — — — — — —

Low

Figure 5-4. Exception Stack Order (Groups 1 and 2)

5.2.4 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions arise

simultaneously. Exceptions can be grouped according to their occurrence and priority. The group 0

exceptions are reset, bus error, and address error. These exceptions cause the instruction currently

being executed to be aborted and the exception processing to commence within two dock cycles.

5-5

The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc-

tions. These exceptions allow the current instruction to execute to comptetion, but pre-empt the ex

ecution of the next instruction by forcing exception processing to occur (privilege violations and il

legal instructions are detected when they are the next instruction to be executed). The group 2 ex

ceptions occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero

divide exceptions are in this group. For these exceptions, the normal execution of an instruction

may lead to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have Iowest priority. Within

group 0, reset has highest priority, followed by bus error and then address error. Within group 1,

trace has priority over external interrupts, which in turn takes priority over illegal instruction and

privilege violation. Since only one instruction can be executed at a time, there is no priority relation

within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if the condi-

tions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP instruction, the

bus error takes precedence, and the TRAP instruction processing is aborted. In another example, if

an interrupt request occurs during the execution of an instruction while the T bit is asserted, the

trace exception has priority, and is processed first. Before instruction processing resumes,

however, the interrupt exception is also processed, and instruction processing commences finaily in

the interrupt handler routine. A summary of exception grouping and priority is given in Table 5-3.

Table 5-3. Exception Grouping and Priority

Group

0

1

2

Exception

Resel

Address Error

Bus Error

Trace

Interrupt

Illegal

Privilege

TRAP. TRAPV,

CHK.

Zeio Divide

Procewing

Encepuon processing begms

within two dock cycles

Excepuon processing begms betöre

the nsxt inslruclion

Enceotion processing is started by

normal instruciion execution

5.3 EXCEPTION PROCESSING DETAILED DISCUSS1ON

Exceptions have a number of sources and each exception has processing which is peculiar to it. The

following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the reset Signal is designed

for System initiation and recovery from catastrophic failure. Any processing in progress at the time

of the reset is aborted and cannot be recovered. The processor is forced into the Supervisor State

and the trace State is forced off. The processor interrupt priority mask is set at level seven. The vec

tor number is internally generated to reference the reset exception vector at Iocation 0 in the Super

visor program Space. Because no assumptions can be made about the validity of register contents.

5-6

in particular the Supervisor Stack pointer, neither the program counter nor the Status register is sav-

ed. The address contained in the first two words of the reset exception vector is fetched as the ini

tial Supervisor Stack pointer, and the address in the last two words of the reset exception vector is

fetched as the initial program counter. Finally, instruction execution is started at the address in the

program counter. The power-up/restart code should be pointed to by the initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to

reset external devices. This allows the Software to reset the System to a known State and then con-

tinue processing with the next instruction.

5.3.2 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained externally within interrupt

priority levels, allowing an unlimited number of peripheral devices to interrupt the processor. Inter

rupt priority levels are numbered from one to seven, with level seven being the highest priority. The

Status register contains a 3-bit mask which indicates the current processor priority, and Interrupts

are inhibited for all priority levels less than or equal to the current processor priority.

An Interrupt request is made to the processor by encoding the interrupt request level on the inter

rupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor

do not force immediate exception processing, but are made pending. Pending Interrupts are

detected between instruction executions. If the priority of the pending interrupt is Iower than or

equaf to the current processor priority, execution continues with the next instruction and the Inter

rupt exception processing is postponed. (The recognition of level seven is siightly different, as ex-

plained in the following paragraph.}

If the priority of the pending interrupt is greater than the current processor priority, the exception

processing sequence is started. A copy of the Status register is saved, the privilege State is sent to

the Supervisor Stack, tracing is suppressed, and the processor pnority leve! is set to the level of the

interrupt acknowledged. The processor fetches the vector number from the interrupting device,

classifying the reference as an interrupt acknowledge and displaying the level number of the inter

rupt being acknowledged on the address bus. If external logic requests an automatic vectoring, the

processor internally generates a vector number which is determined by the interrupt level number. If

external logic indicates a bus error, the Interrupt is taken to be spurious, and the generated vector

number references the spurious interrupt vector. The processor then proceeds with the usual ex

ception processing, saving the program counter and Status register on the Supervisor Stack. The

saved value of the program counter is the address of the instruction which would have been ex-

ecuted had the Interrupt not been present. The content of the interrupt vector whose vector

number was previously obtained is fetched and Ioaded into the program counter, and normal in

struction execution commences in the interrupt handling routine. A flowchart for the interrupt

acknowledge sequence is given in Figure 5-5, a timing diagram is given in Figure 5-6, and the inter

rupt processing sequence is shown in Figure 5-7.

Priority level seven is a Special case. Level seven interrupts cannot be inhibited by the interrupt

priority mask, thus providing a "non-maskable interrupt" capability. An interrupt is generated each

time the interrupt request level changes from some Iower level to level seven. Note that a level seven

interrupt may still be caused by the level comparison if the request level is a seven and the processor

priority is set to a Iower level by an instruction.

5-7

PROCESSOR

Grant the Interrupt

1) Compare Interrupt Level in Status Register

and Wait for Curreru Insiruction to Complete

2) Assert Address Sirobe IASI

31 Plsce Interrupt Level on AI, A2: A3

41 Sei Function Code to Interrupt Acknowledge

61 Assert Data Sirobes IUDS" and LDS)

Acquire the Vector Number

1) Latch Vector Number

21 Negala ÜT55 arid LÖS

31 Negate AS

INTERRUPTING DEVICE

Heq uest ihe Interrupt

Start Interrupt Processing

Provide the Vector Number

1) Place Vector Number on D0-D7

2) Assert Dala Transfer Acknowledge 1DTACK)

Release

11 Negate DTACK

'Although a vector number is one byte. both data strobes are asseried due to the microcode used for esception processing The

processor does not recognize anything on data lines D8 through D15 at this time

Figure 5-5. Vector Acquisition Flowchart

cLKj-LTTJlJ~LrLJ
A4-A23 y^

A1-A3~~W

IPL0-IPL2

Last Bus Cycle of Instruction

(Road or Writel

Stack

PCL

IACK Cycle

(Vector Number Acquisition}

Stack and

Vector Fetch

'Although a veclor number is one byle. both data strobes are asseried due to ifte microcode used for exception processing. The pro

cessor does not recognize anything on data lines DS through D!5 at this lime.

Figure 5-6. Interrupt Acknowledge Cycle Timing Diagram

5-8

Last Bus Cyce

ol Instruclion

IDuring Whic"

Interrupt Was

Recogrtiedi

Stack

PCL

(ai SSP - 2)

Read

Vector

High

IA16-A31I

JACK

Cycle

(Vector Number

Acquisitionl

Read

Vector

Low

Siack

Status

fai SSP - 61

Fetch First Two

of Interrupt

Routine

Stack

PCH

lat SSP - 41

NOTE SSP refers to the value ol ihe Supervisor slack pointer belore the Interrupt occurs.

Figure 5-7. Interrupt Processing Sequence

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA or provides an interrupt during an interrupt acknowledge cycle

to the MC68000. If the vector register has not been initialized, the responding M68000 Family

peripheral will provide vector 15, the uninitialized interrupt vector. This provides a uniform way to

recover from a programming error.

5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTACK or VPA, the bus

error line should be asserted to terminate the vector acquisition. The processor separates the pro

cessing of this error from bus error by fetching the spurious interrupt vector instead of the bus error

vector. The processor then proceeds with the usual exception processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor

mal conditions during instruction execution, or from use of instructions whose normal behavior is

trapping.

Some instructions are used specifically to generate traps. The TRAP instruction always forces an

exception and is useful for imptementing System calls for user programs. The TRAPV and CHK in

structions force an exception if the user program detects a runtime error, which may be an

arithemetic overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned (DIVU) instructions will force an exception if a division

Operation is attempted with a divisor of zero.

5.3.6 Illegal and Unimplemented Instructions

"Illegal instruction" is the term used to refer to any of the word bit patterns which are not the bit

pattern of the first word of a legal instruction. During instruction execution, if such an instruction is

5-9

fetched, an illegal instruction exception occurs. Motorola reserves the right to define instructions
whose opcodes may be any of the illegal instructions. Three bit patterns will always force an illegal
instruction trap on all M68000 Family compatible microprocessors. They are: $4AFA, S4AFB and
S4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for Motorola System products! The
third pattern, $4AFC, is reserved for customer use.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as unimplemented in
structions and separate exception vectors are given to these patterns to permit efficient emulation.

This facility allows the operating System to detect program errors, or to emulate unimplemented in
structions in Software.

5.3.7 Privilege Violations

In order to provide System security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user State will cause an exception. The privileged instruc
tions are:

STOP AND Immediate to SR
RESET EOR Immediate to SR

RTE OR Immediate to SR

MOVE to SR MOVE USP

5.3.8 Tracing

To aid in program development, the MC68000 includes a facility to allow instruction-by-instruction
tracing. In the trace State, after each instruction is executed an exception is forced, allowing a
debugging program to monitor the execution of the program under test.

The trace facility uses the T bit in the Supervisor portion of the Status register. If the T bit is negated
(off), tracing is disabled, and instruction execution proceeds from instruction to instruction as nor

mal. If the T bit is asserted <on) at the beginning of the execution of an instruction, a trace exception
will be generated after the execution of that instruction is completed. If the instruction is not ex

ecuted, either because an Interrupt is taken, or the instruction is illegal or privileged, the trace ex

ception does not occur. The trace exception also does not occur if the instruction is aborted by a

reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is

pending on completion, the trace exception is processed before the interrupt exception. If, during

the execution of the instruction an exception is forced by that instruction, the forced exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the
trace exception, and finally the interrupt exception. Instruction execution resumes in the Interrupt
handler routine.

5.3.9 Bus Error

Bus error exceptions occur when the external logic requests that a bus error be processed by an ex
ception. The current bus cycle which the processor is making is then aborted. Whether the pro-
cessor was doing instruction or exception processing, that processing is terminated, and the pro
cessor immediately begins exception processing.

5-10

Exception processing for the bus error follows the usual sequence of Steps. The Status register is
copied, the Supervisor State is entered, and the trace State is turned off. The vector number is
generated to refer to the bus error vector. Since the processor was not between instructions when

the bus error exception request was made, the context of the processor is more detailed. To save
more of this context, additional information is saved on the Supervisor Stack. The program counter
and the copy of the Status register are of course saved. The value saved for the program counter is
advanced by some amount, one to five words beyond the address of the first word of the instruc-
tion which made the reference causing the bus error. If the bus error occurred during the fetch of
the next instruction, the saved program counter has a value in the vicinity of the current instruction,
even if the current instruction is a branch, a jump, or a return instruction. Besides the usual Informa
tion, the processor saves its internal copy of the first word of the instruction being processed and

the address which was being accessed by the aborted bus cycle. Specific information about the ac-
cess is also saved: whether it was a read or a write, whether or not the processor was processing an

instruction, and the classification displayed on the function code Outputs when the bus error occur
red. The processor is processing an instruction if it is in the normal State or processing a group 2 ex

ception; the processor is not processing an instruction if it is processing a group 0 or a group 1 ex
ception. Figure 5-8 illustrates how this information is organized on the Supervisor Stack. Although
this information is not sufficient in general to effect füll recovery from the bus error, it does allow
Software diagnosis. Finally, the processor commences instruction processing at the address con-
tained in vector number two. ft is the responsibility of the error handler routine to clean up the Stack
and determine where to continue execution.

SSP-

15 14 13 12 11 10 9 8 7 6

High

Low

Insiruciion Registei

Status Register

High

Low

5 1

R/W

3

l/N

2 1 0

f unclion Code

Higher

Addresses

R/W iread/writel. wrue = 0, read=1 I/N Iinsiruction/notl. ins1ruction = 0, not= 1

Figure 5-8. Exception Stack Order (Group 0)

If a bus error occurs during the exception processing for a bus error, address error, or reset, the pro
cessor is halted and all processing ceases. This simplifies the detection of catastrophic System
failure, since the processor removes itself from the system rather than destroy any memory
tents. Only the RESET pin can restart a halted processor.

con-

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a word or a long word
Operand or an instruction at an odd address. The effect is much like an internafly generated bus

5-11

error, so that the bus cycle is aborted and the processor ceases whatever processing it is currently

doing and begins exception processing. After the exception processing commences, the sequence

is the same as that for bus error including the information that is stacked, except that the vector

number refers to the address error vector instead. Likewise, if an address error occurs during the ex

ception processing for a bus error, address error, or reset, the processor is halted. As shown in

Figure 5-9, an address error will execute a Short bus cycle followed by exception processing.

On mask sets R9M, BF4, T6E, DL6, CC1, and GN7, UDS and LDS, as well as AS, are asserted.

DTACK

SO SI S2 S3 S4 S5 S6 S7 SO SI S2 S3 SA S5 S6 S7 SO SI S2 S3 S4 S5

DO-O15

Read-
Address Error

Wrile

Approx. 8 Clocks

■ idie"

•UDS and LDS are asseried on mask sets R9M. BF4, T6E, DL6, CC1, and GN7.

Figure 5-9. Address Error Timing Diagram

Wrne Siack-

5-12

SECTION 6

INTERFACE WITH M6800 PERIPHERALS

Motorola's extensive line of M6800 peripherals are directiy compatible with the MC68000. Some of
these devices that are particularly useful are:

MC6821 Peripheral Interface Adapter

MC6840 Programmable Timer Module

MC6843 Floppy Disk Controller

MC6845 CRT Controller

MC6850 Asynchronous Communicattons Interface Adapter

MC6852 Synchronous Serial Data Adapter

MC6854 Advanced Data Link Controller

MC68488 General Purpose Interface Adapter

To interface the synchronous M6800 peripherals with the asynchronous MC68000, the processor
modifies its bus cycle to meet the M6800 cycle requirements whenever an M6800 device address is

detected. This is possible since both processors use memory mapped I/O. Figure 6-1 is a flowchart
of the interface Operation between the processor and M6800 devices.

PROCESSOfl

initiate the Cycle

1) The Processor Starts a Normal Read or

Synchronize with Enable

11 The Processor Monitors Enable (El Until it is

Low IPhase 1)

21 The Processor Asseris Vaiid Memory

Address (VMAI

the Cycle

1) The Processor Wails Until E Goes Low

(On a Read Cycle ine Data is Latched

as E Goes Low Internally)

2) The Processor Negates VMA

31 The Processor Negates ÄS, UDS. and i_DS

1 p

SLAVE

»-

< 1

Dafino M680D Cycle

1) Exiernal Hardware Asseris Valid Peripheral

Address (VPA)

Transfer the Data

11 The Peripheral Wails Until E is Active

and then Transfers the Data

Start Next Cycle

Figure 6-1. M6800 Interfacing Flowchart

6-1

6.1 DATA TRANSFER OPERATION

Three Signals on the processor provide the M6800 interface. They are: enable (E), valid memory ad

dress (VMA), and valid peripheral address (VPAI. Enable corresponds to the E or phase 2 Signal in

existing M6800 Systems. The bus frequency is one tenth of the incoming MC68000 dock frequency.

The timing of E aflows 1 megahertz peripherals to be used with 8 megahertz MC68000s. Enable has

a 60/40 duty cycle; that is, it is Iow for six input ciocks and high for four input clocks. This duty cy

cle allows the processor to do successive VPA accesses on successive E pulses.

M6800 cycle timing is given in Figures 6-2, 6-3, 8-7, and 8-8. At State zero (SO} in the cycle, the ad

dress bus is in the high-impedence State. A function code is asserted on the function code Output

lines. One-half dock later, in State 1, the address bus is released from the high-impedence State.

SO S2 S4 w w w w w w S6 SO S2

A1-A23)—(

DTACK

DalaQui

Data In

FC0-FC2 X"

VPÄ

VMÄ \

Figure 6-2. MC68000 to M6800 Peripheral Timing - Best Case

SO S2 S4 w w w w w w w w w w w w w w w S6 SO

A1-A23)-(

S5 _

DTACK

Data Out 1

FCO-FC2 J_

E J

VPÄ \

VMA

_ _J

w

_r

I>

X

_r

_r

Figure 6-3. MC68000 to M6800 Peripheral Timing - Worst Case

6-2

During State 2, the address strobe (AS) is asserted to indicate that there is a valid address on the ad-

dress bus. If the bus cycle is a read cycle, the iipper and/oMower data strobes are also asserted in

State 2. II the bus cycle isa write cycle, the read/write (R/W) Signal is switched to Iow (write) dur

ing State 2. One-half dock iater, in State 3, the write data is placed on the data bus, and in State 4

the data strobes are issued to indicate valid data on the data bus. The processor now inserts weit

states until it recognizes the assertion of VPA.

The VPA input Signals the processor that the address on the bus is the address of an M6800 device

lor an area reserved for M6800 devices) and that the bus should conform to the phase 2 transfer

characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus,

conditioned by the address strobe. Chip select for the M6800 peripherals should be derived by

decoding the address bus conditioned by VMA.

After recognition of VPA, the processor assures that the enable (E) is Iow, by waiting if necessary,

and subsequently asserts VMA. Valid memory address is then used as part of the Chip select equa-

tion of the peripheral. This ensures that the M6800 peripherals are selected and deselected at the

correct time. The peripheral now runs its cycle during the high portion of the E Signal. Figures 6-2

and 6-3 depict the best and worst case M6800 cycle timing. This cycle length is dependenl strictly

upon when VPA is asserted in relationship to the E dock.

If we assume that external circuitry asserts VPA as soon as possible after the assertion of AS, then

WÄ" will be recognized as being asserted on the falling edge of S4. In this case, no "extra" wait

cycles will be inserted prior to the recognition of VPA asserted and only the wait cycles inserted to

synchronize with the E dock will determine the total length of the cycle. In any case, the synchroni-

zation delay will be some integral number of dock cycles within the following two extremes:

1. Best Case - VPA is recognized as being asserted on the falling edge three dock cycles before

E rises lor three clock cycles after E falls).

2. Worst Case - VPA is recognized as being asserted on the falling edge two clock cycles before

E rises (or four clock cycles after E falls).

During a read cycle, the processor latches the peripheral data in State 6. For all cycles, the processor

negates the address and data strobes one-half clock cycle Iater in State 7 and the enable Signal goes

Iow at this time. Another half clock Iater, the address bus is put in the high-impedence State. During

a write cycle, the data bus is put in the high-impedence State and the read/write Signal is switched

high. The peripheral logic must remove VPA within one clock after the address strobe is negated.

DTACK should not be asserted while VPA is asserted. Notice that the MC68000 VMA is active Iow,

contrasted with the active high M680Q VMA. This aliows the processor to put its buses in the high-

impedence State on DMA requests without inadvertently selecting the peripherals,

6.2 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, the VPA is

asserted, the MC68000 will assert VMA and completea normal M6800 read cyde asshown in Figure

6-4. The processor will then use an intemally generated vector that is a function of the interrupt be

ing serviced. This process is known as autovectoring. The seven autovectors are vector numbers 25

through 31 (decimal).

6-3

Autovectoring operates in the same fashion ibut is not restricted to) the M6800 interrupt sequence.

The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with

both the M6800 and the MC68000's normal vectored interrupt, the interrupt Service routine can be

located anywhere in the address space. This is due to the fact that while the vector numbers are

fixed, the Contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, the M6800 peripheral address decoding should pre-

vent unintended accesses.

CLK

Normal

Cycle
-Aulovector Operation. ■H

Although a veclor numbet is one byiß, boih dala strobes are asserled due to the microcode used lor exceplion processmg The

processot does not recognize anythmg on dais Itnes D8 ihrough 015 at this Urne.

Figure 6-4. Autovector Operation Timing Diagram

6-4

SECTION 7

INSTRUCTION SET AND EXECUTION TIMES

7.1 INSTRUKTION SET

The following paragraphs provide information about the addressing categories and instruction set

of the MC68000.

7.1.1 Addressing Categories

Effective address modes may be categorized by the ways in which ihey may be used. The foilowing

classifications will be used in the instruction definitions.

Data If an effective address mode may be used to refer to data operands, it is considered a

data addressing effective address mode.

Memory If an effective address mode may be used to refer to memory operands, it is con

sidered a memory addressing effective address mode.

Aiterable If an effective address mode may be used to refer to atterable Iwriteable) operands,

it is considered an aiterable addressing effective address mode.

Control If an effective address mode may be used to refer to memory operands without an

associated size, it is considered a control addressing effective address mode.

These categories may be combined, so that additional, more restrictive, classifications may be

defined. For example, the instruction descriptions use such classifications as aiterable memory or

data aiterable. The former refers to those addressing modes which are both aiterable and memory

addresses, and the latter refers to addressing modes which are both data and aiterable.

Table 7-1 shows the various categories to which each of the effective address modes belong. Table

7-2 is the instruction set summary.

Table 7-1. Effective Addressing Mode Categories

Effective

Address

Modes

Dn

An

lAnl

IAn) +

-(An)

dfAnl

dlAn, ix)

xxx.W

xxx. L

d(PC)

dIPC, in)

Ixxx

Mode

000

001

010

011

100

101

110

111

111

111

111

Regiatei

Register Number

Register Number

Register Numbar

Register Number

Register Numbar

Register Number

Register Number

000

001

010

011

X

Addresoing Csteflories

Data

X

X

X-

X

X

Momofy

X

X

X

X

Control

X

X

X

X

X

X

X

Almrablo

X

X

X

_

7-1

Table 7-2. Instruction Set (Sheet 1 of 2)

Mnemonic

ABCD

ADD

ADDA

ADDi

■ ■■ ■[■■.

ADDX

AND

ANDI

ANDI lo CCR

ANDI in SR

ASL. ASR

3CC

BCHG

BCLR

BRA

BSET

!SR

!Ti.

CHK

CLR

CMP

CMPA

MPI

MPM

DEcc

VU

OR

ORI

ORI lo CCR

ORI io SR

XG

JMP

EA

NK

SL. LSR

OVE

OVE io CCR

OVE lo SR

Description

Adel Docimai with Extend

Add Binary

Add Adcfress

Ada mmediaie

Add Quick

Add Extended

AND Logical

AND Immediale

AND immediale lo Condition Codes

AND Immediale to Status Register

Anthmetic Shifi

Branch Condmonallv

Tes! a Bit and Chanag

Tesi a Bit and Clesr

Branch Always

Test a Bit and Set

Bronch to SubrouÜne

Tesi a Bn

0

neck Register Agamst Bounds

ear 3nd Operand

Compare

Compare Address

Compare Immediate

Compare Memorv

est Condition, Decrement and Branch

igned Divide

nnigned Divide

xclus ve OR Logical

«clusive OR Immediale

xclusive OR Immetfiaie

to Condition Codes

xclusive OR Immediaia

lo Siatus Register

xchar go Register

ign Exiend

ump

Ju rip to Subrouline

oad Effective Address

nk ar d Allocate

ogical Shifi

ove Daia from Source lo Destination

ove io Condilion Code

ove to the Status Register

Operation

tD63lination)io+(Sourcelio+ X^Desiinat^or,

(Desiinationi- (Sourcei —■ Dstinailon

Destination) - 1 Sourcei — Desiination

Destinancn/ + Immediati; Data — Destinalion

IDestmaiion) -UmmediatB Dai.i— Destination

Destination! + ISource) (X — Destination

Desiinaiionl A ISourcal—*DestinaUon

Destinationl A Immediale D.iia—• Destination

iSource) A CCR —CCR

Sourcei A Sfi —SR

[Destination) Shifted bv <couni> — Desiinalion

ff QC !nBJ; PC+d—PC

-(<bil numberX OF Destination —Z

-f<bit number>l OF Desiination—

<bit number> OF Destination

-Kfatt numbeiX OF Destination— I

'—■ <bii numbGr> — OF Desiination

PC-d — PC

-Kbit number>l OF Desiination—*Z

— <bit number> OF Destination

>C— -(SPI; PC-d — PC

-(<t>ll number>) OF Desiination—*Z

Dn <0 or Dn> (<ea>t irien TRAP

~* Destinaiion

Destination)- (Sourcei

^estmaiion)-(Sourcei

^esttnation}- immsdiaie Data

Destination)-ISource)

~CC !nen Dr|- — Dn; if Dn* - 1 ihen PCt-d— PC

Oesimationl/ISourcü) — Destination

)estinationl/(Source) — Dusiincition

3esiination) © (Source) —Deslinaiion

Jestinationl ffi immediate Data —Desiination

Sourcei © CCR —CCR

Source) ffi SR —SR

< — Ry

Desiinatfonl Sign-E^iended —Destinaiion

esünation —PC

C—-ISP), Desimation —PC

ea> —*An

i— -ISP), SP —An; SP+ Displacemeni — SP

'estmation) Shjtted bv <count> —Desiination

ourcet —Destinaiion

ourcel —CCR

ource! — S R

Condition

Codes

•

•

-

-

_

1

•

•

•

-

■

■

*

•

•

•

■

*

•

■

■

■

■

•

-

•

1

[

-

-

n

-

■

■

*

■

i

•

•

n

■

<

.'i

-

•

•

*

n

■

n

o

A logical AND

V logical OR

© logical exclusive OR

- logical complement

• affected

- unaflecied

0 clearsd

1 sei

U undetmed

7-2

Table 7-2. Instruction Set (Sheet 2 of 2}

Mnemonic

MOVE rorr, SP

UVEUSP

OVEA

MOVEM

OVEP

OVEQ

MULS

MULU

NBCD

NEG

N£GX

NOT

OR

0

ORI to CCR

ORI io SR

P£A

RESET

BOL, ROR

BOXL, ROXR

rte

RTR

1 ■

■h: n

SCC
STOP

SÜß

UBA

uai

i'.

UÜX

WAP

AS

TRAPV

ST

NLK

Description

Mova from Ine Slatus Register

uvi; User Stack 'omier

Move Adöress

Move Multiple Registers

ovi; Penphsra Dai<)

Move Qu ck

Sie

i

ied ivuit pjy

isinntid wlultiply

Negate Decimai wuh Extend

■■-,:•■

Negale with Extend

No Operalton

Logical Complemenl

nc ustve OR Irnmeaiate

nclusive OR

K> i ..r-ii,;-,

nclusive OR

io Status F

mmediaiB

n CoiJiiH

mmedtaie

Dgister

P-.;sh Effective Address

Resei Exierngl Device

Roiale iWdhoul Extend)

Roiaie wuh Exlend

lelurn Irom Exception

eiüfn and Resiore Condifion Codes

aturn norn Subroutine

ubtracl Oecima wiih Exlend

et According to Coniiilion

Slatus 'ßgislut and Stop

ubtreel Binary

ubtract Address

ublract imFrediaU'

ubtraci QtJick

ubtracl wiih Extond

wap Register Hüluafi

bsI and Sei an Operand

ISO

fap on Over

es! and Dpe

n 1

DVW

and

k

Operation

SR —• DüStinairon

LJSP —An, An —USP

iSourcel—• Destination

Registers—• Desiination
ISo>,icei—• Regisiers

.Sourcel —• Destifiairot

mmadiale Data — Destinalion

iDestirtationlXISourcel — D^tinalion

1 Destination) XlSourcel — Destination

J- IDestmationijn- y. — Desunaiion

3- (Destination! —• Destination

0- (Destinalion] -X—• Destination

Destination! v iSouicel — Destination

IDestination! v imm<;c]ia;e Deia—Di;stiraiinn

Sourcel -j CCR —CCR

Sourcel vSR- SR

:ea> — - rSPi

Duatinationl Rotaieti bv <^o.int> —Destination

Destination) Rotated by <caunt> —•Destina'ion

SPI f — SR; [SP)4 —PC

S(JI i —CC. (SP! i —PC

gpi + — pc

Destination)ig- [Sourcelio~ x ~* Desunation

CX "!en 1 s— Dastiration ölst; O's — Desiination

nmediata Datu —SR STOP

Destination 1 - ISourcel —* Destination

Oestinationi - (Sourcet —Desiinatron

>jb!ma!ioni- tmmediate Data— Destination

Jestmdtionl - Immediate Data—»Destination

3estinationl - (Sourcel - x — Desiination

egister [31:16] — Register lIQ.01

Destination! Test(;d —CC, 1 — [/] OF Destinylion

C— -ISSP), SP— -ISSPl; IVectorl-*PC

1/ ;hen TRAP

Destination! Tustmi— CC

n—SP, [SPI f —An

-

•

*

-

C'

•

-

■

•

■

■

■

•

■

•

•

-

nc

;oc

-

*

■

•

■E

-

•

tio

es

n

1

n

i

n

n

■

■

■

i

i

■

i

■

-

■

■

•

•

■

•

i

:

.

I 1 = bil number

A logical AND

V logical OR

©logreal exefusive OR

- logical cornplemani

• affected

- unartected

0 cleaied

1 sei

U uride'iroa

7-3

7.1.2 Instruction Prefetch

The MC68000 uses a two-word tightly-coupied instruction prefetch mechanism to enhance Perfor

mance. This mechanism is described in terms of Ihe microcode operations involved. If the execu

tion of an instruction is defined to begin when the microroutine for that instruction is entered, some

features of the prefetch mechanism can be described.

1. When execution of an instruction begins, the Operation word and the word followtng have

already been fetched. The Operation word is in the instruction decoder.

2. In the case of multi-word instructions, as each additional word of the instruction is used

internally, a fetch is made to the instruction stream to replace it.

3. The last fetch for an instruction from the instruction stream is made when the Operation word

is discarded and decoding is started on the next instruction.

4. If the instruction is a single-word instruction causing a branch, the second word is not used.

But because this word is fetched by the preceding instruction, it is impossible to avoid this

superfluous fetch.

5. In the case of an interrupt or trace exception, both words are not used.

6. The program counter usually points to the last word fetched from the instruction stream.

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms of external

dock (CLK) periods. In this timing data, it is assumed that both memory read and write cycle times

are four dock periods. Any wait states caused by a longer memory cycle must be added to the total

instruction time, The number of bus read and write cycles for each instruction is also included with

the timing data. This timing data is enclosed in parenthesis following the execution periods and is

shown as (r/wl where r is the number of read cycles and w is the number of write cycles.

NOTE

The number of periods includes instruction fetch and all applicable Operand fetches and

Stores.

7.2.1 Effective Address Operand Calculation Timing

Table 7-3 lists the number of dock periods required to compute an instruction's effective address. It

includes fetching of any extension words, the address computation, and fetching of the memory

Operand. The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are

no write cycles involved in processing the effective address.

7.2.2 Move Instruction Execution Times

Tables 7-4 and 7-5 indicate the number of dock periods for the move instruction. This data includes

instruction fetch, Operand reads, and Operand writes. The number of bus read and write cycles is

shown in parenthesis as (r/w).

7-4

Table 7-3. Effective Address Caiculation Times

Addressing Mode

Dn

An

(An)

(An) +

■ (An)

dlAn)

dIAn, 1*1*

xxx.W

xxx. L

dlPCl

dlPC. ix)'

#xxx

Register

Data Register Diieci

Address Register Direci

Memory

Addtess Register indirecT

Address Register Indirect with Postincrement

Address Register ndirect with Predecrement

Address Register Indirect wilh Displacement

Address Register Indirect with Index

Absolute Short

Absolute Long

Program Counier with Displacement

Program Counter with Index

Immediaie

Byte, Word

0(0/01

0)0/0)

411 ;0)

411/0)

6(1/0)

8'2/0)

10(2/0)

812/0)

12(3/0)

8(2/01

1012/0.1

4(1/0)

Long

0(0/0)

0I0/0)

8(2/0)

8(2/0)

1012/0)

12(3/01

1413/0)

1213/01

16(4/01

12(3/0)

MI3/0!

812/0)

The size ol the index register lix) does not alfect execution nme.

Table 7-4. Move Byte and Word Instruction Execution Times

Source

Dn

An

lAnl

<An) +

-(Anl

d(An)

dIAn. ixl"

xxx.W

xxx.L

dl PCI

d(PC, ix)"

fxxx

Destination

Dn

411/0)

411/0)

8(2/0)

8(2/01

10(2/0)

1213/0]

1413/01

12(3/01

16(4/0)

12(3/0)

14(3/0)

8(2/01

An

411/0)

411/0)

812/0)

8(2/01

10(2/0)

12(3/0)

1413/01

12(3/01

16(4/01

1213/0)

1413/0)

8(2/0)

(Anl

611/1)

811/1)

12(2/1)

12(2/1)

14(2/1)

16(3/1)

18(3/11

16(3/1)

20(4/1)

1613/1)

1813/11

12(2/11

(An) +

8(1/1)

8(1/1)

1212/1)

12(2/1)

14(2/1)

16(3/1)

18(3/1)

16(3/11

20(4/11

1613/1)

1813/11

1212/11

-(An)

Bli/ll

8(1/1)

12(2/1)

1212/1)

1412/1)

1613/1)

18(3/11

16(3/11

20(4/11

16(3/1)

18(3/11

12(2/1)

dtAn)

1212/11

1212/11

1613/1)

1613/1)

1813/1)

2014/1)

22)4/1)

20(4/11

24(5/U

20(4/11

2214/1)

1613/1)

dIAn, ix)*

1412/1)

14(2/!)

18(3/1)

18(3/11

20(3/11

22(4/11

24(4/1)

22(4/11

26(5/11

2214/1)

24(4/11

18(3/1)

xxx.W

12(2/1)

12(2/1)

16(3/1)

16(3/1)

18(3/1)

20(4/11

2214/1)

2014/1)

2415/1)

20(4/1)

2214/1)

1613/1)

xxx. L

1613/1)

1613/1)

2014/1)

2014/1)

2214/1)

2415/1)

26(5/1)

24(5/1)

28(6/11

24(5/11

26(5/1)

20(4/1)

'The size of the mdex regisiet lixj does noi affect execution time.

Table 7-5. Move Long Instruction Execution Times

Sourco

Dn

An

lAnl

lAnl +

-lAnl

d(An>

dIAn, ix)*

xxx.W

xxx. L

d(PC)

d(PC. ix)*

Ixxx

Destination

Dn

4(1/0)

4(1/0)

12(3/01

12(3/0)

14(3/0)

16(4/0)

18(4/0)

16(4/0)

20(5/0)

18(4/0)

1814/01

1213/01

An

4(1/0)

4(1/0)

12(3/0)

12(3/0)

14(3/0)

16(4/0)

18(4/0)

16(4/01

20(5/0)

16(4/0)

18(4/01

1213/01

(An)

I2I1/2)

12(1/2)

20(3/21

2Oi3/2i

2213/2)

24(4/2)

2614/21

24(4/21

28(5/21

2414/2)

26(4/21

2013/21

(Anl +

12(1/21

12(1/2)

20(3/2)

20i3/2)

22I3/2)

24I4/2)

26(4/2)

24(4/21

28(5/2)

24(4/2)

26(4/2)

20(3/2)

-(Anl

12(1/2)

12(1/21

20(3/21

2013/2)

2213/2)

2414/2)

2614/2)

24(4/2)

28(5/2)

2414/2)

26(4;2)

20(3/21

d(An)

16(2/21

16(2/21

24(4/21

24(4/21

26(4/21

28(5/21

3015/2)

28(5/2)

32(6/2)

28(5/2)

3015/21

2414/21

dIAn, ix)*

18(2/2)

18(2/21

26(4/21

26(4/2)

2814/2)

3015/21

3215/2)

3015/21

3416/21

3015/2)

3215/2)

2614/2)

xxx.W

16(2/2)

16(2/2)

2414/2)

2414/21

26(4/21

2815/21

30(5/21

28(5/2)

32(6/2)

28(5/2)

3015/2)

2414/2)

xxx. L

2013/2

2013/2

2815/2

28(5/2

3015/2

3216/2

34(6/2

3216/2

3617/2

■

3215/2)

3416/2)

28(5/2)

The size of the mdex regisier (ix) does noi affect execuiion time.

7-5

7.2.3 Standard Instruction Execution Times

The number of dock periods shown in Table 7-6 indicaies the time required to perform the opera-

tions, störe the results, and read the next instruction. The number of bus read and write cycles is

shown in parenthesis as (r/w). The number of dock periods and the number of read and write

cycles must be added respectively to those of the effective address calculation where indicated.

in Table 7-6 the headings have the following meanings: An = address register Operand, Dn = data

register Operand, ea=an Operand specified by an effective address, and M= memory effective ad

dress Operand.

Table 7-6. Standard Instruction Execution Times

Instruction

ADD

AND

CMP

OIVS

DIVU

EOR

MULS

MULU

OR

SUB

Size

Byte. Word

Long

Bvte, Word

Long

Byte, Word

Long

■

Byte. Word

Long

-

Bvle. Word

_i

Byla, Word

Long

op<ea>, Ant

81I/OI+-

611 /OI + • "

■-

6(1/0! +

en/ci-r

-

-

-

-

-

-

611/OK

611 -'0) + • •

op<ea>, Dn

4(1/01 +

6(1/01+■•

4(1/0)+

611/01 + *•

411/0)*

6(!/0)-r

15811/0)+ "

14011,-01+ *

4(1/01***

8(1/01* *•

70(1/01+ *

70(1/0] + *

4(1/01*

6(1/01-r ••

411/01 +

611-'01+ ••

op Dn, < M >

811/ 11 -

1211/21-

811/1) +

12(1/21 +

-

-

8(1/11*

1211/21 +

-

an /11 -i

12(1/2) +

8(1/11 +

12(1/21-

NOTES:

+ add eftective address calculation time

t word or long only

* indicates maximum valtie

* * The base time of six dock periods is incryased lo eight it the effective address mode is

register difect or immediate [effective addross time should also be added).

• • • Onlv available effective address mode is data register direct

DIVS, DIVU - The divide algorithm used by ihe MC68000 provides less than 10% difference

between the best and worst case timings

MULS. MULU - The mulliply algorilhm requires 38 + 2n clocks where n is defmed as

MULU: n = the number of ones in the <ea>

MULU: n= concaianaie the <ea> with a zero as Ihe LS8. n is Ihe resultant number ot

10 or 01 patlerns in the 17-btt source; i.e , worst cass happens when the

source is S5555

7.2.4 Immediate Instruction Execution Times

The number of cfock periods shown in Table 7-7 includes the time to fetch immediate operands,

perform the operations, störe the results, and read the next Operation. The number of bus read and

write cycles is shown in parenthesis as (r/w). The number of ctock periods and the number of read

and write cyctes must be added respectively to those of the effective address calculation where in

dicated.

In Table 7-7, the headings have the following meanings: #= immediate Operand, Dn= data register

Operand, An = address register Operand, M - memory Operand, and S R = Status register.

7-6

Table 7-7. Immediate Instruction Execution Times

Instruction

ADDI

ADDQ

ANDI

CMPI

EORI

MOVEQ

ORI

SUBI

SUBQ

Size

Byte, Word

Long

Byte. Word

Long

ßyio, Word

Long

Byte. Word

Long

Byte, Word

Long

Long

Bvte, Word

Long

Byte. Word

Long

Bvte. Word

Long

op 8, Dn

8(2/0)

16G/0I

41 ■. ;■

8 :i/;;,

8(2/01

1613/01

8(2/0)

1413/0)

8(2/01

16(3/01

4(1/0)

8(2/0)

16(3/01

8(2/01

16(3/01

411:0'

811/0)

op ', An

-

81 I/O)»

8(1/0)

-

-

-

-

-

■

-

-

-

8(1/0)'

811/0)

op 9, M

12(2/11 +

2013/21+

811/1} +

12(1/21-

12(2/11 +

20(3/1) +

BI2/0I +

12(3/01 +

12(2/11 +

20(3/2) +

1212/11-

20(3/21 +

12(2/11 +

20(3/2) +

8(1/11 +

12(1/21*

■(■ add eHeciivc address calculation lime

"ward only

7.2.5 Single Operand Instruction Execution Times

Table 7-8 indicates the number of dock periods for the Single Operand instructions. The number of

bus read and write cycies is shown in parenthesis as (r/w). The number of dock periods and ihe

number of read and write cycies must be added respectively to those of the effective address

calculation where indicated.

Table 7-8. Single Operand Instruction Execution Times

Instruclion

CLR

NBCD

NEG

NEGX

NOT

See

TAS

TST

Size

Byte. Word

Long

n >.<!<:

Byte, Word

Long

8ylB, Word

Long

Byte, Word

Long

Byle, False

Byte, True

Byte

Byte. Word

Long

Register

4(1/01

6(1/0)

611/01

411/01

611/0)

4(1/0)

6(1/0)

411/0)

6(1/01

4(1/0)

6< 1 /0)

4(1/0)

4(1/0)

4(1/01

Memory

8(1/1) +

1211/21 +

8(1/11 +

8(1/11 +

1211/21 +

8(1/11-

12(1/21 +

8(1/11 +

12(1/2) +

811/1)+

811/11 +

10(1/11*

4(1/01 +

4(1/01 +

+ add effective address caicutation time

7-7

7.2.6 Shift/Rotate Instruction Execution Times

Table 7-9 indicates the number of dock periods for the shifi and rotate instructions. The number of

bus read and write cycles is shown in parenthesis as (r/w). The number of dock periods and the

number of read and write cycles must be added respectively to those of the effective address

calculation where indicated.

Table 7-9. Shift/Rotate Instruction Execution Times

Instruction

ASR, ASL

LSR.LSL

ROH, ROL

ROXR. ROXL

Stie

Byte, Word

Long

Byle. Word

Long

Byte, Word

Long

Byle, Word

Long

Registet

6 + 2n(1,'O)

8 + 2n(1/0!

6 + 2n(1/0)

8 + 2nM/0)

6 + 2nll/0)

a + 2nM/0)

6 + 2nlW0l

8 + 2nH/0l

Memory

811/11 +

811/11 +

8(1/11-1

8(1/11 +

-

+ add effective address caiculation

n is tho shifl or rolale count

7.2.7 Bit Manipulation Instruction Execution Times

Table 7-10 indicates the number of dock penods required for the bit manipulation instructions. The

number of bus read and write cycles is shown in parenthesis as (r/w). The number of dock periods

and the number of read and write cycles must be added respectively to those of the effective ad

dress calculation where indicated.

Table 7-10. Bit Manipulation Instruction Execution Times

Instruction

BCHG

BCLH

BSET

BIST

Size

Byie

Long

Byte

Long

Bvie

Long

Byte

I ..in)

Dynamic

Register

8(1/OI■

-

10(1/0)*

8(1/0)»

-

611 ,'0)

Memory

Bt1/t)+

811/1) +

-

ad/ii i

-

4(1/01 +

Static

Register

12(2/0)-

-

14(2/01*

-

1212/01-

10(2/0)

Memory

12(2/11 fr

12(2/11 +

-

12(2/1) +

8(2/0) -

-

+ add effective address calculaiion iime

" indicates maximum ualue

7.2.8 Conditional Instruction Execution Times

Table 7-11 indicates the number of dock periods required for the conditional instructions. The

number of bus read and write cycles is indicated in parenthesis as (r/w). The number of dock

periods and the number of read and write cycles must be added respectively to those of the effec

tive address calculation where indicated.

7-8

Table 7-11. Conditional Instruction Execution Times

Instruction

ßcc

BRA

BSR

DSCC

Displacement

Bv<e

Word

Bvle

Word

Byte

Word

CC true

CC taise

Brancfi

Taken

10(2/0)

1012/0)

1012/0)

10(2/0)

18(2/2)

18(2/21

-

1012/01

Branch

Not Taken

811/0)

12(2/0)

-

-

-

-

12(2/0)

14(3/0)

+ add effective address caiculation üme

■indicales maximum value

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Table 7-12 indicates the number of dock periods required for the Jump, jump-to-subroutine, load ef-

fective address, push effective address, and move multiple registers instructions. The nurnber of

bus read and write cycles is shown in parenthesis as (r/w).

Table 7-12. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr

JMP

JSR

LEA

PEA

MOVEM

M — R

MOVEM

R —M

Size

-

-

Word

Long

Word

Long

(Anl

8(2/0)

16(2/2)

4U/CI

1211/21

12 + 4n

13 t n.'O)

12- 8n

l3 + 2n/0!

Q + An

12/nl

8 + 8n

!2/2nl

(An) +

-

-

-

12 + 4n

(3+n/0!

12 + 8n

(3+2n/0)

—

-(Anl

-

-

-

-

—

-

8 + 4n

12/n)

8 + 8n

l2/2n)

d(An)

1012/01

18(2/2!

B(2/0)

16(2/2)

16 + 4n

14+n/0)

16 + 8n

l4 + 2n/0)

12 +4n

(3/nl

12 + 8n

(3/2nl

dIAn, ixl +

14(3/01

22(2/2)

1212/0)

2012/2)

18 + 4n

14+n/01

lB + 8n

W-f2n7ffl

14 + 4n

13/nl

14 + 8n

(3/2n)

xxx.W

10(2/0)

18(2/2)

8(2/01

1612/21

16 + 4n

14+n/0)

16 + 8n

(4 + 2n/0l

12 + 4n

O/n

12 ■ Hn

l3/2nl

xxx. L

1213/0)

20(3/21

1213/01

2013/21

20 + 4n

15 t - ■■.::

20 t 8n

!5 + 2n/0l

16 + 4n

(4/nl

16 + 8n

l4/2nl

d(PC)

10(2/01

18(2/2)

812/01

1612/2!

16 + .In

(4+n/01

16 + 8n

(4+2n/0)

_

d(PC, ix)*

1413/01

22(2/21

1212/0)

2012/21

18 + 4n

14-n.'O)

18 + 8n

l4 + 2n/OI

—

n is Ihe number o(registets to rnove

• is ihe size of ihe mdex iegister (ix) does noi allect ihe insiiuction's execulion time

7.2.10 Multi-Precision Instruction Execution Times

Table 7-13 indicates the number of dock periods for the multi-precision instructions. The number of

dock periods includes the time to fetch both operands, perform the operations, Store the results,

and read the next instructions. The number of read and write cydes is shown in parenthesis as

(r/w).

In Table 7-13, the headings have the following meanings: Dn=data register Operand and

M = memory Operand.

7-9

Table 7-13. Multi-Precision Instruction Execution Times

Instruction

ADDX

CMPM

SUBX

ABCD

SBCD

SIZB

Byte, Word

Long

Bvle, Word

Long

Byte, Woid

Long

Byte

BVtO

op Dn, Dn

4(1/01

an/oi

4H/01

Btl/Ol

6i l tOl

611/01

op M, M

18(3/11

3015/2)

12! 3/0!

20(5/0!

1813/11

3015/21

18(3,'11

18(3/11

7.2.11 Miscellaneous Instruction Execution Times

Tables 7-14 and 7-15 indicate the number of dock periods for the following miscellaneous instruc-
tions. The number of bus read and write cycles is shown in parenthesis as (r/w!. The number of

dock periods plus ihe number of read and write cycles must be added to those of Ihe effective ad-
dress calculation where indicated.

Table 7-14. Miscellaneous Instruction Execution Times

InsUuction

ANDI io CCR

ANDI io SR

CHK

EORl io CCR

EORl to SR

ORI io CCH

ORI to SR

MOVE from SR

MOVE lo CCR

MOVE io SR

EXG

EXT

LINK

MOVE from USP

MOVE to USP

N0P

RESET

RTE

RTR

RTS

STOP

SWAP

TRAPV

UNIX

SJza

Bvle

Word

Byle

Word

Byte

Word

-

-

Word

Long

-

-

-

-

-

-

-

Register

20(3/0)

20(3/01

10(1/0) +

20(3/0)

20(3/0]

20(3/0)

20(3/01

6(1/01

12(2/01

12(2/0)

6(1/01

■in/oi

411/01

16(2/21

4(1/01

4(1 r'0)

4(1/01

132(1/01

20(5/01

20(5/0)

16(4/0!

4(0/01

4(1/01

411/01

12(3/01

Memory

_

_

-

_

-

8(1/11 +

12(2/011

12(2/01 +

-

-

-

_

-

_

_

_

_

_

-

add effective address calculation time

Table 7-15. Move Peripheral Instruction Execution Times

Instruction

MOVEP

Size

Word

Long

Register—Memory

16(2/2)

24(2/4)

Memory— Register

1614/0)

2416/0)

7-10

7.2.12ExceptionProcessingExecutionTimes

periödlin^nUmb6r°fC'0CkPeri°dSfOfexceptionProcessing.Thenumberofdock
wordsofthehandlerroutine.ThenumberoV^rea^anÄas

Table7-16.ExceptionProcessingExecutionTimes

Exceptron

AddressError

BusError

CHKinsmiction

DividebyZero

IllegalInstruciion

Interrupt

PrivilegeViolaiion

RESEi*•

Trace

TRAPInslruclion

TRAPVInsiriichon

Periods

5CK4/7)

50(4/71

4415/4)+

42(5/41

3414/3!

44(5/31*

3414,'3>

40(6/0)

34(4/3)

38(4/4)

34(4/31

addeflecliveaddresscalcuiattontime

Tfieinterrupiacknowledgecvcleisassumed
totaketourdockpenods

''IndicatesIhelimefromwhenRESETand

HALTareiirstsampledasnegated!owhen
tnstructionenecutionStarts.

7-11/7-12

SECTION 8

ELECTRICAL SPECIFICATIONS

This section contains elecuical specifications and associated timing information for the MC68000.

8.1 MAXIMUM RATINGS

Rating

Supply Vollage

Inpui Voltage

Operaiing Temperature Range

MC68000

MC68030C

Storage Temperalure

Symbol

vcc

TA

Tstg

Valuo

- 0 3 lo +7.0

-0 3 10 W.Q

TLioTH ■

0 to70

- 40 w 85

-55 lo 150

Unit

V

V

-c

°c

This tlevice coniains circuitry to protect ihe

inputs against damage due lo high atatic

voltages or electnc fields; however. il is ad-

vised that normal precautions be taken lo

avoid application of any voltage higher ihan

maximum-rated voltages lo this high-

impedance circuit. Reliabilily oi Operation is

enhanced ii unused inputs are tied to an ap-

propnaie logic voltage level (e.g , eithcr Vss

or VCCI

8.2 THERMAL CHARACTERISTICS

Characteristic

Thermal Resistance

Ceramic

Plastic with Heat SpreadeJ

Type 8 Chip Carrier

Type C Chip Carner

Symbol

»JA

Valuo

30

30

50

50

Rating

°C/W

8.3 DC ELECTRICAL CHARACTERISTICS

5.0 Vdc ±5%; Vss = 0 Vdc; T =Tl to Th; see Figures8-1, 8-2, and 8-3)

Characterisiic

Input High Voltage

Input Low Voltage

Input Leakage Current @ 5.25 V ßfiftFt. ßGACK, SR. fJTÄÜK,

CLK. (FtÖ-lPÖ, VPÄ

RÄÜT, ftESET

Three-StatB (Off Staiel Inpui Curreni (S> 2.A V/O.i V AS. A1-A23, D0-D15,

FC0-FC2, LÖS, R/W. ÜÜ3, VMÄ

Output High VoliagelloH^ -400^Al f

E. ÄS, A1-A23. "8G". D0-D15.
FC0-FC2, LDS. R/W, DÜ5. vTSÄ

Output Low Vollage

(IOl= 1.6mA) qjLT

nOL = 3-2mA) A1-A23. 5G. FC0-FC2

(IOL~50r"A1 . RlSET

ÜOL = 5.3 mA) E,ÄS. D0-D15. L0S, R/W

ÜÜ3. \MÄ

Power Dissißalion ISee Section 9)

Capacilance fVjn-0 V, Ta~25dC; Froquency=l MHzl**

Symbol

V|H

VlL

<m

'TSI

VOH

VOL

PD...

Cfo

Min

2.0

VSS-O3

-

VCC-0.75

2.4

-

-

Max

VCC

0.8

2,5

20

20

—

0.5

05

05

0,5

-

20.0

Unit

V

V

MA

*A

V

V

w

PF

With exlernal pullup resisior ol 1.5 kQ.

* ■ Capacüance is periodically sampled raiher ihan 100% tesied.

• " Dunng normal Operation instantaneous Vqq current requiremenis may be as high as 1.5 A.

5 V 5 V

910 0

RESE1

U)

HAU

130 pF- 70 pF

Figure8-1. RESET Test Load Figure 8-2. HALT Test Load

-5 V

Test

Poini

O

X

WMDBIbO

or tquivaleni

-w—

R* = 740 fl

MMO7CO0

CL= 130 pF

(Includes an Parasmcsl

Rl = 6 0k(1 foi

£3. AI A23__BG. DO-Dl5. E

FC0-FC2, LDS, R/W, UDS, VMA

*R= 1 22 kQ [of A1-A23. 55,

FC0-FC2

Figure 8-3. Test Loads

8.4 POWER CONSIDERATIONS

The average chip-junction temperature, Tj, in °C can be obtained from:

Where:

TA=Ambient Temperature, °C

Thermal Resistance, Juncnon-to-AmbJent, DC/W

,,, = IcC x VCC- Watts - Chip Internal Power

P|/O= Power Dissipation on Input and Output Pins - User Determined

For most applications P|/O<pINT and can be neglected.

An approximate relationship between Pd and Tj (if P|/o is neglected) is:

Pn = K - (T i + 273°C) '2)

Solving equations 1 and 2 for K gives:

K = Tq*(Ta + 273DC) + ÖJA*PD2 (3)
Where K is a constant pertainmg to the particular pari. K can be determined from equation 3 by

measuring Pd tat equilibrium) for a known Ta. Using this value of K the values of Pd and Tj can be

obtained by solving equations (I) and (2) iteratively for any value of TA-

8-2

Figure 8-1 tllustrates the graphic solution to the equations, given above, for the specification power

dissipations of 1.50 and 1.75 watts over the ambient temperature ränge of - 55°C to 125°C using an

average Öja of 40°C/watt to represent the various MC68000 packages. However, actual öja's in

the ränge oi 30°C to 50°C/watt only change the curves slightly.

-55-40 0 25

Ambiem Temperaturo IT^I — °C

Figure 8-4. MC68000 Power Dissipation (Pq) vs Ambient Temperature (Ta)

8.5 AC ELECTRICAL SPECIFICATIONS - CLOCK TIMING (See Figure 8-5)

Charactoristic

Frequency of Operation

Cycle Tima

Clock Pulse Width

Rise and Fall Times

Symbol

F

'cyc

ICL

ICH

ICr

4 MHz

Min

2.0

250

115

115

: ,

Max

4.0

500

250

250

10

10

6 MHz

Min

2.0

167

75

75

:

Max

6.0

600

250

250

10

10

8 MHz

Min

2.0

125

55

55

:

Max

8.0

500

250

250

10

10

10 MHi

Min

2.0

100

45

45

:

Max

10.0

500

250

250

10

10

12.5 MHz

Min

4.0

80

35

35

-

Max

12.5

250

125

125

6

5

Uni!

MHz

ns

ns

ns

\

fCI

Figure 8-5. Clock Input Timing Diagram

8-3

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES

(VCC=5.O Vdc ±5%; Vss = 0 Vdc; Ta=T"l to Th; See Figures 8-6 and 8-7)

Num.

1

2

3

■I

5

6

8A

7

8

91

10

112

11A2-7

12»

132

142.5

IB2

16

\Ti

181

19

201

20Aö

?1Ü

222

23

24

25'J

262

276

2ß2.5

29

30

312.6

Characteristic

Clock Period

Clock Widlh Low

Clock Widlh High

Clock Fall Time

Oock Rise Time

Clock Low 10 Address

Clock High lo FC Valid

Clock High lo Address Dala

High Impedance (Maximum!

Clock High to Address/FC

Invalid IMinimum)

Clock High lo AS, DS Low

IMaximumI

Clock High io Ä~5. US Low

(Minimum]

Address io TS. D~S" (Read)

Low/AS Write

FC Valid ioÄ5, CS IReadl
Low/A3 Wriie

Clock Low lo ÄS. DS High

AS, DS High to Address/f-C

Invalid

A3, D~5 Width Low (Readl/A"S~

Write

DS Widlh Low (Wrilel

AS, US Widlh High

Clock High io AS, DS High

Impedance

Ä~S~, US High to R/W High

Clock High to R/W High
(Maximum)

Clock High to R/W High

(MinimumI

Clcc* High 10 R/W Low

AS Low lo R/W Valid

Address Valid lo R/W Low

FC Valid lo R/W Low

R/W Low io D5 Low (Wriiol

Clock Low to Daia Out Valid

Clock High to R/W, vMA
High Impedance

DS" High lo Data Oui Invalid

Dala Oul Valid to Du Low

IWriiel

Data In lo Clock Low (Setup

Time)

ÄS", DS High to DTACK High

DS High to Data Invalid

(Hold Time)

ÄS", US High lo BTR~R" High

DTACK Low to Dala In

(Setup Timei

Symbol

'cyc

ICL

'CH

'C(

ICi

tCLAV

'CHFCV

ICHAZx

ICHAZn

'CHSLx

'CHSLn

'AVSL

'FCVSL

'CLSH

'SHAZ

<SL

tDWPW

ISH

ICHSZ

^SHRH

tCHRHx

'CHRHn

'CHRL

<ASRV

'AVRL

'FCVRL

'RLSL

'CLDO

'CHRZ

'SHDO

'DOSL

'DICL

»SHDAH

ISHDI

'SHBEH

'DALDI

4 MHz

Min

250

115

155

-

-

-

-

0

-

0

55

80

-

60

535

285

285

-

60

„

0

-

-

45

80

200

-

-

IM

55

30

0

0

0

-

Max

500

250

250

10

10

90

90

120

-

80

-

-

-

90

-

-

-

-

120

-

90

-

90

20

-

-

yu

120

-

-

490

-

-

180

6 MHz

Min

167

75

75

-

-

-

-

-

0

-

0

35

70

-

40

337

170

180

-

50

0

-

-

25

70

140

-

-

40

35

25

0

0

ii

-

Max

500

250

25U

10

10

BO

80

100

-

70

-

-

-

80

-

-

-

100

-

80

-

80

20

-

-

-

100

-

-

-

325

-

-

120

S MHz

Min

125

55

55

-

-

-

-

-

0

-

0

30

60

-

30

240

115

150

-

40

-

0

-

-

20

60

80

-

-

30

30

15

0

0

0

-

Max

500

250

250

10

10

/o

70

80

-

60

-

-

-

70

-

-

-

-

80

-

70

-

70

20

-

70

80

-

-

-

245

-

-

90

10 MHz

Min

100

45

45

-

-

-

-

-

0

-

0

20

50

-

20

195

95

105

-

20

-

0

-

■ -

0

50

50

-

-

20

20

10

0

0

0

-

Max

500

250

250

10

10

60

60

70

-

55

-

-

_

55

-

-

-

-

70

-

60

-

60

20

-

-

bb

70

-

-

-

190

-

-

65

12.5 MHz

Min

80

35

35

-

-

-.

0

-

0

0

40

10

160

80

65

-

10

-

0

-

-

0

30

30

-

-

15

15

10

0

0

0

-

Max

250

125

125

5

5

55

55

60

-

55

-

-

-

50

-

-

-

- ■

60

60

-

60

20

-

-

-

55

60

-

-

-

150

-

-

50

Un»

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

na

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

8-4

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (CONTINUED)

Num.

32

:g

j.i

3ä

:■/;

37

37A

38

39

40

41

42

43

44

45

46

4/'>

.■.!<"■;

49

b.;

51

52

53

54

55

56<

Charactaristic

HALT and RESET Input

Transilion Time

Clock High lo BG Low

Clock High lo BG High

BR Low to ÜG Low

B~R High to B~G" High

BGACK Low 10 BG High

BGACK Low to DR High

fto Provent Rearbinaiion)

BG Low lo Bus High Impedance

iwith A3 High)

BG Widlh High

Clock Low to VMÄ Low

Clock Low to E Transilion

£ Output Rise and Fall Time

VMA Low lo E High

AS, DS High to VPA High

E Low to Address/VMA/FC

Invalid

BGACK Widlh

Asynchronous Input Setup Time

BERR Low to DTACK Low

E Low to AS, DS Invalid

E Width High

E Width Low

£ Extended Rise Time

Data Hold Irom Clock High

Data Hold irom E Low IWnte)

R/W to Data Bus Impedance

Change

HALT/RESET Pulse Width

Symbol

'RHr, 1

'CHGL

'CHGH

tBRLGL

'BRHGH

»GALGH

'ßGKBR

!GLZ

'GH

'CLVML

'CLC

[Er. f

'VMLEH

'SHVPH

'ELAI

1061

<ASI

'BELDAL

'ELSI

'EH

'EL

tClEHX

'CHDO

'ELDOZ

>RLDO

'HRPW

4 MHz

Min

0

-

-

1.5

1.5

1.5

30

-

1 5

-

-

325

0

55

1.6

30

30

-80

900

1400

-

0

60

55

10

Max

200

90

90

3.5

3.5

3.0

-

120

-

90

100

25

-

2-10

-

_

-

-

-

80

-

1 -

-

-

6 MHz

Min

0

-

-

1.5

1 5

1 5

25

-

1.5

-

-

-

240

0

35

1.5

25

25

-80

600

900

-

0

40

35

10

Max

200

80

80

3.5

3.5

3.0

-

100

-

80

85

25

-

160

-

-

-

-

-

-

-

80

-

-

8MH*

Min

0

-

1.5

1 5

1.5

20

-

1 5

-

-

-

200

0

30

1.5

20

20

-80

450

700

-

0

30

30

10

Max

200

70

70

3.5

3.5

3.0

-

80

-

70

70

25

-

120

-

-

-

-

-

-

80

-

-

-

-

10 MHz

Min

0

-

-

1.5

1 5

1 5

20

-

1.5

-

-

150

0

10

1.5

20

20

-80

350

550

(J

20

20

10

Max

200

60

60

2 5

35

3.0

-

70

-

70

55

25

1 -

90

-

-

-

-

-

-

-

-

-

-

-

12.5 MHz

Min

0

„

-

1.5

1 5

1.5

20

-

1 5

-

-

90

0

10

1.5

20

20

-80

280

440

-

0

15

10

10

Max

200

50

50

3.5

35

30

-

60

70

45

2b

-

70

-

-

-

-

-

-

80

-

-

-

-

Unit

ns

ns

ns

Clk Per

Clk, Per,

Clk Per

ns

ns

Clk Per

ns

ns

ns

ns

ns

ns

Clk. Per.

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clk. Per.

Noies:

1. For a loading capacitance oi less than or equal to 50 pieofarads, subtraci 5 nanoseconds trom the value given in ihese columns

2. Actual value üepends on clock penod.

3. tf /47 is satisiled for bolh DTACK and BERR. #48 may be 0 nanoseconds,

4. For power up, ihe MPU must be held in RESET staie for 100 ms to all stabilization oi on-chip ctrcuilrv After ihe System is

powered up, #56 refers 10 the minimum pulse widlh required to reset thü System.

5. /14, *14A, and 128 are one clock penod less than ihe given number lor T6E, BF4. and R9M mask sets.

6. If the asynchronous selup lime 1*47) requirements are satisfied, the DTACK low-to-daia seiup ume {#31) requirement can be

ignored. The data must onlv satisfy ihe data-m clock-low setup Urne 1*27) for ihe followmg cycle

7. For T6E. BF4, and R9M mask sei HA timing equals 11. and 21A equals21 20A may be 0 lor T6E, BF4. and R9M mas* seis

8. When £5 and R/Ware equally loaded (±20%l, subiract 10 nanoseconds Irom ihe values given in ihese columns.

Timing diagrams (Figures 8-6 and 8-7) are located

on a fold-out page at the end of this document.

8-5

8.7 AC ELECTRICAL SPECIFICATIONS - MC68000 TO M6800 PERIPHERAL

IVcc=5.0 Vdc ±5%, VsS = 0 Vdc, Ta=T[_ to Tu, refer to Figures 8-8 and 8-9)

Num.

23

24

27

40

41

42

43

44

45

47

49

50

51

52

54

Characterislic

Clock Low to Data Out Valid

Clock High to H/W,

VMA High Impedance

Data In to Clock Low

ISetup Time)

Clock Low to VMA Low

Clock Low to E Transition

E Oulpul Rise and Fall Time

VMA Lqw lo E High

AS, US High to VPA High

t Low to Address/VMA/FC

Invalid

Asynchronaus Input Seiup Timo

fc Low lo AS. US Invalid

E Width High

E Width Low

£ Extended Rise Time

Data Hold Irom E Low tWrilel

Symbol

'Cl.DO

'CHRZ

IDICL

tCLVML

'CLC

t&. 1

tVMLEH

tSHVPH

'ELAI

'ASI

1ELSI

'EH

■EL

'CIEHX

'ELDOZ

4 MHz

Min

-

-

30

-

-

-

325

0

55

30

-SO

:'■"

i ■:■ < i

60

Max

90

120

-

90

100

25

240

-

-

-

-

_

00

6 MHz

Min

-

-

25

-

■ -

240

0

35

25

-80

600

900

-

40

Man

80

100

-

80

85

25

-

160

-

-

-

80

8 MHz

Min

-

15

- ,

-

200

0

30

20

80

45t:

7 f :■

-

30

Max

70

80

-

70

70

2b

-

120

-

-

-

-

-

80

10 MHz

Min

-

-

10

-

-

150

0

10

20

-80

350

550

20

Max

55

70

-

70

55

25

-

90

-

-

-

-

-

80

-

12.5 MHz

Min

-

-

10

-

-

90

0

10

20

-80

2B0

440

-

15

Max

55

60

-

70

45

25

■

70

-

-

-

-

-

80

-

Uni!

ns

r.s

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

SO Sl 52 S3 S4 w w w w W W W W w w w S5 S6 S7 SO

CLK

A1-A23

Data In

NOTE. This liming diagram is included lor ihose who wish lo design ih«u own orcuit to gecicr.iin VMA li shows thß host casR oossi
attamable

Figure 8-8. MC68000 to M6800 Peripheral Timing Diagram — Best Case

8-6

C
L
K

V
P
A

A
1
A
2
3

S
O

S
1

5
2

S
3

S
4

w
w

w
w

2
3
]

D
a
i
a
O
u
t

D
s
t
a
l
n

C

5
4
)

t
@
1

N
O
T
E
.

Th
i-
;
ti
mi
ng

Öi
sg
ra
m

is
in

cl
ud

ed
Io

j
th
os
e
w
h
o

wi
sh

to
Qe
si

gn
ih

en
o
w
n

ci
tc
ui
!

lo
ge

ne
ra

ie
V
M
A

El
s
h
o
w
s

Ih
e
wo
rs
l
ca
se

po
ss
ib
ly

an
ai
na
bl
e

Fi
gu

re
8-
9.

M
C
6
8
0
0
0

to
M
6
8
0
0

Pe
ri
ph
er
al

T
i
m
i
n
g
D
i
a
g
r
a
m
-

W
o
r
s
t
C
a
s
e

1.8 AC ELECTRICAL SPECIFICATIONS - BUS ARBITRATION

5.0 Vdc ±5%; VsS = 0 Vdc; Ta = Tl to Th; See Figure8-10)

Num.

33

34

35

36

37

37A

38

39

46

Characterislic

Clock High to B~ü Low

Clock High to 5G Hjgh

£R Low to EU Low

SR High io B~ü" High

BGACK. Low to Bü High

BGACK. Low to BH Hjgh

lio Prcvcnt Rcarbitraiionl

B~G~ Low io Bus High Impedance

Iwith ÄS Highl

BE WirJlh High

SGACK Widlh

Symbol

'(HGL

'CHGH

"BRLGL

'BBHGH

'GALGH

IBGKBR

IGLZ

'GH

'BGL

4 MHz

Min

-

-

1 5

1.5

1.5

30

1.5

1.5

Max

90

90

3.5

3.5

3.0

-

120

6 MHz

Min

-

1 5

1.5

1.5

25

-

1 5

1 5

Max

60

BO

35

3.5

3.0

, -

100

-

-

8 MHz

Min

-

-

1.5

1.5

20

-

1 5

1 !,

Max

.'((

70

35

!■'

.1 0

-

80

-

-

10 MH;

Min

1 5

1 5

1.5

20

-

1.5

1 5

Max

60

60

35

3.5

3.0

-

70

-

-

12.5 MHz

Min

-

1 5

1.6

1 5

20

1 5

Max

50

50

■J.b

3.5

30

-

60

- .

Unit

ns

ns

Clk Per.

Clk Per

Clk Per

ns

ns

Clk. Per

Clk. Per

These waveforms should only be referenced in regard to the edge-to-edge measurement of the ttm-

ing specifications. They are not intended as a functional description of the input and Output Signals.

Refer to other functional descriplions and their related diagrams for device Operation.

CLK

NOTES:

1. Setup timo for Ihc osynchronous inpuls BERR, BGACK, BR. DTACK, IPL0-IPL2. and VPA guarantees Iheir recognition al Ihenaxl

falling edge ol the clock.

2. Wauelorm measuremenis lor all inpuls and Outputs are specified al: logic high = 2.0 volts, logic low = 0.8 uolts.

Figure 8-10. Bus Arbitration Timing Diagram

SECTION 9

ORDERING INFORMATION

This section contains detailed information to be used as a guide when ordering the MC68000.

9.1 STANDARD MC68000 ORDERING INFORMATION

Package Type

Ceramic

L Suffix

Plastic with

Heat Spreader

G Suffix

Type B Leadless

Chip Carrier*

ZB Suffix

Pin Grid Array

R Suffix

Frequency

(MHz)

4.0

4.0

4.0

6.0

6.0

6.0

8.0

8.0

8.0

10.0

10.0

12.5

4.0

4.0

6.0

6.0

8.0

8.0

10.0

10.0

12.5

4.0

6.0

8.0

10.0

12.5

6.0

8.0

10.0

12.5

Temperature

0°C to 70°C

-40°C to85°C

-55°C to 125°C

0°C to 70°C

-40°C to 85°C

-55°Cto 125 °C

0°C to 70°C

-40°C to85°C

-55°C to 125°C

0°C to 70°C

-40°C to85°C

0°C to 70°C

0°C to 70°C

-40°C to85°C

0°C to 70°C

-40°C to85°C

0°C to 70°C

-40°C to85°C

0°C to 70°C

-40°C to85°C

0°C to 70°C

0°C to 70°C

0°C to 70°C

0°C to 70°C

0°Cto70°C

0°C to 70°C

0°C to 70°C

0°C to 70°C

0°C to 70°C

0DC to 70°C

Order Number

MC68000L4

MC68000CL4

MC68000AL4

MC68000L6

MC68000CL6

MC68000AL6

MC68000L8

MC68000CL8

MC68O00AL8

MC68000L10

MC68000CL10

MC68000L12

MC68000G4

MC68000CG4

MC68000G6

MC68000CG6

MC68000G8

MC68000CG8

MC68000G10

MC68000CG10

MC68000G12

MC68000ZB4

MC68000ZB6

MC68000ZB8

MC68000ZB10

MC68000ZB12

MC68000 R6

MC68000 R8

MC68000R10

MC68000R12

Maximum Prj

(Watts)

1.50

1.65

1.75

1.50

1.65

1.75

1.50

1.65

1.75

1.50

1.65

1.75

1.50

1.65

1.50

1.65

1.50

1.65

1.50

1.65

1.75

1.50

1.50

1.50

1.50

1.75

1.50

1.50

1.50

1.50

* Contact factory for avaifability of the Type C Leadless Chip Carrier (ZC Suffix).

9-1

9.2 "BETTER" PROCESSING - STANDARD PRODUCT PLUS

Level I (Suffix X)

• 100% temperature cycling per M1L-STD-883A. Method 1010, ten cycles from -25°C to

+ 150DC.

• 100% high temperature functional test at Ta max.

Level II (Suffix D)

• 100% burn-in to MIL-STD-883A test conditions equivalent to 168 hours at + 125°C.

• 100% post burn-in de parametric test at 25°C.

Level III (Suffix DSI

• Combination of Levels I and II above.

When ordering the "BETTER" processing, identify the level desired by adding the appropriate suffix

(indicated above in parenthesis) to the end of the part number.

MC68000CL8DS

MC68000

Family Designation-

Temperature Range-

Blank = 0°C to 70°C

C= -40DC to85°C

A= -55°C to 125°C

Package Type

L Ceramic

G Plastic with Heat Spreader

ZB Type B Leadless Chip Carrier

ZC Type C Leadless Chip Carrier

R Pin Grid Array

9-2

9.3 HI-REL MIL-STD-883B MC68000 ORDERING INFORMATION

CLASS B, GOLD LEADS ONLY

Package Type

Ceramic

Side-Brazed

Y Suffix

Gold Leads

Type C Leadless

Chip Carrier

Z Suffix

Gold Leads

Frequency

(MHz)

4

4

6

6

6

8

8

8

10

4

4

6

6

6

8

8

10

Temperature

-55°C to 125°C

-55°C to 110°C

-55°C to 125°C

-55°C to 110aC

-40°C to85°C

-55°C to 125°C

-55°C to 110°C

-40°C to85°C

-40°C to85°C

-55°C to 125°C

-55°C to 110°C

-55°C to 125°C

-55°C to 110°C

-40°C to85°C

-55°C to 125°C

-40°C to85°C

-40°C to85°C

Maximum Pp

Order Number

MC68000BYCA4

MC68000BYCB4

MC68000BYCA6

MC68000BYCB6

MC68000BYCE6

MC68000BYCA8

MC68000BYCB8

MC68000BYCE8

MC68000BYCEA

MC68000BZCA4

MC68000BZCB4

MC68000BZCA6

MC68000BZCB6

MC68000BZCE6

MC68000BZCA8

MC68000BZCE8

MC68000BZCEA

(Watts)

1.75

1.75

1.75

1.75

1.65

1.75

1.75

1.65

1.65

1.75

1.75

1.75

1.75

1.65

1.75

1.65

1.65

9-3/9-4

SECTION 10

MECHANICAL DATA

This section contains the pin assignments and package dimensions for the 64-pin dua!-in-line and

chip carrier versions of the MC68000.

10.1 PIN ASSIGNMENTS

64-Pin Dual-in-Line Package 68-Terminal Chip Carrier

D4C

D3C

D2C 3

D1C

DOC

ÄSC

UDSC

LDSC8

R/WC 9

DTACKC

1GC

0

1

ÜGACXCJ12

BRC 13

VCCC 14

CLKC 15

GNDQ16

7

RESETC118

VMAC 19

EC20

VPÄC 21

BERRC22

1PL2C 23

TPÜL 24

IPLOC 25

FC2C 26

FC1C W

FCOC 28

A1C 29

A2C 30

A3C31

A4C32

64 HD5

63DD6

62 DD7

61 3D8

60DD9

59 DD1C

58 DD11

45

13
QOOQÜaDQüQO

i T'l i 1 i I i i i I I 1 T 1 M

56 DD13

55 3D14

54 UD15

53 I]GND

52 3 A23

51 3 A22

50 U A21

49 3 VCC

48 HA20

47 H A19

46 3A18

3A17

44 3A16

DA15

HAU

40UA12

DA9

35 DA7

34 DA6

33 3A5

HALT-

RESET-

VMA-

VPA-

IPL2-

IPL1-

18

>26

1 66

35

\

1 1

i
52(

43 5
1 1

-D13

■DU

-D15

-GND

-GND

-A23

-A22

-A21

-A20
-A19

-A18

-A17

-A16

-A15

-A14

-A13

10-1

68-Terminal Pin Grid Array

K

J

H

G

F

£

0

Z

I

©

©

©

©

©

0

©

©

©

©

©

©

0©

©

©

©

©

©

(O } (Dl

0©

©

©

©©

®@

©

©

©

©

Sottom
View

©

©

©

©

0

©

©

©

©

©

©

©

©

©

©

©

©

©

©

©

©

©

©

®©

©

©

©

©

©

©

©

©

Pin Numbor

AI

A2

A3

A4

A5

A6

A7

A8

A9

A10

B1

B2

B3

B4

B5

B6

B7

B8

B9

BIO

C1

C2

C3

C8

C9

CIO

D1

D2

D9

D10

El

E2

E9

E10

Function

Do Not Connect

AS

D1

D2

D4

D5

D7

Da

D10

D12

DTACK

LDS

UDS

DO

D3

D6

D9

DU

D13

D15

BGACK

BG

R/W

D13

A23

A22

FR

VCC
VSS
A21

CLK

vss
Vcc
A20

Pin Number

Fl

F2

F9

F10

Gl

G2

G9

G10

Hl

H2

H3

H8

H9

H1O

J1

J2

J3

J4

J5

J6

J7

ja

J9

J10

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

Function

HALT

RESET

A18

A19

VMA

VPA

A15

A17

E

IPL2

IPL1

A13

A12

A16

BERH

IPLO

FC1

Do Not Connect

A2

AG

A8

A10

A11

A14

Do Not Connect

FC2

FCO

A1

A3

A4

A6

A7

A9

Do Not Connect

10-2

10.2 PACKAGE DIMENSIONS

L SUFFIX

CERAMIC PACKAGE

GASE 746-01

B

NOTES:

1. DIMENSIONGSIS DATUM.

2. PDSITIONALTQLERANCEFQR LEADS:

0.25(0.010t@|T

3. GB IS SEATING PLANE.

4. DIMENSION "L"TO CENTER OF LEADS

WHENFORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5,1973.

DIM

A

U

C

D

F

G

J

K

L

M

N

MILLIMETERS

MIN

80.52

22.25

3.05

0.38

0.76

2.54

0.20

2.54

22.61

-

1.02

MAX

82.04

22.96

4.32

0.53

1.40

BSC

0.33

4.19

23.11

to°

1.52

1NCHES

MIN

3.170

0.876

0.120

0.015

0.030

0.10

0.008

0.100

0.890

-

0.040

MAX

3.230

0.304

0.170

0.021

0.055

BSC

0.013

0.165

0.910

10D

0.050

G SUFFIX

PLASTIC PACKAGE

GASE 754-01

NOTES:

1. DIMENSIONS A AND B ARE DATUMS,

2. GH IS SEATING PLANE.

3. PDSITIGNALTOLERANCE FOfl LEADS

(DIMENSION D):

|-f-| 00-25 (0.010) (m)|T|A ©|B~@|

4. DIMENSION LTD CENTER OF LEADS

WHENFORMED PARALLEL.

5. DIMENSION BDOES NDT INCLUDE

MOLD FLASH.

6. DIMENSIONING AND TOLERANCING

PER ANSI Y14.5, 1973.

DIM

A

B

C

0

F

G

J

K

L

M

N

MILLIMETERS

MIN

81.16

20.17

4.83

0.33

1.27

2.54

0.20

3.05

MAX

81.91

20.57

5.84

0.53

1.77

BSC

0.38

3.55

22.86 BSC

00

0.51

150

1.01

INCHES

MIN

3.195

0.790

0.190

0.013

0.050

0.101

O.OOB

0,120

MAX

3.225

0.810

0.23D

0.O21

G.070

BSC

0.015

0.140

0.900 BSC

00

0.020

150

0.040

10-3

10.2 PACKAGE DIMENSIONS

za suffix

TYPEB LEADLESS

CHIP CARRIER

GASE 760A-01

NOTES:

1. DIMENSION A IS DATUM (2 PLACES).

2pTllSGAUGE PLANE.

3. PQSITIONALTOLERANCEFOR

TEflMINALS(D): 68 PLACES

4. D1MENSI0N1NG AND TOLERANCING

PER ANSI Y14.&, 1973.

5. DIMENSION H PROVIDESTHE SIZE FOR

BOTH THE PAD LENGTH AND THE

THREE CORNER NOTCHES.

DIM

A

B

C

D

F

G

H

hl

R

MILLIMETERS

MIN

23.83

1S.24

1.73

0.84

1.90

1.27

1.02

1.14

23.03

MAX

24.43

15.49

3.05

0.99

2.41

BSC

1.52

2.24

24.43

INCHES

MIN

0.938

0.600

Ü.OGG

0.033

0.075

MAX

0.962

0.610

0.120

0.039

0.095

0.050 BSC

0.040

0.045

0.938

0.060

O.Ü80

0.9 G2

ZC SUFFIX

TYPEC LEADLESS

CHIPCAHHiefl

CASE 760-01

NOTES:

1. DIMENSION A IS DATUM (2 PLACES).

2. OS IS GAUGE PLANE.

3. POSITIDNALTOLERANCE FOR

TERMINALS(O): 68 PLACES

h -i

4. DIMENSIONINGANDTOLERANC1NG

PER ANSI Y14.5,1973.

DIM

A

B

C

D

F

G

H

N

R

MILLIMETERS

MIN

23.B3

15.24

2.03

0.56

1.90

1.27

1.02

1.7B

23.83

MAX

24.43

15.49

3.05

0.71

2.41

ISC

1.52

2.29

24.43

INCHES

MIN

0.938

0.600

0.080

0.022

0.075

0.050

0.040

0.070

0.938

MAX

0.962

0.610

0.120

0.028

O.095

BSC

0.060

0.090

0.962

10-4

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-

ing specifications. They are not intended as a functional description of the input and Output Signals.

Refer to other functional descriptions and their related diagrams for device Operation.

s?SO S1 S2 S3 S4 S5 S6

Data In

NOTES

1. Setup time for the asynchronous mputs 8GACK, IPLO-2, and VPÄ guarantees their recognition at the next falling eüge of the dock.

2 BR need fall at This time only in order to insure being recognued at the end of this bus cycle.

3 Timing measurements ate reierenced io and Itom a low voltage ol 0 8 volis and a high voltage of 2.0 volls, unless otherwise noted.

Figure 8-6. Read Cycle Timing Diagram

Foldout 1

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-

ing specifications. They are not intended as a functional description of the input and Output Signals.

Refer to other functional descriptions and their related diagrams for device Operation.

SO Sl S2 S3 S1 S5 SB S7 SO

CLK

A0-A19

DTACK

NOTES:

1. Timing measuremants are referenced to and from a Iow voltage of 0.8 volls and a high vollage of 2.0 volts, unless otherwise noted.

2. Because of loading variations, R/W may be valid aller AS* even ihough both are initiaied bv the rising edge o) S2 (Specilication
20AI.

Figure 8-7. Write Cycle Timing Diagram

Foldout 2

Read and Write Cycle

Timing Diagrams

ITirning tables located on

pages 8-4 and 8-5.)

This Information has be

ihe riflhl to make chani

or use of any proüucT t

prooucl. spocihcat Ions

:nc:

estc

1 circ

hera

eluliy

atiy pr

ütiecdecian

Oucls here

it nescribed here

n am 5 uO|ect to c

dis

n I

n. h

an

be

i ir

o 1

8

B¥ed to he entirety isliablc

prrjve reliabtlily. lurclion o

cerse is conveyed under p

viltiout notica.

How

dsBi
atent

vcr.no reEponsib

n. Motorola tloes

ighls in any form.

Uly is ass

□ 1 nssume

When Ihis

med tot

any liab

documo

nacc

itya

Iron

uracies

sing o

:ainsif

Molorüla <e

t ol ine appl

lormation on

calinn

a new

MOTOROLA Semiconductor Products Inc.
ColvNles Road, Kelvin Estate - East Kilbride/Glasgow - SCOTLAND Printe«

