CP/M-68K™
Operating System
Programmer’s Guide

Copyright CD.Ianuary 1983

Digital Research
P.0. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Resetved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This documentation is, however, tutorial in nature.
Thus, the reader is granted permission to include
the example programs, either in whole or in part, in
his own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. Concurrent Ccp/M-86, CP/M-68K,
Cp/M-80, CP/M-86, DDT-68K, MP/M-80, and MP/M-86 are
trademarks of Digital Research. Motorola is a
registered trademark of Motorola Inc. Unix is a
registered trademark of Bell Laboratories. IBM
Personal Computer is a tradename of International
Business Machines.

The CP/M-68K Operating System Programmer 's Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

P Y 2 222222222222 22 2 22 2 2 2 2 2 A 2 24

* Pirst Edition: January 1983 *
**********t*t*****f*t*******t*****

Foreword

CP/M-68K™is a single-user operating system designed for the
MOTOROLA® MC68000 or a compatible 68000 microprocessor. CP/M-68K
requires a minimum of 64K bytes of random access memory (RAM) to run
its base-level system, which contains the CP/M® commands and the
utilities listed below.

e CP/M Built-in Commands:

DIR
DIRS
ERA
REN
SUBMIT
TYPE
USER

e Standard CP/M Utilities:

DDT-68K™
ED '
PIP

STAT

e Programming Utilities:

Archive (AR68)
DUMP

Relocation (RELOC)
SIZE68

SENDC68

e Programming Tools
Assembler (AS68)
Linker (LO68)
C Compiler*

C Preprocessor*

* Described in the C Programming Guide for CP/M-68K.

CP/M-68K requires a minimum of 128K bytes of RAM to run the
programming tools distributed with CP/M-68K.

The CP/M-68K file system is based on and is upwardly compatible
with the CP/M-80™ Version 2.2 and CP/M-86® Version l.1 file
systems. However, CP/M-68K supports a much larger file size with a
maximum of 32 megabytes per file.

iii

CP/M-68K supports a maximum of 16 disk drives, with 512
megabytes per drive. CP/M-68K supports other peripheral devices
that the Basic I/0 System (BIOS) assigns to one of the four logical
devices: LIST, CONSOLE, AUXILIARY INPUT, or AUXILIARY OUTPUT.

This guide describes the programming interface to CP/M-68K.
The first few sections in this guide discuss the CP/M-68K
architecture, memory models, executable programs, and file system
access functions. Latter sections of this guide describe
programming tools and utilities distributed with your CP/M-68K
system.

This guide assumes you are an experienced programmer familiar
with the basic programming concepts of assembly language. If you
are not familiar with the Motorola 68000 assembly language, refer to
Motorola manuals listed below.

e 16-BIT Microprocessor User's Manual, third edition
MC68000UM (AD3)

e M68000 Resident Structured Assembler Reference Manual
M68KMASM (D4)

Before you can use the facilities in this guide, your CP/M-68K
system must be configured for your hardware environment. Normally,
your system is configured for you by the manufacturer of your
computer or the software distributor. However, if you have an
unusual hardware environment, this may not be the case. Refer to
the CP/M-68K Operating System System Guide for details on how to
configure your system for a custom hardware environment.

New Functions and Implementation Changes

CP/M-68K has six new Basic .Disk Operating System (BDOS)
functions and additional implementation changes in the BDOS
functions and data structures that differ from other CP/M systems.
The new BDOS functions and implementation changes are listed in

Appendix F.
Table F-4 in Appendix F contains functions and commands

supported by other CP/M systems, but that are not supported by CP/M-
68K.

iv

Table of Contents

Introduction to CP/M-68K

1.1 CP/M-68K System Architecture
1.2 Transient Programs . « « « « o o o o o o
1.3 File System ACCESS « « « « o o o o o o o =
1.4 Programming Tools and Commands . . . « .« .
1.5 CP/M-68K File Specification . « . « « . .« &«
1.6 Wildcards « « « o o o o o o o o o o o o o

1.7 CP/M-68K Terminology . « « « ¢ o o o o o =

The CCP and Transient Programs
2.1 CCP Built-In and Transient Commands . . . ;
2.2 Loading A Program In Memory . . « « « « « .

2.2.1 Base Page Initialization By The CCP
2.2.2 Loading Multiple Programs . . .« « .

2.2.3 Base Page Initialization

2.3 Exiting Transient Programs . . « « « « = =

2.4 Transient Program Execution Model

Command File Format

3.1 The Header and Program Segments .
3 L] 2 The symbol Table L] Ll L3 L] e Ll L] L] ® L J L] L] L]
3.2.1 Printing The Symbol Table

3.3 Relocation Information . « « ¢ ¢« o o o o -«

3.3.1 The Format of A Relocation Word . .

Basic Disk Operating System Functions
4.1 BDOS Functions and Parameters . « « « o« «

4.1.1 Invoking BDOS Functions . . . « . . -
4.1.2 Organization Of BDOS Functions . . .

[SN ST S

10
10
10
11

11l
12

15
17
19
19
20

24

24
25

Table of Contents
(continued)

4.2 File ACCQSS Functions L3 . L] . L] . [

4.3

4.4

A File Control Block (FCB)
File Processing Errors . .
Open File Function -
Close File Function
Search For First Function .
Search For Next Function . .

N

Delete File Function . . .
Read Sequential Function .
Write Sequential Function
Make File Function =«
Rename File Function . . .

ISFCESENE SENN SN SR SN SR SN
0 & o 0

HFHEHERHEREEO®OSOW

e o & o 5 3 8 6 & 9 ¢ o

Set File Attributes Function
Read Random Function . . . =«
Write Random Function . . .
Compute File Size Function .
Set Random Record Function .
Write Random With Zero Fill Fun

oUW O

[] . . [] L] []

P O O O N N N N W N ol ol

[SE SIS SH SN S

e o & o o o

Func tions L] L] . L] . - [L] . L]

o
2]
[
<
(1]

Reset Disk System Function .
Select Disk Function . . .
Return Login Vector Function
Return Current Disk Function
Write Protect Disk Function
.Get Read-Only Vector Function
Get Disk Parameters Function
Reset Drive Function
Get Disk Free Space Function

. L] L]

WwWwwwwwww
e o o 0 0 0
Voo W+

QG O N ol
P

Character I/0 Functions . . « « « =«

4.4.1 Console 1/0 Functions . . .
Console Input Function . . .
Console Output Function . .
Direct Console I/0 Function
Print String Function . . .
Read Console Buffer Function
Get Console Status Function

Auxiliary Input Function . .
Auxiliary Output Function .
List Output Function

vi

Set Direct Memory Access (DMA)

.
L]
un

L]
.
.
.
]

(o]

Additional Serial I/O Functions

. L] . L L] . L]

[* . []

3]

e o o o o (Do o

o]

. [. L] [L]

L[] . L] L]

25

26
28
31
32

34
35
36
37
39

41
42
44
46
48
49
51

52

53

55
56
57
58

59
62

62

64
64
65
66
68
69
71

72
72

74

Moo

4.5

4.6

AS68
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

L068
6.1
6.2
6.3
6.4

Table of Contents

(continued)

4.4.3 1I/0 Byte Functions . . .
Get I/0 Byte Function .

Set I/O Byte Function .

System/Program Control Functions

Exception Functions

4.6.1 Set Exception Vector Function

4.6.2 Set Supervisor State . .
4.6.3 Get/Set TPA Limits . . .
Assembler

Assembler‘Operation « o e o o
Initializing AS68 . . « « « . &
Invoking the Assembler (AS68) .
Assembly Language Directives .
Sample Commands Invoking AS68 .
Assembly Language Differences .
Assembly Language Extensions .

Error Messages . « « « o o o o

Linker

Linker Operation . . « « « « &«
Invoking the Linker (L068) . .
Sample Commands Invoking LO068 .

L068 Error Messages . « « « « o

vii

.

L3

4.5.1 System Reset Function . .

4.5.2 Return Version Number Functlon
4.5.3 Set/Get User Code . . . o .
4.5.4 Chain To Program Function . .
4.5.5 Flush Buffers Function . o e
4.5.6 Direct BIOS Call Function . .
4.5.7 Program Load Function . . .

L] L] L] . . L] .

o o e o o o o

L] . . . L] L] L]

. L] L[] L] L] L[] L]

L] L] L]] L]

74
76
77

77
78
79
81
83
84
85
87
88

91
92

95
95
95
98
104
104
106
107

109
109
112
112

Table of Contents

(continued)

7 Programming pgtilities

7.1

7.3

Archive Utility

7.1.1
7.1.2
7.1.3
7.1.4

AR68 Syntax . -
AR68 Operation .

Errors « « « o o
DUMP Utility . « « « -«
7.2.1 1Invoking DUMP .
7.2.2 DUOMP Output . .
7.2.3 DUMP Examples .
Relocation Utility . .

7.3.1
7.3.2

Invoking RELOC .
RELOC Examples

‘ SIZE68 Utility . « .« -«

7.4.1
7.4.2
7.4.3

Invoking SIZE68
SIZE68 Output .
SIZE68 Examples

SENDC68 Utility « . - -

7.5.1 Invoking SENDC68
7.5.2 SENDC68 Example

DDT-68K

8.1

DDT-68K Operation . . .

3 L]

L) L3

68K

viii

AR68 Commands and Optxons

.

8.1.1

8.1.2

8.1.3 Spec1fy1ng Address . o« « o o
8.1.4 Terminating DDT-

8.1.5

IDVOk lng DDT-68K - . ° ° . .
DDT-68K Command Conventions

DDT-68K Operation with Interr

u

pts

L] L] L .

[] L[] L] .

() L] . [

L] L] L] L[]

. . . . []

L] . L . L]

113

113
115
115
120
120
120
121
122
122

122
123

124
124

124

125
126

126
127

129

129
129
130
130
130

Table of Contents
(continued)

8 - 2 DDT-6 BK comands e o @ @ e © ° © o o o o

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

©0 C0 00 GO 00 GO GO GO C0 0O O G0 GO O O
® % o 6 o 0 o 8 ¢ s 6 0 e @
ISESE SN SY SN SN SY SENY VY SY NN VY XY ¥
® o o o 4 6 8 6 0 6 6 8 s @

HHEMHHROONOULIE WM

bW O

NE<SCHLOIICHEDOWEOD

" (Set) Command

(Display) Command

(Load for Execution) Command
(Fill) Command . . « « « o« .
(Go) Command . . « «
(Hexadecimal Math) Command .
(Input Command Tail) Command
(List) Command
(Move) Command
(Read) Command

(Trace) Command .
(Untrace) Command
(Value) Command .

(Weite) Command .
(Examine CPU State) Comma

L] L] (] L] [] [] L]

[] L] [L] [] L]
L] L] [L] [] L[] (]
L] [] L[] [[] . L]

He o e 0 ¢ o

d

.
e
.
]
.
3
[
e
[
.
.
.
L3
L]
L]

L] L] L] L] . L[] . L] . L] . . L] - L]

8.3 Assembly Language Syntax for A and L Commands

ix

L[] . L] L] [} L[] . L] L] L] L] L[] L] L) L]

L[] L] L] L] L[] L[] L[] L] L] L] L] . L] L] L)

L[] L] [] L] . (] . [] . e o L[] L[] . (]

131

131
132
132
133
133
133
134
134
135
135
136
136
137
137
137

139

Appendixes

Summary of BIOS Punctions « « « ¢« . . .« .

Transient Prograﬁ Iovad Example ¢« ¢« « « « .

Base Page Format . . . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o &

Instruction Set SUEMBALY . . « ¢ ¢ o o o o o o o

Error Hessages L] . L] ° [L3 . @ L] . . L] L] . ® ° ° °

E.l

E.3
E.4

E.5

E.7

E.8

AR68 Error MesSsSagesS « « « « o o o o o o o o o

E.l.1 PFatal Diagnostic Error Messages . . .
E.l.2 AR68 Internal Logic Error Messages . .

AS68 Error MessagesS . « « « « = o o o o o o o
E.2.1 AS68 Diagnostic Error Messages
E.2.2 User-recoverable Fatal Error Messages
E.2.3 AS68 Internal Logic Error Messages . .
BDOS Error MeSsagesS . . « « « ¢ s o ¢ o o o @
BIOS Error MeSsSageS « « « o o o o o o o o o o

CCP Error MeSSageS .« « « s o o o o o o o o o

E.5.1 Diagnostic Error Messages . . o o «
E.5.2 CCP Internal Logic Error Messages . .

DDT-GBK Errot Messages e o o o o s . e e o o

E.6.1 Diagnostic Error Messages
E.6.2 DDT-68K Internal Logic Error Messages

DUMP Error MeSSagesS ¢ « o« « o o o o o o o o o
LO68 Error MeSSagesS . « « « ¢ o o o o o o o o

E.8.1 Fatal Diagnostic Error Messages . . .
E.8.2 LO68 Internal Logic Error Messages . .

NM68 Error MesSsSagesS . « « ¢ o o o o o o o o o

141
143
151
153

157
157
157
160
l6l
161
167
171
171
175
176

176
179

180

180
186

187
187

187
191

191

(

)

Appendixes
(continued)

E.10 RELOC Error MesSSage@S . . « « o« o o o o o o

E.1l SENDC68 Error MesSsages . . . « « o« o o o o

E.l1l.1 Diagnostic Error Messages
E.1l.2 SENDC68 Internal Logic Error Messages

E.12 SIZE68 Error MeSSagesS . . « « o o o o o o o

New Functions and Implementation Changes
F.l BDOS Function and Data Structure Changes . .

F.2 BDOS Functions Not Supported By CP/M-68K . .

xi

192
195

196
197

197

199
199
200

Tables

1-1.

1-5.

Tables, Figures, and Listings

Program Modules in the CPM.SYS File . .
CP/M-68K Programmer's Guide Conventions
CP/M-68K Commands (Programmer's Guide)

CP/M-68K Commands (Users Guide)

Delimiter Charactrs . « o o o o o o =
CP/M'-GSK TerminOlOgY ° o

CP/M-68K Commands (C Language Reference ﬁa

Values for Symbol Types
Relocation Word Values (bits 0 through 2)

CP/M-68K BDOS Functions . . « « « « .
BDOS Parameter Summary =« « « o o o .
File Access Functions . « « « « « & .
Read-Write Error Response Options . .
Disk File Error Response Options . .
Unsuccessful Write Operation Return Code
File Attributes . « « ¢« « « ¢ o o =« .
Read Random Function Return Codes .
Write Random Function Return Codes
Current Position Definitions .« o
Drive Functions . . e o o
Fields in the DPB and CDPB .
Character I/0 Functions
Direct Console I/0 Function Values
Line Editing Controls . . « « « =« =«
I/0 Byte Field Definitions
System and Program Control Functions
Version Numbers . « ¢« « o« o o o o =«
Program Load Function Return Codes
Load Parameter Block Optlons « o o
Valid Vectors and Exceptions . . .

TPAB Parameter Field Values, Bits 0 an

L] L2

.
*
L)
.
.
Cc
.
e
3
.
3
.
.
3
L]
L 2

e o o o
’—llootooocotoncoomoooon

d

Assembler Option . « ¢ « ¢« o« o o
Assembly Language Directives . . .

DDT-68K Command SUMMALY « « o o o o o o o
Summary of BIOS Functions . . « « . « . &
Base Page Format: Offsets and Contents .

Instruction Set SUMMALY « « « o o o o o o
Variations of Instruction Types

AR68 Fatal Diagnostic Error Messages . .
AS68 Diagnostic Error Messages . . o «
User-recoverable Fatal Error Messages

xii

. e o e o o

L] L] L] L] L]] L] L] L[]

[] L[] ° L[] L[] o L] [[] L] L[] [L]

e o e o o o

e 8 9o o ¢ o

L] [L] [] L] [] L[] e o L] [] L[] [] o o . . . [] [e ® L)

[

L[] L] L] . . .]

157
16l
167

TN

an

Tables, Figures, and Listings
(continued)

_ Tables

E-4. BDOS Error MessSages . . « « « .
E-5. BIOS Error Messages
E-6. CCP Diagnostic Error Messages . .
E-7. DDT-68K Diagnostic Error Messages
E-8. DUMP Error Messages . . . « « . .
E-9. LO68 Fatal Diagnostic Error Messages

L]] . [] [

¢ o o o m e & o o o
L] L[] L] . . L] . L] L[] L]
L] L] L[] L] . L] L[] L[] L[] .
e o o ¢ o ¢ o s o o
L] L d L] L] L] . L] L] . L]
L] L] L] L] L] . L] [] L] []

E-10. NM68 Error Messages
E-1l. RELOC Error Messages
E-12. SENDC68 Diagnostic Error Messages .
E-13. SIZE68 Error Messages

F-l. New BDOS Functions e o o o @
F-2. BDOS Function Implementatxon Changes o« o
P-3. BDOS Data Structure Implementation Changes
F-4. BDOS Functions Not Supported by CP/M-68K .

. 2-1. Format of the Command Tail in the DMA Buffer .
~ 2-2. CP/M=-68K Default Memory Model
2-3. CP/M-68K Memory Model with Inaccessible Memory

3-1. Header for Contiguous Program Segments
3-2. Header for Noncontiguous Program Segments . . .
3-30 EntIY in SymbOl Table e © e e o e o o e e o o o

4-1. FCB PFormat for Rename Function
4-2. DPB and CDBP e o ® e e e e o . . . e o
4-3. I/OByte « .
4-4. Command Line Format in the DMA Buffer .
4-5. BIOS Parameter Block (BPB)
4-6. Format of the Load Parameter Block (L PB
4-7. Exception Parameter Block (EPB)
4-8. Transient Program Parameter Block
4-9. Parameter Field in TPAB . . v v ¢ ¢ o« « &

L] [. [] .
L] . L] [] L[] L) L[] [L]
L] L[] L] . . . L] L[] L]
L L] . . .] [[] L]

N B-l. Transient Program Load Example 1
B-2. Transient Program Load Example 2

xiii

® o o o

172
175
176
180
187
188
192
193
196
197

199
199
200
200

143
146

Section 1
Introduction to CP/M-68K

CP/M-68K contains most of the facilities of other CP/M systems
with additional features required to address up to sixteen megabytes
of main memory available on the 68000 microprocessor. The CP/M-68K
file system is upwardly compatible with CP/M-80 Version 2.2 and
CP/M-86 Version 1l.l. The CP/M-68BK file structure supports a
maximum of sixteen drives with up to 512 megabytes on each drive and
a maximum file size of 32 megabytes.

l.1 CP/M-68K Architecture

The CP/M-68K operating system resides in the file CPM.SYS on
the system disk. A cold start loader resides on the first two
tracks of the system disk and loads the CPM.SYS file into memory
during a cold start. The CPM.SYS file contains the three program
modules described in Table 1-1.

Table 1-1. Program Modules in the CPM.SYS FPile

Module Mnemonic Description

Console Command Processor CCP User interface that
parses the user
command line.

Basic Disk Operating System BDOS Provides functions
that access the
file system.

Basic I/O System BIOS Provides functions
that interface
peripheral device
drivers for 1I/0
processing.

The sizes of the CCP and BDOS modules are fixed for a given
release of CP/M-68K. The BIOS custom module, normally supplied by
the computer manufacturer or software distributor depends on the
system configuration, which varies with the implementation.
Thererore, the size of the BIOS also varies with the implementation.

The CP/M-68K operating system can be loaded to execute in any
portion of memory above the locations reserved in the 68000
architecture for the exception vectors (0000H through 03FFH). All
CP/M-68K modules remain resident in memory. The CCP cannot be used
as a data area subsequent to transient program load.

All Infcrmacion Presented dere 1is

CP/M-68K Programmer's Guide 1.2 Transient Programs

1.2 Transient Programs

After CP/M-68K is loaded in memory, the remaining contiguous
address space that is not occupied by the CP/M-68K operating system
is called the Transient Program Area (TPA). CP/M-68K loads

executable files, called command files, from disk to the TPA. These/)
command files are also called transient commands or transient _

programs because they temporar:.ly reside in memory, rather than
being permanently resident in memory and conflgured in CP/M-68K.
The format of a command file is described in Section 3.

1l.3 PFile System Access

Programs do not specify absolute locations or default variables
when accessing CP/M-68K. Instead, programs invoke BDOS and BIOS
functions. Section 4 describes the BDOS functions in detail.
Appendix A lists the BIOS calls. Refer to the CP/M-68K Operating
System System Guide for detailed descriptions of the BIOS tunctions.
In addition to these functions, CP/M-68K decreases dependence on
absolute addresses by maintaining a base page in the TPA for each
transient program in memory. The base page contains initial values
for the File Control Block (FCB) and the Direct Memory Access (DMA)
buffer. For details on the base page and loading transient
programs, refer to Section 2.

1.4 Programming Tools and Commands Q

CP/M-68K contains a full set of programming tools that include
an assembler (AS68), linker, (LO68), Archive Utility (AR68),
Relocation Utility (RELOC), DUMP Utility, SIZE68, and SENDC68. Each
of these tools is discussed in the latter part of this guide. Table
1-3 lists the commands that invoke these tools. Table 1-2 describes
command conventions used in this manual. Tables 1-4 and 1-5 list
other commands supported by CP/M-68K and the manual in which they
are documented.

Table 1-2. CP/M-68K Programmer's Guide Conventions

Convention) Meaning

[] . Square brackets in a command line
enclose optional parameters.

nH " The capital letter H follows numeric
values that are represented in
hexadecimal notation. .

numer ic values Unless otherwise stated, numeric values
are represented in decimal notation.

(n) BDOS function numbers are enclosed in
parentheses when they appear in text.

L

All Information Presented Here is Proprietary to Digital Researc

CP/M-68K Programmer's Guide 1.4 Programming Tools and Commands

Table 1-2. (continued)

Convention Meaning
. Or ...
. A vertical or horizontal elipsis

indicates missing elements in a series
unless noted otherwise.

RETURN The word RETURN refers to the RETURN
' key on the keyboard of your console.
Unless otherwise noted, to invoke a
command, you must press RETURN after
you enter a command line from your
console.

CTRL-X The mnemonic CTRL-X instructs you to
press the key labeled CTRL while you
press another key indicated by the
variable X. For example, CTRL-C
instructs you to press the CTRL Kkey
while you simultaneously press the key
lettered C. .

Table 1-3 describes commands used in the CP/M-68K Operating
System Programmer's Guide. :] .

Table 1-3. CP/M-68K Commands (Programmer's Guide)

Command Description

“

AR68 Invokes the Archive Utility (AR68). AR68
creates a library and/or deletes, adds,
or extracts object modules from an
existing library, such as the C Run-time

Library.
AS68 Invokes the Assembler (AS68).
DDT Invokes DDT-68K, the CP/M-68K debugger.
DUMP Invokes the DUMP Utility that prints the

contents of a file in hexadecimal and
ASCII notation.

LO68 Invokes the Linker.

NM68 Invokes the NM68 Utility that prints the
symbol table of an object or command
file.

All Informaction Presen=esd T2re 13 Srcogriszacgy o TiIlial Res=arca

W& /MTO0ON DiUVYiuuusis o JvuiLuc do ¥ ELUYLQUUILLIUY 4UVWVLD AlU CvuuuGlIuD

Table 1-3. (continued)

Command Description

RELOC Invokes the Relocation Utility that
relocates a command file containing
relocation information- to an absolute -
address.)

SENDC68 Invokes the SENDC68 Utility that converts
a command file to the MOTOROLA S-record
format.

SIZEé68 Invokes the SIZE68 Utility that prints

the total size of a command file and the
size of each program segment in the
file.

Table 1-4 describes commands used in the CP/M-68K Operating
System User's Guigde.

Table 1-4. CP/M-68K Commands (User's Guide)

Command Description
DIR* Displays the directory of files on a
specified disk.
DIRS* Displays the directory of system files
on a specified disk.
ED Invokes the CP/M-68K text editor.
ERA* Erases one or more specified files.
PIP Copies, combines, and transfers
specified files between peripheral
devices.
REN* - Renames an existing file to the new name
specified in the command line.
SUBMIT* Executes a file of CP/M commands.
TYPE* Displays the contents of an ASCII file
on the console. ’
USER* Displays or changes the current user

number.

* CP/M-68K built-in commands

- vy

D
ALl LOITITETLION

CP/M-68K Programmer's Guide 1.4 Programming Tools and Commands

Table 1-5 describes commands used in the C Programming Guide
for CP/M-68K.

Table 1-5. CP/M-68K Commands (C Manual)

Command Description

c Invokes a submit file that invokes the C
compiler for compiling CP/M-68K C
source files.

CP68 Invokes the C preprocessor for
' processing macros when you compile
CP/M-68K C source files. ,

co68 Invokes the C parser when you compile
CP/M-68K C source files.

Clé68 Invokes the assembly language code
generator for the CP/M-68K C compiler
when you compile C source files.

1.5 CP/M-68K File Specification

The CP/M-68K file specification is compatible with other CP/M
systems. The format contains three fields: a l-character drive
select code (d), a 1- through 8-character filename (f...f), and a 1-
through 3-character filetype (ttt) field as shown below.

Format d:fEfE£EL££EF. tLL
Example B:MYRAH.DAT

The drive select code and filetype fields are optional. A
colon (:) delimits the drive select field. A period (.) delimits
the filetype field. These delimiters are required only when the
fields they delimit are specified. '

Values for the drive select code range from A through P when
the BIOS implementation supports 16 drives, the maximum number
allowed. The range for the drive code is dependent on the BIOS
implementation. Drives are labeled A through P to correspond to the
1 through 16 drives supported by CP/M-68K. However, not all BIOS
implementations support the full range.

The characters in the filename and filetype fields cannot
contain delimiters (the colon and period) and must be upper-case for
the CCP to parse the file specification. The CCP cannot access a
file that contains delimiters or lower-case characters. A command
line and its file specifications, if any, that are entered at the
CCP level are automatically put in upper-case internally before the
CCP parses them. '

PR - R . - "Tav Dm Demmm i ymmoaecr . i e =t oSSR S
Al Iafarmation Presencad Fer2 L3 2IT9Tlafar > ILZLI3L s@searcao

CP/M—-6b8BK Programmer s Guliae l.5 File Specitication

However, not all commands and file specifications are entered
at the CCP level. CP/M-68K does not prevent you from including
delimiters or lower-case characters in file specifications that are
created or referenced by functions that bypass the CCP. For
example, the BDOS Make File Function (22) allows you to create a
file specification that includes delimiters and lower-case
characters, although the CCP cannot parse and access such a file.

In addition to the delimiter characters already mentioned, you
should avoid using the delimiter characters in Table 1-6 in the file
specification of a file you create. Several CP/M-68K built-in
commands and utilities have special uses for these characters.

Table 1-6. Delimiter Characters

Character Description

{1 square brackets
() parentheses

<> angle brackets
equals sign
asterisk

amper sand

comma
exclamation point
bar

question mark
slash

dollar sign
period

colon

semicolon

plus sign

minus sign

I 4~ 00 N WW—== B %]

1.6 Wildcards

CP/M-68K supports two wildcards, the question mark (?) and the
asterisk (*). Several utilities and BDOS functions allow you to
specify wildcards in a file specification to perform the operation
or function on one or more files. However, BDOS functions support
only the ? wildcard.

The ? wildcard matches any character in the character position
occupied by this wildcard. For example, the file specification
M?RAH.DAT indicates the second letter of the filename can be any
alphanumeric character if the remainder of file specification
matches. Thus, the ? wildcard matches exactly one character

position.

.1 Informacicn Presented Here 1S5 Proprietary to Digital Researcn

‘Y

‘r
«

C2/M=-68K Pruogrammer's Guide 1.6 Wildcards

The * wildcard matches one or more characters in the field or
remainder of a field that this wildcard occupies. CP/M~-68K
internally pads the field or remaining portion of the field occupied
by the * wildcard with ? wildcards before searching for a match.
For example, CP/M-68K converts the file B*.,DAT to B??2?2?2227?.DAT
before searching for a matching file specification. Thus, any file
that starts with the letter B and has a filetype of DAT matches this
file specification.

For details on wildcard support by a specific BDOS function,
refer to the description of the function in Section 4 of this guide.
For additional details on these wildcards and support by CP/M-68K
utilities, refer to the CP/M-68K Operating System User's Guide.

1.7 CP/M-68K Terminology

Table 1-7 lists the terminology used throughout this guide to
describe CP/M-68K values and program components.

Table 1-7. CP/M-68K Terminology

Term Meaning

Nibble 4-bit value

Byte 8-bit value

Word 16-bit value

Longword - 32-bit value

Address 32-bit value that specifies a

location in storage

Offset A fixed displacement defined by
' the user to reference a location
in storage, other data source, or

destination.

Text Segment The section of a program that.
contains the progranm
instructions.

Data Segment ‘ The section of a program that
contains initialized data.

Block Storage The section of a program that

Segment (bss) contains uninitialized data.

End of Section l.

All Information Praesented Here 1s Proprietarv to Jigizal Research

7

Section 2
The CCP and Transient Programs

This section discusses the Console Command Processor (CCP),
built-in and transient commands, loading and exiting transient
programs, and CP/M-68K memory models.

2.1 CCP Built-in and Transient Commands

After an initial cold start, CP/M-68K displays a sign-on
message at the console. Drive A, containing the system disk, is
logged in automatically. The standard prompt (>), preceded by the
letter A for the drive, is displayed on the console screen. This
prompt informs the user that CP/M-68K is ready to receive a command
line from the console.

In response to the prompt, a user types the filename of a
command file and a command tail, if required. CP/M-68K supports two
types of command files, built-in commands and transient commands.
Built-in commands are configured and reside in memory with CP/M-68K.
Pransient commands are loaded in the TPA and do not reside in memory
allocated to CP/M-68K. The list below contains the seven built-in
commands that CP/M-68K supports. T :

DIR
DIRS
ERA
REN
TYPE
USER
SUBMIT

A transient command is a machine-readable executable program
file in memory. A transient command file is loaded from disk to
memory. Section 3 describes the format of transient command files.

When the user enters a command line, the CCP parses it and
tries to execute the file specified. The CCP assumes a file is a
command file when it has any filetype other than .SUB. When the
user specifies only the filename but not the filetype, the CCP
searches for and tries to execute a file with a matching filename
and a filetype of either 68K or three blanks. The CCP. searches the
current user number and user number 0 for a matching file. 1If a
command file is not found, but the CCP finds a matching file with a
filetype of SUB, the CCP executes it as a submit file.

Tl s

All Informarcion Presented Here {3 Propri2tary oo Digital Research

h /NIT VRN £ LVUYLE QRUUTL 0 VuLeuT o ® do MG LI 0§ LWYe il il AL Y

2.2 Loading A Program In Memory

Either the CCP or a transient program can load a program in
memory with the BDOS Program Load Function (59) described in Section
4.5. After the program is loaded, the TPA contains, the program
segments (text, data, and bss), a user stack, and a base page. A
base page exists for each program loaded in memory. The base page
is a 256-byte data structure that defines a program's operating
environment. Unlike other CP/M systems, the base page in CP/M-68K
does not reside at a fixed absolute address prior to being loaded.
The BDOS Program Load Function (59) determines the absolute address
of the base page when the program is loaded into memory. The BDOS
Program Load Function (59) and the CCP or the transient program
initialize the contents of the base page and the program's stack as
described below.

2.2.1 Base Page Initialization By The CCP

The CCP parses up to two filenames following the command in the
input command line. The CCP places the properly formatted FCBs in
the base page. The default DMA address is initialized at an offset
of 0080H in the base page. The default DMA buffer occupies the
second half of the base page. The CCP initializes the default DMA
buffer to contain the command tail, as shown in Figure 2-1. The CCP
invokes the BDOS Program Load Function (59) to load the transient
program before the CCP parses the command line.

Program Load, Function 59, allocates space for the base page
and initializes base page values at offsets 0000E through 0024H from
the beginning of the base page (see Appendix C). Values at offsets
0025H through 0037H are not initialized; but the space is reserved.
The CCP parses the command line and initializes values at offsets
0038H through OOFFH. Before the CCP gives control to the loaded
program, the CCP pushes the address of the transient program's base
page and a return address within the CCP on the user stack. When
the program is invoked, the top of the stack contains a return
address within the CCP, which is pointed to by the stack pointer,
register A7. The address of the program's base page is located at a
4-byte offset from the stack pointer.

2.2.2 Loading Multiple Programs)
Multiple programs can reside in memory, but the CCP can load
' only one program at a time. However, a transient program, loaded by
the CCP, can load one or more additional programs in memory. A
program loads another program in memory by invoking the BDOS Program
Load Function (59). Normally, the CCP supplies FCBs and the command
tail to this function. The transient program must provide this
information, if required, for any additional programs it loads when
the CCP is not present. C

Here ic Preprietarv toc Digital Research

-

Cp/M-68K Programmer's Guilde 2.2 Loading A Program in Memory

2.2.3 Base Page Initialization By A Transient Program

A transient program invokes the BDOS Program Load Function (59)
to load an additional program. The BDOS Program Load Function
allocates space and initializes base page values at offsets 0000H
through 0024H for the program as described in Section 2.2.1l. The
transient program must initialize the base page values that the CCP
normally supplies, such as FCBs, the DMA address, and the command
tail, if the program being loaded requires these values. The
command tail contains the command parameters but not the command.
The format of the command tail in the base page consists of a l-byte
character count, followed by the characters in the command tail, and
terminated by a null byte as shown in Figure 2-1. The command tail
cannot contain more than 126 bytes plus the character count and the
terminating null character.

Count Characters in the Command Tail 0

1 byte N bytes < 126 bytes

Figure 2-1. PFormat of the Command Tail in the DMA Buffer

Unlike the CCP, a transient program does not necessarily push.
the address of its base page and a return address on the user stack
before giving control to the program that it loads with the Program
Load Function. The transient program can be designed to push these
addresses on the user stack of the program it loads if the program
uses the base page. :

The address of the base page for the loaded program is not
pushed on the user stack by the Program Load Function (59).
Instead, it is returned in the load parameter block (LPB), which is
used by the BDOS Program Load Function. Appendix C summarizes the
offsets and contents of a base page. Appendix B contains two
examples, an assembly language program and a C language program,
which illustrate how a transient program loads another program with
the BDOS Program Load Function (59), but without the CCP.

2.3»Exiting Transient Programs

CP/M-68K supports the two ways listed below to exit a transient
program and return control to the CCP.

e Interactively, the user types CTRL-C at the console, the
default I/O device

e/ TITUON SLUYLGUUUITL O JuduC LoD LALLLIUY LlicdausieOl rFrouyrLaius

® Program a return to the CCP with either:
l) a Return From Subroutine (RTS) Instruction
. 2) the BDOS System Reset Function (0)
A user typing CTRL-C from the console returns control to the
CCP only if the program uses any of the BDOS functions listed below.

e Console Output (2)
e Print String (9)
e Read Console Buffer (10)

On input, CTRL-C must be the first character that the user types on

the line. CTRL-C terminates execution of the main program and any -

additional programs loaded beyond the CCP level. For example, a
user who types CTRL-C while debugging a program terminates execution

of the program being debugged and DDT-68K before the CCP regains

control.

Typing CTRL-C in response to the system prompt resets the
status of all disks to read-write.

To program a return to the CCP, specify a Return from
Subroutine (RTS) Instruction or the BDOS System Reset Function (0).

The RTS instruction must be the last one executed in the

program and the top of the stack must contain the system-supplied
return address for control to return to the CCP. When a transient
program begins execution, the top of the stack contains this system-
supplied return address. If the program modifies the stack, the top
of the stack must contain this system-supplied return address before
an RTS instruction is executed.

Invoking the BDOS System Reset Function (0) described in
Section 4.5 is equivalent to programming a return to the CCP. This
function performs a warm boot, which terminates the execution of a
program before it returns program control to the CCP.

2.4 Transient Program Exeéution Model

The memory model shown in Figure 2-2 illustrates the normal
configuration of the CP/M-68K operating system after the CCP loads a
transient program. CP/M-68K divides memory in two categories:
System and the Transient Program Area (TPA).

CP/M-68K System memory contains the Basic Disk Operating System
(BDOS) , the Basic I/0 System (BIOS), the Console Command Processor
(CCP) , and Exception Vectors. The bootstrap program initializes the
memory locations in which these components reside. Other than
exception vectors, which reside in memory locations 0000H through
03FFH, the remaining components can reside anywhere in memory,
provided the BDOS and CCP are contiguous.

N

2r

iy

ST T e

"y

m

o2l

0w

—nvyrc pem et e TN s e o =
TPIletaly T CLlfllas xese

1Y
"
Q
@]

S~
-k

(

12

N

CP/M—-o0d8K Programmer’'s Guldae Lol rranslientc yrogram moae.ls

The TPA consists of contiguous memory locations that are not
occupied by the CP/M-68K operating system. A user stack, a base
page, the three program segments: a text segment, an initialized
data segment, and a block storage segment (bss) exist for each
transient program loaded in the TPA. The BDOS Program Load Function
(59) loads a transient program in the TPA. If memory locations are
not specified when the transient program is linked, the program is
loaded in the TPA as shown in Figure 2-2.

High Memory

l ~—— BIOS
System CP/M-68K BDOS
‘ —— CCP
1 " USER STACK
| Transient FREE MEMORY
{ Program
f Area
{ (TPA) - BSS
H -
- DATA
' TEXT
BASE PAGE
System EXCEPTION VECTORS

Pigure 2-2. CP/M-68K Default Memory Model

Some systems can configure and load CP/M-68K in such a manner
that one or more portions of memory cannot be addressed by the Cp/M~-
68K operating system (see Figure 2-3). CP/M-68K cannot access this
memory. CP/M-68K does not know the memory exists and cannot define
or configure the memory in the BIOS because CP/M-68K requires that
the TPA is one contiguous area. However, a transient program that
knows this memory exists can access it. Also, note that CP/M-68K
does not support or require memory management. -

[4
b
]
t,
9
s
3
[¢Y]
it
t
(9]
o)
O
ty
W
n
{0
3
i1
1Y
e
{
[
W
+
{
'
v
4
]
t
{
'
{
'
{
{
P
|
‘
i
i
{

W&/ MTUUN FLeUVYLAQUMUUTL O JuLuT oo R

High Memory

dbQAQuUDLITIL TlLUYLAl NUUTLD

Not accessible to CP/M-68K

r— BIOS
System CP/M-68K BDOS
— CCP
‘ USER STACK
Transient
Program FREE MEMORY
Area
(TPA)
BSS
DATA
TEXT
BASE PAGE
System EXCEPTION VECTORS

{

Low Memory

Figure 2-3.

v - .
LnLISIrmatction

Lo e b i

End of Section 2

CP/M-68K Memory Model with Inaccessible Memory

—— e s = e

Pid

-

Section 3
Command File Format

This section describes the format of a commard file. The
linker processes one or more compiled or assembled files to produce
an executable machine-readable file called a command file. By
default, a command file has a filetype of 68K.

A command file always contains a header, two program segments
~(a text segment and an initialized data segment), and optionally
contains a symbol table and relocation information. These
components are described in the following sections.

3.1 The Header and Program Segments

The header, the first component in the file, specifies the size
and starting address of the other components in the command file,
which are listed below.

® Program segments:
“text: contains the program instructions. ﬂkww/ ‘ZQ:MA /E%Qfﬂkx
data: contains data_initialized within the command file.

block storage segment (bss):
specifies space for uninitialized data generated by the
program during execution. Although space for the bss
is specified in the source command file, the space is
not allocated until the command file is loaded in
memory. Therefore, the source command file on the disk
contains no uninitialized data.

e Symbol table: defines referenced symbols.

® Relocation information:
specifies the relative relocation of each word within
each program segment, if required.

The command file format supports two types of headers. The
size and content of each type differs. The contiquity of the
program segments determines which type of header a command file
contains. When the program segments must be contiguous, the file
contains a l4-word header in the format shown in Figure 3-1. When
the program segments can be noncontiquous, the file contains an 18-
word header in the format shown in Figure 3-2. The first word of
each header contains a hexadecxmai integer that defines which type
of header the file contains. ,

dcs=p A, o \;
Ut Tl FUULAA L D ~ Y

o
(1

, e e e - - -

{1
3
Y

- v s T e . LT
QA2 L3S IZTIL::TLC P T s S o

(&}
Y]
.

(1)
{

15

o e r————

Cp/M-68K Programmer's Guide

Byte Sample Values Size
Offset :
1 Word
0H 601AH
28 2376H 1 Longword
6H 4224 1 Longword
0AH 1806H 1 Longword
0EH 142H 1 Lonjword
12H 0000H 1 Longword
16H 5008 1 Longword
1AH 00H
1 Word
Figure 3-1. Header

To create a file that can contain
and -B linker options
The header, jdentified by 601BH

the -T, -D'
link the files.

segments, specify
Section 6 when you

denotes the size and location of each program segment.
program segments can
does not imply the segments must be noncontiguous.

this header indicates the

——— b e T T i

[#1]
Iy

3.1 Command File Format

Contents

Integer 601AH denotes text,
data, and bss are contiguous

in text segment

Number pytes

in data segment

Number bytes

in bss

Number bytes

Number bytes in symbol table

Reserved; always zero
Beginning of text segment and
of program execution

Integer flag for relocation
pits; if O, relocation
pits exist; if not 0,

no relocation bits exist.

for Contiguous Program Segnments

noncontiguous program
described in

Note that
be noncontiguous and
See Figure 3-2.

LA
(9]
"
"
7]
Y
111
"
[P
(4]
Q
(]
]

g
o
§
t

iy
o
0
fid
3
[§)

CP/M-68K Programmer's Guide 3.1 Command File Format

3yte Sample Values Size Contents
Offset
1 Word Integer 501BH denotes text, daca,
Jd 5013H and 5ss can ce noncontiguous
24 57864H 1 Longword Numpber of Dytes Ln text segmentc
5H i 146H L Longword Numper of sytes 1n data segment
0AH 2568H 1 Longword Number of bytes in bss
OEH 69H 1 Longword Number of bytes in symbol table
12H 0000H 1 Longword Reserved; always zero
16H SO0H 1 Longword Beginning of text segment
’ and of program execution
1AH 00H .

1 Word Integer flag for relocation bits;
if 0, relocation bits exist; if
not 0, no relocation bits exist.

1CH 57D64H 1 Longword Starting address of data segment
20H S8 1AAH 1 Longdord Starting address of bss

Figure 3-2. Header for Noncontiguous Program Segments

The linker computes the size of the segments in bytes. The
result is always rounded up to an even number. For example, the
linker adds a byte to a program segment that contains an odd number
of bytes. The linker does not include the size of the header when
it computes the size of the segments.

After a program is linked and loaded in memory, it contains
three program segments: text, initialized data, and uninitialized
data (bss). The BDOS Program Load Function (59) zeroces the bss when
a program is loaded. A program begins execution at the beginning of
the text segment. See Figures 3-1 and 3-2 above.

3.2 The Symbol Table
The symbol table lists all the symbols specified in a program.

Each symbol in the table consists of a 7-word entry that describes
the symbol name, type, and value. See Figure 3-3.

"W

N
}

]
A
-
(&)
0]
[a}
H
[¥]
(4]
3
O
o
I“
(3]
119
[
[1!]
w3
(1
[{Y
[¥]
(23]
W
(R
W
]
Ui

CP/M-68K Programmer's Guide 3.2 The Symbol Table

Field BYTE
/ N A
M E
Name

\\\ Null Null

Null Null
) Type — A400H
s ‘
' Value 4 A6F0H

FPigure 3-3. Entry in Symbol Table

The name field, the first four words, contains the

WORD

ASCII name

of the symbol. This field is padded with null characters when the
ASCII name is less than eight characters. The fifth word contains

the symbol type. Valid values are listed in Table 3-1.

Table 3-1. Values For Symbol Types

Type : Value
defined 8000H
equated ' 40008
global 2000H
equated register 1000H
external reference 800H

- data based relocatable 4008
text based relocatable 200H
bss based relocatable 1008

When specifying a symbol type with multiple characteristics,
the linker uses an OR instruction to combine several of the above
values. For example, to specify a defined, global, data based,
relocatable symbol, the linker combines the values of each

characteristic for a value of A400H.

-

CP/M-68K Programmer's Guide 3.2 The Symbol Table

The last field in an entry is the value field. It consists of
a longword that contains the value of the symbol. The value can be
an address, a register number, the value of an expression, or some
other value. When the value field is nonzero and the type field
contains an external symbol, the linker interprets the symbol to be
a common region in which the size of the region equals the value of
the symbol.

3.2.1 Printing The Symbol Table

Use the NM68 Utility to print the symbol table of an object or
command file. To invoke this utility, specify the NM68 command and
filename as shown below.

NM68 filename.O [>filespec]

You must enter the filename of an object file or a command.
file. You can optionally redirect the NM68 output from your console
to a file. To redirect the NM68 output to a file, specify a greater
than sign (>) followed by a file specification after the filename
and filetype of the file from which NM68 prints the symbol table.

The NM68 utility does not sort the symbols; it prints them in
the order in which they appear in the file. Each symbol name is
printed, followed by its value and one or more of the type
-descriptors listed below:

equ (equated)

global

equreg (equated register)
external

data

text

bss

abs (absolute)

3.3 Relocation Information

Relocation information is optional. The header relocation
word, the last word in the header, indicates whether relocation
information exists. When its value is zero, relocation information
exists. None exists when the its value is nonzero.

Relocation information specifies the relocation of words in
program segments. One word of relocation information, called a
relocation word, exists for each word in each of the program
segments. The assembler and compiler generate relocation words for
external symbols and address constants referenced in the text and
data program segments. The linker and sometimes the BDOS Program
Load Function (59) use these relocation words as described below.

- - . : . : o i m e
All Informacticon 2ra2sented Here 13 2r2prla2T3ry o TLTlIxL REsearcnh

CP/M=bUK Programmer s Guiqe 3.3 KelOoCatilion lnrormacion

The linker resolves external symbols when linking £files by
modifying bits 0 through 2 of each relocation word that references
an external symbol. After being modified, the relocation word
indicates the program segment that the symbol references.
Therefore, instead of referencing an external symbol, the relocation
word references a word located in one of the program segments.
Because the linker only modifies relocation words that refer to
external symbols, relocation words that do not reference this type
of symbol have the same value in the source file input to the linker
and the executable file output by the linker.

The BDOS Program Load Function uses relocation words when it
loads a program in a location other than the one at which it was
linked. The Program Load Parameter Block (LPB) used by the Program
Load Function specifies where the program is loaded. When the LPB
specifies a location other than the linked location, the BDOS
computes a bias (the difference between where a program segment is
linked and where it will be loaded in memory). When loading the
program, the BDOS adds the bias as indicated by the relocation words
to the address of the relocatable words in the text and/or data
segments. However, when the BDOS loads the program in the memory
locations at which it was linked, the BDOS does not use the
relocation words.

3.3.1 The Format Of A Relocation Word

A relocation word is a l6-bit quantity. Bits 0 through 2 in
each relocation word indicate the type of address referenced and, if
applicable, designate the segment to which the relocation word
refers. Values for these bits are described in Table 3-2.

Table 3-2. Relocation Word Values (bits 0 through 2)

Value Description

00 no relocation information required; the reference
is absolute

0l reference relative to the base addreés of the data
. segment

02 reference relative to the base address of the text
segment

03 reference relative to the base address of the bss
04 references an undefined symbol

05 references the upper word of a longword; the next
relocation word contains the value determining
whether the reference is absolute or dependent on
the base address of the text or data segments, or
the bss.

e - A

}U
'
Q
!(J
v
bt
1
D
n
n
1
)
ry

ry
t

1]
(A
o
(!
O
(&)
+

(18]
t

)
’ 4

CP/M-68K Programmer's Guide : 3.3 Relocation Information

Table 3-2. (continued)

Value Description

06 16=-bit PC-relative reference

07 indicates the first word of an instruction, which

does not require relocation information.

The remaining bits, 3 through 15,
program references an external symbol. In that case, these bits
contain an index to the symbol table. The index specifies the entry
number of the symbol listed in the symbol table. Entry numbers in
the symbol table are numbered sequentially starting with zero.

are not used unless the

End of Section 3

o]
tt

-

-~

console,

Section 4

Basic Disk Operating System (BDOS) Functions

To access a file
or to

reset the

or a drive,

to output characters to the
system, your program must access the

CP/M-68K file system through the Basic Disk Operating System (BDOS).
The BDOS provides functions that allow your program to perform these

tasks.

Table 4-1 summarizes the BDOS functions.

Table 4-1. CP/M—-68K BDOS Functions

F# Function Type

0 System Reset System/Program Control

1 Console Input ‘Character I/0, Console Operation
2 Console Output Character I/0, Console Operation
3 Auxiliary Input* Character 1/0, Additional Serial I/O
4 Auxiliary Output* Character I/0, Additional Serial I/O
5 List Output Character I/O, Additional Serial I/O
6 Direct Console I/0 Character I/0, Console Operation
7 Get I/0 Byte* I/0 Byte

8 . Set I/0 Byte* I/0 Byte

9 Print String Character I/0, Console Operation
10 Read Console Buffer Character I/O, Console Operation
11 Get Console Status Character I/0, Console Operation
12 Return Version Number System Control

13 Reset Disk System Drive

14 Select Disk Drive

15 Open File File Access

16 Close File File Access

17 Search for First File Access

18 Search for Next File Access

19 Delete File File Access

20 Read Sequential File Access

21 Write Sequential File Access

22 Make File File Access

23 Rename File File Access

24 Return Login Vector Drive

25 Return Current Disk Drive

26 Set DMA Address File Access

28 Write Protect Disk Drive

29 Get Read-Only Vector Drive

30 Set File Attributes File Access

31 Get Disk Parameters Drive

32 Set/Get User Code System/Program Control

33 Read Random File Access

34 Write Random File Access

35 Compute File Size File Access

* Must be implemented in the BIOS

CP/M-68K Programmer 's Gulae

‘s

DLVD L Uil v \Wiao

Table 4-1. (continued)

F# Function TYPE

36 Set Random Record Pile Access

37 Reset Drive Drive

40 Write Random With File Access

Zero Fill

46 Get Disk Free Space Drive

47 Chain To Program System/Program Control

48 Flush Buffers System/Program Control

50 Direct BIOS Call System/Program Control

59 Program Load System/Program Control

61 Set Exception Vector Exception

62 Set Supervisor State Exception

63 Get/Set TPA Limits Exception

4.1 BDOS Functions and Parameters

To invoke a BDOS function, you must specify one or more

parameters. Each BDOS function is identified by a number, which is

the first parameter you must specify.
in the first word of data register DO (DO.W).
a second p

re passed as 16-bit words.
and the high order byte should be zeroed.
the second parameter for the Cons

The function

character, which is a byte parameter. The character

low order byte of data register D1l (Dl.W).

number is loaded

Some functions require
arameter, which is loaded, depending on
low order word (Dl.W) or lon
parameters a
the data,

its size, in the

gword (Dl.L) of data register Dl. Byte
The low order byte contains

For example,

ole Output Function (2) is an ASCII

is loaded in the

Some BDOS functions

return a value, which is passed in the first word of data register

DO (DO.W).

when you specify an invalid
4-2 illustrates the syntax and summarizes the reg
functions use.

The hexadecimal value FFFF is returned in register DO.W

function number in your program. Table

isters that BDOS

Table 4-2. BDOS Parameter Summary

BDOS Parameter Register
Function Number DO.W
Word Parameter D1l.W
Longword Parameter Dl.L
Return Value, if any DO.W

4.1.1 Invoking BDOS PFunctions

appropriate registers,

After the parameters for a function are loaded in the

the program must specify a trap 2 instruction

to access the BDOS and invoke the function. The example below

illustrates the assembler syntax required to invoke the Console
Output Function (2).

» 1

24

4ll Informz-icn Presented Here i1g Proprietary to Digital Research

CP/M-86K Programmer's Guide 4.1 BDOS Functions

move.w #2,d0 *Moves the function number to the first
- *word in data register DO.

move.w #'U,dl *Moves the ASCII character upper-case U
*to the first word in data register DI.

trap #2 -*Accesses the BDOS to invoke the function.

The example above outputs the ASCII character upper-case U to
the console. The assembler moves instructions load register DO.W
with the number 2 for the BDOS Console Qutput Function and register
D1.W with the ASCII character upper-case U. A pair of single ('')
or double ("") quotation marks must enclose an ASCII character. The
trap 2 instruction invokes the BDOS Output Console Function, which
echos the character on the console's screen.

4.1.2 Organization Of BDOS Functions

The parameters and operation performed by each BDOS function
are described in the following sections. Each BDOS function 1is
categorized according to the function it performs. The categories
are listed below. '

File Access

Drive Access

Character I/0
System/Program Control
Exception

As you read the description of the functions, notice that some
functions require an address parameter designating the starting
location of the direct memory access (DMA) buffer or file control
block (FCB). The DMA buffer is an area in memory where a 128-byte
record resides before a disk write function and after a disk read
operation. Functions often use the DMA buffer to obtain or transfer.
data. The FCB is a 33- or 36-byte data structure that file access
functions use. The FCB is described in Section 4.2.1.

4.2 PFile Access PFunctions
This section describes file access functions that create,

delete, search for, read, and write files. They include the
functions listed in Table 4-3. : :

All Information Presented Here 1s Proprietarv’ o

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-3. Pile Access Functions

Function FPunction Number
Open File 15
Close File 16
Search For First 17
Search For Next 18
Delete File 19
Read Sequential 20
Write Sequential 21

. Make File 22
Rename File 23
Set DMA Address 26
Read Random 33
Write Random 34
Compute File Size 35
Write Random With
Zero Fill ‘ 40

4.2.1 A File Control Block (FCB)

Most of the file access functions in Table 4-3 require the
address of a File Control Block (FCB). A FCB is a 33- or 36-byte
data structure that provides file access information. The FCB can be
33 or 36 bytes when a file is accessed sequentially, but it must be
36 bytes when a file is accessed randomly. The last three bytes in
the 36-byte FCB contain the random record number, which is used by
random I/0 functions and the Compute File Size Function (35). The
starting location of a FCB must be an even-numbered address. The
format of a FCB and definitions of each of its fields are below.

o

CP/M-68K Programmer's Guide 4.2 File Access Functions

r2

Field [dr|f1]£2]...|£8[cl|t2|t3|ex|sl]s2|rc|d0|... dnlcr|r0|r]
Byte 00-01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
16=> auto disk select drive P.
fl...£8 contain the filename in ASCII
upper-case. High bit should equal 0
when the file is opened.
tl,t2,t3 contain the filetype in ASCII
upper-case. The high bit should equal 0
when the file is opened. For the Set File
Attributes Function (see Section 4.2.13),
tl', t2', and t3' denote the high bit. The
list below indicates which attributes are set
when these bits are set and equal the value 1.
tl' = 1 => Read-Only file
t2' = 1 => SYS file
t3' = 1 => Archive
ex. contains the current extent number,
normally set to 00 by the user, but is in the
range 0 - 31 (decimal) for file I/0
sl reserved for internal system use
s2 reserved for internal system use, set to zero for
Open (15), Make (22), Search (17,18) file functions.
rc record count field, reserved for system use
d0...dn filled in by CP/M, reserved for
system use
cr current record to be read or written;
for a sequential read or write file
operation, the program normally sets
this field to zero to access the first
record in the file
r0,rl,r2 optional, contain random record number
in the range 0-3FFFFH; bytes r0, rl, and r2
are a 24-bit value with the most significant
‘byte r0 and the least significant byte r2.
Random I/0 functions use the random record
number in this field.
111 Infsrmaticn Sroasenced Hderaz 15 PIonTisTanl Tl LIZ. m=ExxZIc

CP/M-68K Programmer's Guide 4.2 File Access Functions

For users of other versions of CP/M, note that both CP/M-80
Version 2.2 and CP/M-68K perform directory operations in a reserved
area of memory that does not affect the DMA buffer contents, except
for the Search For First (17) and Search For Next (18) Functions in
which the directory record is copied to the current DMA buffer.

4.2.2 File Processing Brrors

When a program calls a BDOS function to process a file, an
error condition can cause the BDOS to return one of five error
messages to the console:

e CP/M Disk read error

e CP/M Disk write error

® CP/M Disk select error

e CP/M Disk change error

e CP/M Disk file error: ffffffff.ttt is read-only

Except for the CP/M Disk file error, CP/M-68K displays the error
message at the console in the format:

"error message text" on drive x

The "error message text"™ is one of the error messages listed above.
The variable x iS a one-letter drive code that indicates the drive
on which CP/M-68K detects the error. CP/M-68K displays the CP/M
Disk file error in the format shown above.

When CP/M-68K detects one of these errors, the BDOS traps it.
CP/M-68K displays a message indicating the error and, depending on
the error, allows you to abort the program, retry the operation, or

continue processing. Each of these errors and their options are -

described below.

CP/M issues a CP/M Disk read or write error when the BDOS
receives a hardware error from the BIOS. The BDOS specifies BIOS
read and write sector commands when the BDOS executes file-related
system functions. If the BIOS read or write routine detects a
hardware error, the BIOS returns an error code to the BDOS that
results in CP/M-68K displaying a disk read or write error message at
your console. In addition to the error message, CP/M-68K also
displays the option message:

Do you want to Abort (d), Retry (R), or Continue with bad data (C)?

In response to the option message, you type one of the letters
enclosed in parentheses and a RETURN. Each of these options is
described below.

Al Tnfprrma-ion Presentec dere is Proprietary to Digital Kesearch

SN

CP/M-68K Programmer's Guide 7 4.2 File Access Functions

Table 4-4. Read-Write Error Message Response Options

Option Action

A The A option or CTRL-C aborts the program
and returns control to the CCP. CP/M-68K
returns the system prompt (>) preceded by
the drive code.

R The R option retries the operation that
caused the error. For example, it rereads
or rewrites the sector. If the operation
succeeds, program execution continues as if
no error occurred. However, 1f the
operation fails, the error message and
option message is displayed again.

(o] The C option ignores the error that occurred
and continues program execution. The C
option is not an appropriate response for
all types of programs. Program execution
should not be continued in some cases. For
example, if you are updating a data base and
receive a read or write error but continue
program execution, you can corrupt the index
fields and the entire data base. For other

-programs, continuing program execution is
recommended. For example, when you transfer
a long text file and receive -an error
because one sector is bad, you can continue
transferring the file. After the file is
transferred, review the file. Using an
editor, add the data that was not
transferred due to the bad sector.

Any response other than an A, R, C, or CTRL-C is invalid. The
BDOS reissues the option message if you enter any other response.

The CP/M Disk select error occurs when you select a disk but
you receive an error due to one of the conditions below.

e You specified a disk drive not supported by the BIOS.
e The BDOS receives an error from the BIOS.
e You specified a disk drive outside the range A through P.

Before the BDOS issues a read or write function to the BIOS, the
BDOS issues a disk select function to the BIOS. If the BIOS does
not support the drive specified in the function, or if an error
occurs, the BIOS returns an error to the BDOS, which in turn, causes
CP/M-68K to display the disk select error at your console. If the
error is caused by a BIOS error, CP/M-68K returns the option
message:

Do you want to Abort (A) or Retry (R)?

3]
£

All Information 2rasented Here is 2roprie

29

CP/M-68K Programmer's Guide 4.2 File Access Functions

To select one of the options in the message, specify one of the
letters enclosed in parentheses. The A option terminates the
program and returns control to the CCP. The R option tries to select
the disk again. If the disk select function fails, CP/M-68K
redisplays the disk select error message and the option message.

However, if the error is caused because you specify a disk
drive outside the range A through P, only the CP/M Disk select error
is displayed. CP/M-68K aborts the program and returns control to
the CCP.

Your console displays the CP/M Disk change error message when
the BDOS detects the disk in the drive is not the same disk that was
logged in previously. Your program cannot recover from this error.
Your program terminates. CP/M-68K returns program control to the
CCP.

You log in a disk by accessing the disk or resetting the disk
or disk system. The Select Disk Function (14) resets a disk. The
Reset Disk System Function (13) resets the disk system. Files cannot
be open when your program invokes either of these functions.

You receive the CP/M Disk file error and option messages (shown
below) if you call the BDOS to write to a file that is set to read-
only status. Either a STAT command or the BDOS Set File Attributes
Function (30) sets a file to read-only status.

CP/M Disk file error: £ffffffff.ttt is read-only.
Do you want to: Change it to read/write (C), or Abort (aA)?

The variable ffffffff.ttt in the error message denotes the filename
and filetype. To select one of the options, specify one of the
letters enclosed in parentheses. Each option is described below.

Table 4-5. Disk File Error Response Options

Option Action

c Changes the status of this file from read-only
to read-write and continues executing the
program that was being processed when this
error occurred.

A Terminates execution of the program that was
being processed and returns program control to
the CCP. The status of the file remains read-
only. If you enter a CTRL-C, it has the same
effect as specifying the A option.

CP/M-68K reprompts with the option message if you enter any
response other than those described above.

L/ 1To0N FLuVYlLaliuucs D TULUCT T e L L LT ALLSOO ULV LCLWVILID

4.2.3 Open File Function

FUNCTION 15: OPEN FILE

Entry Parameters:
Register DO.W: OFH
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H - 03G
error: FFH

The Open File Function matches the filename and filetype fields
of the FCB specified in register Dl.L with these fields of a
directory entry for an existing file on the disk. When a match
occurs, the BDOS sets the FCB extent (ex) field and the second
system (S2) field to zero before the BDOS opens the file. Setting
these one~-byte fields to zero opens the file at the base extent, the
first extent in the file. In CP/M-68K, files can be opened only at
the base extent. In addition, the physical I/0 mapping information, .
which allows access to the disk file through subsequent read and
write operations, is copied to fields 40 through dn of the FCB. A
file cannot be accessed until it. has been opened successfully. The
open function returns an integer value ranging from 00H through 03H
in DO.W when the open operation is successful. The value FFH is
returned in register DO.W when the file cannot be found.

The question mark (?) wildcard can be specified for the
filename and filetype fields of the FCB referenced by register Dl.L.
The ? wildcard has the value 3FH. For each position containing a ?
wildcard, any character constitutes a match. For example, if the
filename and filetype fields of the FCB referenced by D1.L contain
only ? wildcards, the BDOS accesses the first directory entry.
However, you should not create a FCB of all wildcards for this
function because you cannot ensure which file this function opens.

Note that the current record field (cr) in the FCB must be set
to zero by the program for the first record in the file to be
accessed by subsequent sequential I/O functions. However, setting
the current record field to zero is not required to open the file.

V]

CP/M-68K Programmer 's Guide 4.2 File Access Functions

4.2.4 Close File Punction

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register DO.W: 10H
Register Dl.L: FCB Address

Returned Values:
Register DO0.W: Return Code

success: 00H - 03H
error: FFH

The Close File Function performs the inverse of the Open File
Function. When the FCB passed in Dl.L was opened previously by
either an Open File (15) or Make File (22) PFunction, the close
function updates the FCB in the disk directory. The process used to
match the FCB with the directory entry is identical to the Open File
Function (15). An integer value ranging from 00H though 03H is
returned in DO.W for a successful close operation. The value FFH is
returned in DO.W when the file cannot be found in the directory.
When only read functions access a file,.closing the file is not
required. However, a file must be closed to update its disk
directory entry when write functions access the file.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.5 Search For Pirst Function

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
" Register DO.W: 1llH
Register D1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H - 03H
error: FFH

The Search For First Function scans the disk directory
allocated to the current user number to match the filename and
filetype of the FCB addressed in register Dl.L with the filename and
filetype of a directory entry. The value FFH is returned in register
DO.W when a matching directory entry cannot be found. An integer
value ranging from 00H through 03H is returned in register DO.W when
a matching directory entry is found.

The directory record containing the matching entry is copied to
the buffer at the current DMA address. Each directory record
contains four directory entries of 32 bytes each. The integer value
returned in DO.W indexes the relative location of the matching
directory entry within the directory record. For example, the value
0lH indicates that the matching directory entry is the second one in
the directory record in the buffer. The relative starting position
of the directory entry within the buffer is computed by multiplying
the value in DO.W by 32 (decimal), which is equivalent to shifting
the binary value of DO.W left 5 bits.

When the drive (dr) field contains a ? wildcard, the auto disk
select function is disabled and the default disk is searched. All
entries including empty entries for all user numbers in the
directory are searched. The search function returns any matching
entry, allocated or free, that belongs to any user number. An
allocated directory entry contains the filename and filetype of an
existing file. A free entry is not assigned to an existing file. If
the first byte of the directory entry is E5H, the entry is free. A
free entry is not always empty. It can contain the filename and
filetype of a deleted file because the directory entry for a deleted
file is not zeroed.

All Information Presented Here is Proprietar:

v
0

igigal Research

33

L ——

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.8 Search For Next Punction

FUNCTION 18: SEARCH FOR NEXT ' ~

Entry Parameters:
Register DO.W: 12H

Returned Values:
Register DO.W: Return Code

success: O00H - 03H
error: FFH

The Search For Next Function scans the disk directory for an
entry that matches the FCB and follows the last matched entry, found
with this or the Search For First Function (17).

A program must invoke a Search For First Function before
invoking this function for the first time. Subsequent Search For
Next Functions can follow, but they must be specified without other
disk related BDOS functions intervening. Therefore, a Search For
Next Function must follow either itself or a Search For First

Function.] {m
N
The Search For Next Function returns the value FFH in DO.W when
no more directory entries match.
“

~

- - ~ -

-~ * = v =
Par PR S I O N O S

L&/ M=oon rrudiadliddsl 9 QYuiLwg Tl L LdT NALLTOO L UMIGLLULIS

4.2.7 Delete File Punction

FUNCTION 19: DELETE FILE

Entry Parameters:
Register DO.W: 13H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: FFH

The Delete File Function removes files and deallocates the
directory entries for and space allocated to files that match the
filename in the FCB pointed to by the address passed in Dl.L. The
‘filename and filetype can contain wildcards, but the drive select
code cannot be a wildcard as in the Search For First (17) and Search
For Next (18) Functions. The value FFH is returned in register DO.W
when the referenced file cannot be found. The value 00H is returned
in DO.W when the file is found.

All Information 2raseaat=d

e
]
"
({Y)
+
[
4y
[}
(9]
"

N 2 T -

4.2.8 Read Sequential Function

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register DO.W: 1l4H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H
error: O0l1H

The Read Sequential Function reads the next 128-byte record in
a file. The FCB passed in register Dl.L must have been opened by an
Open File (15) or the Make File Function (22) before this function
is invoked. The program must set the current record field to zero
following the open or make function to ensure the file is read from
the first record in the file. After the file is opened, the Read
Sequential Function reads the 128-byte record specified by the
current record field from the disk file to the current DMA buffer.
The FCB current record (cr) and extent (ex) fields indicate the
location of the record that is read. The current record field is
automatically incremented to the next record in the extent after a
read operation.

When the current record field overflows, the next logical
extent is automatically opened and the current record field is reset
to zero before the read operation is performed. After the first
record in the new extent is read, the current record field contains
the value (0lH.

The value 00H is returned in register DO.W when the read
operation is successful. The value of 0lH is returned in DO.W when
the record being read contains no data. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur when this function tries to read either a previously unwritten
data block or a nonexistent extent. These situations usually occur
with files created or appended with the BDOS Write Random Function
(34). ,

y 3o T o S - e
Aad SOZCITZTLCON

N

CP2/M-o8K rrogrammer 's wulde 4.4 LlLifE ACLEDD fUNLLLULLD

4.2.9 Write Sequential Function

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register DO.W: 15H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

succesé: 00H
error: 0lH or 02H

The Write Sequential Function writes a 128-byte record from the
DMA buffer to the disk file whose FCB address is passed in register
D1.L. The FCB must be opened by either an Open File (1l5) or Make
File (22) Function before your program invokes the Write Sequential
Function. The record is written to the current record, specified in
the FCB current record (cr) field.

The current record field is automatically incremented to the
next record. When the current record field overflows, the next
logical extent of the file is automatically opened and the current
record field is reset to zero before the write operation.. After the
write operation, the current record field in the newly opened extent
is set to 0OlH.

Records can be written to an existing file. However, newly
written records can overlay existing records in the file because the
current record field usually is set to zero after a file is opened
or created to ensure a subsequent sequential I/O function accesses
the first record in the file.

The value 00H is returned in register DO.W when the write
operation is successful. A nonzero value in register DO.W indicates
the write operation is unsuccessful due to one of the conditions
described below.

1,
Q
ry
2]
fo
¢t
13
[0}
o}
V]
[
W
[
1Y
it
(1%
3
(v
"
w
]
[
"W
(A
(9]
[#]
"
b
(i
1
i)
by
{
{
i
1
v
i
i
t
i
t
1
i
L}
{
1]

o SRR

CP/M-68K Programmer's Guide

msble 4-6. Unsuccessful Write Operation Return Codes

4.2 PFile Access Functions

Value Meaning
01 No available directory space - This condition
occurs when the write command attempts to create
a new extent that requires a new directory entry
and no available directory entries exist on the
selected disk drive.
02

No available data block - This condition 1is
encountered when the write command attempts to
allocate a new data block to the file and no

unallocated data blocks exist on the selected
disk drive.

focrmation Presented Here 1S Proprietary to Digitali Rese

a

-
P

~
~

[}
.-

e
‘.»

N

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.10 Make File Fumnction

FUNCTION 22: MAKE FILE

Entry Parameters:
Register DO.W: 16H
Register Dl1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O0QH - 03H
error: FFH

The Make File Function creates and opens a new file on a
specified disk or the default disk. The address of the FCB for the
file is passed in register Dl.L. You must ensure the FCB contains a
filename that does not already exist in the referenced disk
directory. The drive field (dr) in the FCB indicates the drive on
which the directory resides. The disk directory is on the default
drive when the FCB drive field contains a zero.

The BDOS creates the file and initializes the directory and the
FCB in memory to indicate an empty file. The program must ensure
that no duplicate filenames occur. Invoking the ‘Delete File
Function (19) prior to the Make File Function excludes the
possibility of duplicate filenames.

Register DO.W contains an integer value in the range "00H
through 03H when the function is successful. Register DO.W contains
the value FFH when a file cannot be created due to insufficient
directory space.

All Informaticn 2rzsenced Here is Prcprietary To JuIlial R@searsch

LF/MT00N FlUYlauuueli 5 GuLuc

4.2.11 Rename File Function

- de eSS

FUNCTION 23:

RENAME FILE

Entry Parameters:

Register DO.W:
Register Dl.L:

17H
FCB Address

Returned Values:

Register DO.W:

Return Code
success: 00H
error: FFH

EWMA P Co Tl S BN e W RS

The Rename File Function uses the FCB specified in register
Dl1.L to change the filename and filetype of all directory entries
for a file. The first 12 bytes of the FCB contains the file
specification for the file to be renamed as shown in Figure 4-1l.
Bytes 16 through 27 (40 through dl2) contain the new name of the
file. The filenames and filetypes specified must be valid for Cp/M.
Wildcards cannot be specified in the filename and filetype fields.
The FCB drive field (dr) at byte position 0 selects the drive. This
function ignores the drive field at byte position 16, if it is
specified for the new filename. Register DO.W contains the value
zero when the rename function is successful. It contains the value
FFH when the first filename in the FCB cannot be found during the .
directory scan.

FCB byte position
0 1 2 3 4 5 6 7 8 910 11...16 17 18 19 20 21 22 23...27...

dr | £1] £2| £3| £4| £5| £6| £7| £8] t1] t2|£3 dl} d2|d3|d4|d5| 46| d7

eeddl2..

.. 40

[

oléd file specification new file specification

Figure 4-1. FCB Format for Rename Function

In the above figure, horizontal ellipses indicate FCB fields
that are not required for this function. Refer to Section 4.1.2 for
a description of all FCB fields. »

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.12 Set Direct Memory Access (DMA) Address Function

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register DO.W: 1lAH
Register D1.L: DMA Address

Returned Values:
Register DO.W: O0O0H

The Set DMA Address Function sets the starting address of the
128-byte DMA buffer. DMA is an acronym for Direct Memory Access,
which often refers to disk controllers that directly access memory
to transfer data to and from the disk subsystem. Many computer
systems use nonDMA access in which the data is transferred through
programmed I/O operations. In CP/M the term DMA is used differently.
The DMA address in CP/M-68K is the beginning address of a 128-byte
data buffer, called the DMA buffer. The DMA buffer is the area in
memory where a data record resides before a disk write operation and
after a disk read operation. The DMA buffer can begin on an even or
odd address.

11l Informaticn Presencad Her= 13 Propri2atary I8 SlIlTi. a2SE3

CP/M—0UK Programmer "s suiae 4.4 rlle ACCesS runctions

4.2.13 Set Pile Attributes Function

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register DO.W: 1lEH
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H
error: FFH

The Set File Attributes Function sets or resets file attributes
supported by CP/M-68K and user defined attributes for application
programs. CP/M-68K supports read-only, system, and archive
attributes.

The high bit of each character in the ASCII filename (f1
through £8) and filetype (tl through t3) fields in the FCB denotes
whether attributes are set. When the high bit in any of these fields
has the value 1, the attribute is set. Table 4-7 denotes the FCB
fields and their attributes.

The address of the FCB is passed in register Dl.L. Wildcards
cannot be specified in the filename and filetype fields.

This function searches the directory on the disk drive,
specified in the FCB drive field (dr), for directory entries that
match the FCB filename and filetype fields. All matching directory
entries are updated with the attributes this function sets.

A zero is returned in register DO.W when the attributes are

set. However, if a matching entry cannot be found, register DO.W
contains FFH.

All Informat:cn Presented Here 1s Propriecary to Digital Research

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-7. PFile Attributes

Field : Attribute ,

f1 through f£4 User-defined attributes for application
programs.

£5 through f8 Reserved for future use by CP/M-68K.

tl The Read-Only attribute indicates the file
status is Read-Only. The BDOS does not
allow write commands to write to a file
whose status is Read-Only. The BDOS does
not permit a Read-Only file to be deleted.

t2 The System attribute indicates the file is
a system file. Some built-in commands and
system utilities differentiate between
system and user files. For example, the
DIRS command provides a directory of
system files. The DIR command provides a
directory of user files for the current
user number. For details on these
commands, refer to the CP/M-68K Operating
System User's Guide.

t3 The Archive attribute is reserved but not
used by CP/M-68K. If set, it indicates
that the file has been written to backup
storage by a user-written archive program.
To implement this facility, the archive
program sets this attribute when it copies
a file to backup storage; any programs
updating or creating files reset this
attribute. The archive program backs up
only those files that have the Archive
attribute reset. Thus, an automatic
backup facility restricted to modified
files can be implemented easily.

The Open File (15) and Close File (16) Functions do not use the
high bit in the filename and filetype fields when matching
filenames. However, the high bits in these fields should equal zero
when you open a file. Also, the Close Pile Function does not update
the attributes in the directory entries when it closes a file.

All Incformation Presentad Fer2 13 o :2arch

e}
[a
X
1)
it
|9
[a
o

o
L)
13

Ui
1
il
fu
t
fu
11
o

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.14 Read Random Function

FUNCTION 33: READ RANDOM

Entry Parameters:
Register DO.W: 21H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: O0lH, 03B
04H, 06H

The Read Random Function reads records randomly, rather than
sequentially. The file must be opened with an Open File Function
(15) or a Make File Punction (22) before this function is invoked.
The address of a 36-byte FCB is passed in register Dl.L. The FCB
random record field denotes the record this function reads. The
random record field is a 24-bit field, with a value ranging from
00000H through 3FFFFH. This field spans bytes r0, rl, and r2 which
are bytes 33 through 35 of the FCB. The most significant byte is
first, r0, and the least significant byte, r2, is last. This byte
sequence is consistent with the addressing conventions for the 68000
microprocessor but differs from other versions of CP/M.

The random record number must be stored in the FCB random
record field before the BDOS is called to read the record. After
reading the record, register DO.W either contains an error code (see
Table 4-8), or the value 00H which indicates the read operation was
successful. In the latter case, the current DMA buffer contains the
randomly accessed record. The record number is not incremented. The
FCB extent and current record fields are updated to correspond to
the location of the random record that was read. A subsequent Read
Sequential (20) or Write Sequential (21) Function starts from the
record which was randomly accessed. Therefore, the randomly read
record is reread when a program switches from randomly reading
records to sequentially reading records. This is also true for the
Write Random Functions (34, 40). The last record written is
rewritten if the program switches from randomly writing records to
sequentially writing records with the Write Sequential Function
(21). However, a program can obtain the effect of sequential I/0
operations by incrementing the random record field following each
Read Random Function (33) or Write Random Function (34, 40).

{1,
i
]
ty
m
’-l
tn
'Y
(3}
Q
'
ey
'—l
o
(t
[+
"

.- - . -
233 Informaztion Tresence:

O

CP/M-68K Programmer's Guide 4.2 File Access Functions

Numeric codes returned in register DO.W following a random read
operation are listed in Table 4-8.

Table 4-8. Read Random Function Return Codes

Code

Meaning

00

0l

03

04

06

Success - returned in DO.W when the Read Random
Function succeeds.

Reading unwritten data - returned when a random
read operation accesses a previously unwritten
data block.

Cannot close current extent - returned when the
BDOS cannot close the current extent prior to
moving to the new extent containing the FCB
random record number. This error can be caused
by an overwritten FCB or a read random operation
on an FCB that has not been opened.

Seek to unwritten extent - returned when a
random read operation accesses a nonexistent
extent. This error situation is equivalent to
error Ol.

Random record number out of range - returned
when the value of the FCB random record field'is
greater than 3FFFFH.

all

- : oy i~ P < =
Information Pr=2sanctag Here L3

CP/M-68K Programmer's Guide

4.2.15 Write Random Function

4.2 File Access Functions

FUNCTION 34:

WRITE RANDOM

Entry Parameters:
Register DO.W:
Register Dl.L:

22H
FCB Address

Returned Values:
Register DO.W: Return Code
success: 00H
error: 02H, 03H
05H, 06H

The Write Random Function writes a 128-byte record from the
current DMA address to the disk file that matches the FCB referenced
in register D1.L. Before this function is invoked, the file must be
opened with either the Open File Function (15) or the Make File
Function (22).

This function requires a 36-byte FCB. The last three bytes of
the FCB contain the random record field. It contains the record
number of the record that is written to the file. To append to an
existing file, the Compute File Size Function (35) can be used to

write the random record number to the FCB random record field. For a

new file, created with the Make File Function (22), you do not need
to use the Compute File Size Function to write the first record in
the newly created file. 1Instead, specify the value 00H in the FCB
random record field. The first record written to the newly created
file is zero.

When an extent or data block must be allocated for the record,
the Write Random Function allocates it before writing the record to
the disk file. The random record number is not changed following a
Write Random Function. Therefore, a new random record number must be
written to the FCB random record field before each Write random
Function is invoked.

However, the logical extent number and current record field of
the FCB are updated and correspond to the random record number that
is written. Thus, a Read Sequential (20) or Write Sequential (21)
- Function that follows a Write Random Function, either rereads or
rewrites the record that was accessed by the Read or Write Random
Function. To avoid overwriting the previously written record and
simulate sequential write functions, increment the random record
number after each Write Random Function.

After the random write function completes, register DO.W
contains either an error code (see Table 4-9), or the value 00H that
indicates the operation was successful.

]
"
"
[{Y
n
]

3
ct
(M
(o7
s
®
[n]
[{Y]
m
Al

A
- -

$-1

< < -
Proprietary tc Dig:itaz

[1e]

46

-

CP/M-68K Programmer's Guide 4.2 File Access Functions
g

Table 4-9. Write Random Function Return Codes

Code Meaning

00 Success - returned when the Write Random Function
succeeds without error.

02 No available data block = occurs when the Write
Random function attempts to allocate a new data
block to the file, but the selected disk does not
contain any unallocated data blocks.

03 Cannot close current extent - occurs when the
BDOS cannot close the current extent prior to
moving to the new extent that contains the record
specified by the FCB random record field. This
error can be caused by an overwritten FCB or a
write random operation on an FCB that has not
been opened.

0s No available directory space - occurs when the
write function attempts to create a new extent
that requires a new directory entry but the
selected disk drive does not have any available
directory entries. ‘

06 Random record number out of range - returned
when the value of the FCB random record field is
greater than 3FFFFH.

LI¥]

il Informaticn Presentad Zer2 13

CFY/M=00N Yrrogrammer s suligae G.4 riie ACCeS8sS Functions

4.2.16 Compute Pile Size Function

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register DO.W: 23H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: O0OEB

success: Pile Size written
to FCB random
Record Field
error: 2Zero written to
FCB Random Record
Field

The Compute File Size Function computes the size of a file and
writes it to the random record field of the 36-byte FCB whose
address is passed in register Dl.L.

The FCB filename and filetype are used to scan the directory
for an entry with a matching filename and filetype. If a match
cannot be found, the value zero is written to the FCB random record
field. However, when a match occurs, the virtual file size is
written in the FCB random record field.

The virtual file size is the record number of the record
following the end of the file. The virtual size of a file
corresponds to the physical size when the file is written
sequentially. However, the virtual file size may not equal the
physical file size when the records in the file were created by
random write functions. The Compute File Size Function computes the
file size by adding the value 1 to the record number of last record
in a file. However, for files that contain randomly written
records, the record number of the last record does not necessarily
indicate the number of records in a file. For example, the number
of the last record in a sparse file does not denote the number of
records in the f£ile. Record numbers for sparse files are not usually
sequential. Therefore, gaps can exist in the record numbering
sequence. You can create sparse files with the Write Random
Functions (34 and 40).

In addition to computing the file size, you can use this
function to determine the end of an existing file. For example,
when you append data to a file, this function writes the record
number of the first unwritten record to the FCB random record field.
When you use the Write Random (34) or the Write Random With Zero
Fill (40) Function, your program more efficiently appends data to
the file because the FCB already contains the appropriate record
number.

All Informacion Presented Here is Proprietary to Digital Research

48

o

CP/M-68K Programmer's Guide 4,2 File Accesss Functions

4.2.17 Set Random Record Function

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register DO.L: 24H
Register D1l.L: FCB Address

Returned Values:
Register DO: (QO0H
Register FCB: Random Record
Field Set

The Set Random Record Function calculates the random record
number of the current position in the file. The current position in
the file is defined by the last operation performed on the file.
Table 4-10 lists the current position relative to operations
performed on the file.

Table 4-10. Current Pdsitioﬁ Definitions

Operation Function Current Position

Open file Open File (15) record 0

Create file Make File (22) record 0

Random read Read Random (33) last record read

Random write Write Random (34) last record

Write Random With written
Zero Fill (40)

Sequential read Read Sequential (20) record following
the last record
read

Sequential write Write Sequential (21) record following
the last record
written

This function writes the random record number in the random record
field of the 36-byte FCB whose address your program passes in
register Dl.L.

You can use this function to set the random record field of the
next record your program accesses when it switches from accessing
records sequentially to accessing them randomly. For example, your
program sequentially reads or writes 128-byte data records to an

All Iaformation Presentad Here i3 Propristary o Jigital Researzcn

49

CP/M-68K Programmer's Guide 4.2 PFile Access Functions

arbitrary position in the file that is defined by your program.
Your program then invokes this function to set the random record
field in the FCB. The next random read or write operation that your
program performs accesses the next record in the file.

Another application for this function is to create a key list

from a file that you read sequentially. Your program sequentially

reads and scans a file to extract the positions of key fields. After
your program locates each key, it calls this function to compute the
random record position for the record following the record
containing the key. To obtain the random record number of the
record containing the key, subtract one from the random record
number that this function calculates. CP/M-68K reads and writes 128-
byte records. If your record size is also 128 bytes, your program
can insert the record position minus one into a table with the key
for later retrieval. By using the random record number stored in the
table when your program performs a random read or write operation,
your program locates the desired record more efficiently.

Note that if your data records are not equal to 128 bytes, your
program must store the random record number and an offset into the
physical record. For example, you must generalize this scheme for
variable-length records. To find the starting position of key
records, your program stores the buffer-relative position and the
random record number of the records containing keys.

<2l Research

()

£

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.18 Write Random With Zero Fill Function

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters: .
Register DO.W: 28H
Register D1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O0O0H
error: 025, 03H
05H, 06H

The Write Random With Zero Fill Function, like the Random Write
Function (34), writes a 128-byte record from the current DMA buffer
to the disk file. The address of a 36-byte FCB is passed in
register D1.L. The last three bytes contain the FCB random record
field. This field specifies the record number of the record that
this write random function writes to the file. Refer to Write Random
Function (34) for details on the FCB and setting its random record
field.

Like the Write Random Function, this function allocates a data
block before writing the record when a block is not already
allocated. However, in addition to allocating the data block, this
function also initializes the block with zeroes before writing the
record. If your program uses this function to write random records
to files, it ensures that the contents of unwritten records in the
block are predictable.

After the random write function completes, register DO.W
contains either an error code (see Table 4-9), or the value 00H,
which indicates the operation was successful.

Nk [A WU b WY AMMILG L W WS e

4.3 Drive Functions

systenm,

e w e eV A MW WAL

This section describes drive functions that reset the disk
select and write-protect disks,

include the functions listed in Table 4-11.

. -

Aol Informaticn Presencec Here 1

Drive Functions

Function

Function Number

Reset Disk System
Select Disk

Return Login Vector
Return Current Disk
Write Protect Disk
Get Read-Only Vector
Get Disk Parameters
Reset Drive

Get Disk Free Space

13
14
24
25
28
29
31
37
46

and return vectors. They

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.1 Reset Disk System Function

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register DO.W: ODH

Returned Values:
Register DO.W: O00H

The Reset Disk. System Function restores the file system to a
reset state. All disks are set to read-write (see Write Protect Disk
(28) and Get Read-Only Vector (29) Functions), and all the disk
drives are logged out. This function can be used by an application
program that requires disk changes during operation. The Reset
Drive Function (37) can also be used for this purpose. All files
must be closed before your program invokes this function.

-CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.2 Select Disk Function

FUNCTION 14: SELECT DISK

Entry Parameters:
Register DO.W: OEH
Register D1.W: Disk Number

Returned Values:
Register DO.W: O0OH

The Select Disk Function designates the disk drive specified in
register D1.W as the default disk for subsequent file operations,
The decimal numbers 0 through 15 correspond to drives a through P,
For example, D1.W contains a 0 for drive A, a 1 for drive B, and so
forth through 15 for a full 16-drive system. In addition, the
designated drive is logged-in if it is currently in the reset state.
Logging in a drive places it in an on-line status which activates
the drive's directory until the next cold start, or Reset Disk
System (13) or Reset Drive (37) Function.

When the FCB drive code equals zero (dr = 0H), this function
references the currently selected drive. However, when the FCB

drive code value is between 1 and 16, this function references
drives A through P.

If this function fails, CP/M-68K returns a CP/M Disk select
error, which is described in Section 4.2.2.

o
' a
et
[&
w3
th
QO
r
H
f
gt
’. .
Q
3
iv
(a}
]
mn
1)
&}
(t
i
(o]
49

ere is Proprietary to Digital KResearch

54

;

Y

N

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.3 Return Login Vector Function

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters: :
Register DO.W: 18H

Returned Values:
Register DO.W: Login Vector

The Return Login Vector Function returns in register DO.W a 16~
bit value that denotes the log-in status of the drives. The least:
significant bit corresponds to the first drive A, and the high order
bit corresponds to the sixteenth drive, labeled P. Each bit has a
value of zero or one. The value zero indicates the drive is not on-
line. The value one denotes the drive is on-line. When a drive is
logged in, its bit in the log-in vector has a value of one.
Explicitly or implicitly logging in a drive sets its bit in the log-
in vector . The Select Disk Function (14) explicitly logs in a drive.

File operations implicitly log in a drive when the FCB drive field
(dr) contains a nonzero value.

ni

CrY/m=—o0on rrogrammer s suiqe ‘e UIlive runcuions

4.3.4 Return Current Disk Function

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register DO.W: 19H

Returned Values:
Register DO.W: Current Disk

The Return Current Disk Function returns the current default
disk number in register DO.W. The disk numbers range from 0 through
15, which correspond to drives A through P. Note that this numbering
convention differs from the FCB drive field, which specifies
integers 1 through 16 correspond to drives labeled A through P.

Proprietary to Digital Research

g
' >
ot
[
o]
(41
0]
"
=]
v
or
)
Q
»)
1y
te
(19
n
U]
3
i1
{D
[e])
m
1]
e
o
.-.l
n

R

-~

CP/M~-68K Programmer's Guide ‘ 4.3 Drive Functions

4.3.5 Write Protect Disk Function

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register DO.W: 1CH

Returned Values:
Register DO.W: O0O0H

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Disk change error on drive x

Your program terminates when this error occurs. Program control
returns to the CCP. '

All Information Presented Hers 15 2ropriatary to Digizzl Re

n

230120

57

CP/M-68K Programmer'‘'s Guide . 4.3 Drive Functions

4.3.6 Get Read-Only Vector Function

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register DO.W: 1DH

Returned Values:
Register DO.W: Read-Only
Vector Value

The Get Read-Only Vector Function returns a l6-bit vector in
register DO.W. The vector denotes drives that have the temporary
read-only bit set. Similar to the Return Login Vector Function (24),
the least significant bit corresponds to drive A, and the most
significant bit corresponds to drive P. The Read-Only bit is set
either by an explicit call to the Write Protect Disk Function (28),
or by the automatic software mechanisms within CP/M-68K that detect
changed disks.

TS -3 -~ 1 N 5 - NP .
L11 Informzcion Presented Here i1s Proprietarv to Digital Research

- [e e e e s ——— —— e wa © e a1 o % < o e« gonar—

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.7 Get Disk Parameters Function

FUNCTION 31: GET DISK PARAMETERS

Entry Parameters:
Register DO.W: 1FH
Register D1.L: CDPB Address

Returned Values:
Register DO.W: O0O0H
Register CDPB: Contains DPB
Values

The Get Disk Parameters Function writes a copy of the l6-byte
BIOS Disk Parameter Block (DPB) for the current default disk, called
the CDPB, at the address specified in register D1.L. Figure 4-2
illustrates the format of the DPB and CDPB. The values in the CDPB
can be extracted and used for display and space computation
purposes. Normally, application programs do not use this function.
For more details on the BIOS DPB, refer to the CP/M-68K Operating
System System Guide.

SPT BSH BLM EXM RES DSM DRM RES CKS OFF

16 8 8 8 8 16 16 16 16 16

FPigure 4-2. DPB and CDBP

All Information Presentad Here is Proprietary to Digizal Researcn

59

NSde [LB W WAL & de WY S cownne e - -~ -

Table 4-12 lists the fields in the DPB and CDPB.

Table 4-12. PFields in the DPB and CDPB

e a Y w - eseew wa weew

Field Description

SPT Number of 128-byte logical sectors per track

BSH Block shift factor

BLM Block mask

EXM Extent mask

RES Reserved byte

DSM Total number of blocks on the disk

DRM Total number of directory entries on the
disk

RES Reserved for system use

CKS' Length (in bytes) of the checksum vector

OFF

Track offset to disk directory

*» 3 ha

Hhdae -

nfcrmation Presented Here is Proprietary to Digital Research

60

e
Vi \

7N

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.8 Reset Drive Punction

FUNCTION 37: RESET DRIVE

Entry Parameters:
Register DO.W: 25H
Register D1.W: Drive Vector

Returned Values:
Register DO.W: O0O0H

The Reset Drive function restores specified drives to the reset
state. A reset drive is not logged-in and its status is read-write.
Register D1.W contains a 16-bit vector indicating the drives this
function resets. The least significant bit corresponds to the first
drive, A. The high order bit corresponds to the sixteenth drive,
labeled P. Bit values of 1 indicate the drives this function resets.

To maintain compatibility with other Digital Research operating
systems, this function returns the value zero in register DO.W.

Aall Information Presencaed Zere 1s 2roprietary %o Tigizal Research

61

Cp/M-68K Programmer's Guide 4.3 Drive Functions

4.3.9 Get Disk Free Space Punction

FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register DO.W: 2EH
Register D1.W: Disk Number

Returned Values:
Register DMA Buffer: Free Sector Count

The Get Pree Disk Space Function returns the free sector count,
the number of free 128-byte sectors on a specified drive, in the
first four bytes of the current DMA pbuffer. The drive number is
passed in register D1.W. CP/M-68K assigns disk numbers sequentially
from 0 through 15 (decimal). Each number corresponds to a drive in
the range A through P. For example, the disk number for drive A is
0 and for drive B, the number is 1.

Note that these numbers do not correspond to those in the drive
field of the FCB. The FCB drive field (dr) uses the numbers 1
through 16 (decimal) to designate drives.

4.4 Character I/0 Functions

Character I/0 functions read or write characters serially to a

peripheral device. Character 1/0 functions supported in CP/M-68K are

described in this section and listed in Table 4-13.

Table 4-13. Character 1/0 Functions

Function Function Number
Console Operations

Console Input - 1)
Console Output 2

Direcf Console I/0 ‘6

Print String 9

Read Console Buffer 10

Get Console Status 11

411 Information Presented Here is Proprietary to Digital Research

62

3

e e e e - = ————— i o o S o S Tam ST e STTIIIT SIS emomTesSeTE s TS [-

CP/M-68K Programmer's Guide " 4.4 Character I/0 Functions

Table 4-13. (continued)

Function Function Number

Additional Serial I/O

Auxiliary Input 3

Auxiliary Output 4

List Qutput 5
I/0 Byte

Get I/O Byte 7

set I/0 Byte 8

All Information Presented Here 13 Proprietary to Dijital Research

63

CP/M—-68K Programmer's Guide I 4.4 Character I/O Functions

4.4.1 Conmnsole 1I/0 Punctions

This section describes functions that read from, write to, and
report the status of the logical device CONSOLE.

‘ Y
Console Input Function o
FUNCTION 1: CONSOLE INPUT
Entry Parameters:
Register DO.W: OlH
Returned Values:
Register DO.W: ASCII Character
The Console Input function reads the next character from the
logical console device (CONSOLE) to register DO.W. Printable
characters, along with carriage return, line feed, and backspace
(CTRL-H), are echoed to the console. Tab characters (CTRL-I) are
expanded into columns of eight characters. Other CONTROL characters,
such as CTRL-C, are processed. The BDOS does not return to the
calling program until a character has been typed. Thus, execution
of the program is suspended until a character is ready. ('5
- ‘ ’
‘./.\
N

3 T

411 Inormation Presented Here is Proprietary to Digitazl Researcn

64

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

e - -

Console Output Function

FUNCTION 2: CONSOLE OUTPUT

‘Entry Parameters:
Register DO.W: 02H
Register D1.W: ASCII Character

Returned Values:
Register DO: O0O0H

The ASCII character from D1.W is sent to the logical console.
Tab characters expand into columns of eight characters. In
addition, a check is made for stop scroll (CTRL-S), start scroll
(CTRL-Q), and the printer switch (CTRL-P). This function also
processes CTRL-C, which aborts the operation and warm boots the
system. If the console is busy, execution of the calling program is
suspended until the console accepts the character.

All Information Presentad dere 13 2ropriatary <c 2iga

vy —— v n -

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Direct Console I/0 Function

FUNCTION 6: DIRECT CONSOLE I/0

Entry Parameters:
Register DO.W: O06H
Register D1.W: OFFH (input)
OFEH (status)
or
Character (output)

Returned Values:
Register DO.W: Character or Status

Direct Console I/0 is supported under cp/M-68K for those
specialized applications where character-by-character console input
and output are required without the control character functions
CcP/M-68K supports. This function bypasses all of CP/M-68K's normal
CONTROL character functions such as CTRL-S, CTRL-Q, CTRL-P, and
CTRL-C.

Upon entry to the Direct Console I/0 Function, register D1.W
contains one of the values listed below.

Table 4-14. Direct Console I/0 Function Values

Value Meaning
FFH denotes a CONSOLE input request
FEH denotes a CONSOLE status request
ASCII -
character output to CONSOLE where CONSOLE is the
logical console device ‘

when the input value is FFH, the Direct Console I/O Function
calls the BIOS Conin Function, which returns the next console input
character in D0.W but does not echo the character on the console
screen. The BIOS Conin function waits until it receives a character.
Thus, execution of the calling program remains suspended until a
character is ready. '

When the input value is FEH, the Direct Console 1/0 Function
returns the status of the console input in register DO.W. When
register DO.W contains the value zero, no console input exists.
However, when the value in DO.W is nozero, conscle input is ready to
be read by the BIOS Conin Function. -

A1l Information Presented Here is Proprietary to Digital Research

66

P

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

When the input value in D1.W is neither FEH nor FFH, the Direct
Console I/O Function assumes that Dl.W contains a wvalid ASCII
character, which is sent to the console.

All Information Presented Here is Proprietary o Digital Research

67

e —— -

CP/Mm—0OBN Programmer s suiae 4.4 Lnaracter 1l/U runctions

Print String Function

FUNCTION 9: PRINT STRING

Entry Parameters:
Register DO.W: 09H
Register Dl1.L: String Address

Returned Values:
Register DO.W: O0OH

The Print String function sends the
memory at the location given in register
device (CONSOLE) until a dollar sign ($) is encountered in the
string. Tabs are expanded as in the Console Output Function (2), and

checks are made for stop scroll (CTRL-S), start scroll (CTRL-Q), and
the printer switch (CTRL-P).

character string stored in
Dl.L to the logical console

nformation Presented Here is Proprietary to Digital Research.

68

.

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Read Console Buffer Function

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register DO.W: OAH
Register D1.L: Buffer Address

Returned Values:
Register DO.W: OQO0H
Register Buffer: Character Count
" and Characters

The Read Buffer function reads a line of edited console input
from the logical console device (CONSOLE) to a buffer address passed
in register D1.L. Console input is terminated when the input buffer
is filled, or, a RETURN (CTRL-M) or a line feed (CTRL-J) character
is entered. The input buffer addressed by D1.L takes the form:

D1.L: +0 +1 +2 +3 +4 +5 +6 +7 +8 o o +n

mx nc cl c2 c3 c4 c5 c6 c7 ... 22

The variable mx is the maximum number of characters the buffer
holds. The variable nc is the total number of characters placed in
the buffer. Your program must set the mx value prior to invoking
this function. The mx value can range in value from 1 through 255
(decimal). The characters entered from the keyboard follow the nc
value. The value nc is returned to the buffer. It can range from 0
to the value of mx. If the nc value is less than the mx value,
uninitialized characters follow the last character. Uninitialized
characters are denoted by the double question marks (??) in the
above figure. A terminating RETURN or line feed character is not
placed in the buffer and is not included in the total character
count nc.

This function supports several editing control functions, which
are briefly described in Table 4-15.

All Information Presented Here is Proprietary tc Digital Research

69

Cp/M-68K Programmer's Guide 4.4 Character I/0 Functions

Table 4-15. Line Editing Controls

Keystroke Result

RUB/DEL removes and echoes the last character

CONTROL~-C reboots when it is the first character on a
line

CONTROL-E causes physical end-of-line

CONTROL-H backspaces one character position

CONTROL~-J (line feed) terminates input line

CONTROL~-M (return) terminates input line

CONTROL~-P starts and stops the eéhoing of console
output to the logical LIST device

CONTROL-Q restarts console I/0 after CTRL-S halts it

CONTROL-R retypes the current line on the next line

CONTROL-S halts console 1/0 and waits for CTRL-Q to

restart it

CONTROL-U echoes a pound sign (#) indicating ignore
characters previously input on the current-
line before it positions the cursor on the
next line

CONTROL~-X backspaces to beginning of current line

Certain functions that position the cursor to the leftmost position
(for example, CONTROL-X) move the cursor to the column position
where the cursor was prior to invoking the Read Console Buffer
Function. This convention makes your data input and line correction
more legible.

511 Information Presented Here is Proprietary to Digital Research

70

N

P

e e e e e e ——— - - e - e e & e o @ o 2

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Get Console Status Function

FUNCTION 1l: GET CONSOLE STATUS

Entry Parameters:
Register DO.W: OBH

Returned Values:
Register DO.W: Console Status

The Get Console Status Function checks whether a character has
been typed at the logical console device (CONSOLE). If a character
is ready, a nonzero value is returned in register DO.W; otherwise

the value 00H is returned in DO.W.

All Information Presented Here is Proprietarv to Digital Researcnh

71

CP/M~-68K Programmer's Guide 4.4 Character I/0 Functions

4.4.2 Additional Serial I/0 Functions

This section describes additional serial I/0 functions that
read and write data to devices defined by 1/0 Byte Functions (7,8).

. Venl
Auxiliary Input Function !\
FUNCTION 3: AUXILIARY INPUT
Entry Parameters:
Register DO.W: O03H
Returned Values:
Register DO.W: ASCII Character
The Auxiliary Input function reads the next character from the
auxiliary input device into register DO.W. Execution of the calling
program remains suspended until the character is read. This
function assumes the BIOS implements its Auxiliary Input Function.
When more than one auxiliary input port exists, the BIOS should
implement the I/0 Byte Function. For details on the BIOS Auxiliary
Input and I/0 Byte Functions, refer to the CP/M-68K Operating System
System Guide. '
- i_
N
{
N

23

#11 Information Presented Here is Proprietary to Digital Research

72

e s o e e e e - £ e e ey <

CP/M-68K Programmer's Guide . 4.4 Character I/O Functions

Auxiliary Output Function

FUNCTION 4: AUXILIARY QOUTPUT

Entry Parameters:
Register DO.W: (04H
Register Dl.W: ASCII Character

Returned Values:
Register DO.W: 00H

The Auxiliary Output function sends a character from register
D1.W to the auxiliary output device. Execution of the calling
program remains suspended until the hardware buffer receives the
output character. This function assumes the BIOS implements its
Auxiliary Output Function. When more than one auxiliary output port
exists, the BIOS should implement the I/O Byte Function. For details
on the BIOS Auxiliary Output and I/O Byte Functions, refer to the
CP/M-68K Operating System System Guide.

All Information Presented Herz2 is Proorietary to 213iz3l Fesszarch

k& /T VWA A Y LQMIC. o T bW e S MRS RAY WGE &/ W L Wil -\ &

List Output Function

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register DO.W: O05H
Register D1.W: ASCII Character

Returned Values:
Register DO.W: OOH

The List Output function sends the ASCII character in register
Dl.W to the logical list device (LIST).

4.4.3 I/0 Byte Functioms

This section describes the I/0 Byte Functions. The I/O Byte is
an 8-bit value that assigns physical devices, represented by 2-bit
fields, to each of the logical devices: CONSOLE, AUXILIARY INPUT,
AUXILIARY OUTPUT, and LIST as shown in Figure 4-3. The I/0 Byte
functions allow programs to access the I/0 byte to determine its
current value (Get I/O Byte) or to modify it (Set I/0O Byte). These
functions are valid only if the BIOS implements its I/0 Byte
Function. Refer to the CP/M-68K Operating System System Guide for
details on implementing the I/0 Byte Function.

most significant least significant
AUXILIARY AUXILIARY
1/0 Byte LIST QUTPUT INPUT CONSOLE
bits 7,6 5,4 3,2 1,0

Pigure 4-3. 1I/0 Byte

The value in each field ranges from 0-3. The value defines the
assigned source or destination of each logical device, as shown in
Table 4-16.

411 Information Presented Here 1s Proprietary to Digital Research

74

PP

(N

CP/M-GBK Programmer's Guide 4.4 Character I/0 Functions

Table 4-16. I/GC Byte Field Definitions

CONSOLE field (bits 1,0) -

0 - console is assigned to the console printer
(TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the AUXILIARY INPUT as the
CONSOLE input, and the LIST device as the
CONSOLE output (BAT:)

3 - user defined console device (UCl:)

AUXILIARY INPUT field (bits 3,2)
0 - AUXILIARY INPUT is the Teletype device (TTY:)
1 - AUXILIARY INPUT is the high-speed reader device
(PTR:) '
2 - user defined reader # 1 (URL:)
3 - user defined reader # 2 (UR2:)

. AUXILIARY OUTPUT field (bits 5,4)
0 - AUXILIARY OUTPUT is the Teletype device (TTY:)
1 - AUXILIARY OUTPUT is the high-speed punch device
(PTP:)
2 - user defined punch # 1 (UPl:)
3 - user defined punch # 2 (UP2:)

LIST field (bits 7,6)
- 0 = LIST is the Teletype device (TTY:)
. 1l - LIST is the CRT device (CRT:)
2 =~ LIST is the line printer device (LPT:)
3 =~ user defined list device (ULl:)

The implementation of the BIOS I/0 Byte Function is optional.
PIP and STAT are the only CP/M-68K utilities that use the I/0 Byte.
PIP accesses physical devices. STAT designates and displays logical
to physical device assignments. For details on implementing the I/O
Byte Function, refer to the CP/M-68K Operating System System Guide.

All Information Presentad Here is 2roprietary o 0igital Research

" d /) 8B WA & &~ e scsms e e - ———— - - - _———— e =

Get I/0 Byte Function

FUNCTION 7: GET I/O BYTE

Entry Parameters:
Register DO.W: 07H

Returned Values:
Register DO.W: I/0 Byte Value

The Get I/0 Byte Function returns the current value of I/0 Byte
in register DO.W. The I/0 Byte contains the current assignments for
the logical devices CONSOLE, AUXILIARY INPUT, AUXILIARY OUTPUT, and
LIST. Note that this function is valid only if the BIOS implements

its I/0 Byte Function. Refer to the CP/M-68K Operating System

System Guide for details on implementing the BIOS I/0 Byte Function.

-

.71 Information Presented Here is Proprietary to Digital Research

76

7™

PR
VAN

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Set I/0 Byte Function

FUNCTION 8: SET I/O BYTE

Entry Parameters:
Register DO.W: 08H
Register D1.W: I/O Byte Value

Returned Values:
Register DO.W: 00H

The Set I/O Byte Function changes the system I/0 Byte value to
the value passed in register D1.W. This function allows programs to
modify the current assignments for the logical devices CONSOLE,
AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST in the I/0 Byte. This
function is valid only if the BIOS implements its I/0 Byte Function.
Refer to the CP/M-68K Operating System System Guide for details on
implementing the I/O Byte Function.

4.5 System/Program Control Functions
The System and program control functions described in this
section warm boot the system, return the operating system version

number, call the Basic I/O System (BIOS) functions, and, terminate
and load programs. These functions are listed in Table 4-17.

Table 4-17. System and Program Control Functions

Function Function Number
System Reset ' 0
Return Version Number 12
Set/Get User Code 32
Chain to Program 47
Flush Buffers 48
Direct BIOS Call 50
Program Load 59

All Information Presented Here is 2ropri2tary to Digizal 2essarchq

77

CP/M-68K Programmer's Guide 4.5 System Control Functions

4.5.1 System Reset Function

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register DO.W: OOH

Returned Values: Function Does Not
Return to Calling
Program

The System Reset Function terminates the current program and
returns program control to the CCP command level.

211 Information Presented Here is Proprietary to Digital Research

Y

™

CP/M-68K Programmer's Guide

4.5

4.5.2 Return Version Number Function

FUNCTION 12:

RETURN VERSION NUMBER

System Control Functions

Entry Parameters:
Register DO.W:

0CH

Returned Values:

Register DO.W:

Version Number

The Return Version Number Function provides information that
allows version dependent programmlng. The one-word value 2022H is
the version number returned in reglster DO.W for Release 1.1 of

CP/M-68K.
returns for Digital Research

operating systems.

Table 4-18 lists the version numbers this functlon

Table 4-18. Version Numbers

Operating System Version Version Number
CP/M-68K 1.1 2022H
CP/M-80 1.4 0014H
CP/M-80 2.2 00228
CP/M-80 3.0 0031H
MP/M-80™ 1.1 0122H
MP/M-80 2.0 0130H
MP/M-80 2.1 0130H
CP/M-86 1.0 1022H
CP/M-86 1.1 1022H
MP/M-86™ 2.0 1130H
MP/M-86 2.1 1130H

Concurrent CP/M-86™ 1.0 1430H

(for the IBM

Personal Computer)

Concurrent CP/M-86 2.0 1431H

All Information Presented Here 1s Propria2tary to Digital Research

CP/M-68K- Programmer 's Guide 4.5 System Control Functions

Add the hexadecimal value 0200 to any version number when the
system implements CP/NET® For example, CP/M-80 Release 2.2 returns
the version 0222H when the system implements CP/NET.

21l Information Presentec Here is Proprietary to Digital Research

80

O L p—— — e e RO

CP/M-08K Programmer's Guide 4.5 System Ccontrel Functions

4.5.3 Set/Get User Code

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register DO.W: 20H
Register DL.W: FFH (get)
or
User Code -
(set)

Returned Values:
Register DO.W: Current User
. Number

An application program can change or obtain the currently
active user number by calling the Set/Get User Code Function. 1If
the value in register D1.W is FFH, the value of the current user
number is returned in register DO.W. The value ranges from 0 to 15
(decimal). If register D1.W contains a value in the range 0 through
15 (decimal), the current user number is changed to the value in
register D1.W. When the program terminates and control returns to
the CCP, the user number reverts to the BDOS default user number.
The BDOS assumes the default is zero unless you explicitly specify
the USER command to set an - alternate default.

All Information Presented Here is Prcopriecary to Digital Research

81

CP/M-68K Programmer's Guide 4.5 System Control Functions

4.5.4 Chain To Program Function

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register DO.W: 2FH

Returned Values:
Register DO.W: Function Does Not
Return to Calling

Program

The Chain to Program Function terminates the current program
and executes the command line stored in the current DMA buffer. The
format of the command line consists of a one-byte character count
(N), the command line characters, and a null byte as shown in Figure
4-4. The character count contains the number of characters in the
command line. The count must be no more than 126 characters. If an
error occurs, you receive one of the CCP errors described in

Appendix E.

o

N Command Line (N characters)

1 byte N bytes < 126 bytes 1 byte

Figure 4-4. Command Line Format in the DMA Buffer

211 Information Presenteé Here is Proprietary to Digital Research

82

CP/M=-68K Programmer's Guide 4.5 System Control Functions

4.5.5 PFlush Buffers Function

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Register DO.W: 30H

Returned Values:
Register DO.W: Return Code

success: 00H
error: nonzero
value

The Flush Buffers Function calls a BIOS Flush Buffers Function
(21), which forces the system to write the contents of any unwritten
or modified disk buffers to the appropriate disks. Control and
editing applications use this function to ensure data is
periodically physically written to the appropriate disks. When the
buffers are successfully flushed, this function returns the value
00H in register DO.W. However, if an error occurs, and this
function does not complete successfully, this function returns a
nonzero value in register DO.W. :

All Information Presented Here i3 Provriecarty o Zi3ltil Research

4.5.6 Direct BIOS Call Function

FUNCTION 50: DIRECT BIOS CALL

Entry Parameters:
Register DO.W: 32H -~
Register Dl.L: BPB Address

Returned Values:
Register DO.L: BIOS Return Code
(if any)

Function 50 allows a program to call a BIOS function and
transfers control through the BDOS to the BIOS. The Dl.L register
contains the address of the BIOS Parameter Block (BPB), a 5-word
memory area containing two BIOS function parameters, Pl and P2, as
shown in Figure 4-5. When a BIOS function returns a value, it is
returned in register DO.L.

Like other BDOS functions, your program must specify a Trap 2
Instruction to invoke this BDOS function after the registers are
loaded with the appropriate parameters. The starting location of
the BPB must be an even-numbered address.

Field ' Size
Function Number 1 word
Value Pl 1 longword
Value P2 1 longword

Figure 4-5. BIOS Parameter Block (BPB)

In the above figure, the function number is a BIOS function number.
See Appendix A. The two values, Pl and P2, are 32-bit BIOS
parameters, which are passed in registers D1.L and D2.L before your
program invokes the BIOS function. Appendix A contains a list of
BIOS functions. For more details on BIOS functions, refer to the
CP/M-68K Operating System System Guide.

ALl Information Presented Here 1s Preoprietary to Digital Research

CY/M=0dK Programmer s Gulae 4.2 sSystem CONTIOL Punctions

4.5.7 4Program Load Function

FUNCTION 59: PROGRAM LOAD

Entry Parameters:
Register DO0.W: 3bH
Register D1.L: LPB

Returned Values:
Register DO.W: Return Code

success: 00H
error: O01lH - 03H

The Program Load function loads an executable command file into
memory. In addition to the function code, passed in register D0.W,
the address of the Load Parameter Block (LPB) is passed in register
Dl.L. After a program is loaded, the BDOS returns one of the return
codes listed below in register DO.W.

Table 4-19. Program Load Function Return Codes

Code Meaning
00 thé function is successful)
01 insufficient memory exists to load the file or
the header is bad
02 a read error occurs while the file is loaded in
memory
03 bad relocation bits exist in the program file

The LPB describes the program and denotes the address at which
it is loaded. The format of the LPB is outlined in Figure 4-6. The
starting location of the LPB must be an even-numbered address.

All Information 2r2sentad Hers is 2ropri==iz”y Iz Tiltltal Xesaarch

Byte Content Size
Offset
0H | address of FCB of successfully opened program file 1 longword
4H | lowest address of area in which to load program 1 longword
8H | highest address of area in which to load program +1| 1 longword
CH | address of base page (returned by BDOS) 1 longword
10H | default user stack pointer (returned by BDOS) 1 longword
14H | loader control flags 1 word

Figure 4-6. Format of the Load Parameter Block (LPB)

Before a program specifies the Program Load function, the file
must be opened with an Open File Function (15). The memory
addresses specified for the program in the LPB must lie within the
TPA. When the CCP calls the Program Load function to load a
transient program, the LPB addresses are the boundaries of the TPA.

The loader control flags in the LPB select loader options as
shown in Table 4-20.

Table 4-20. Load Parameter Block Optioms

Bit Number Value Meaning
0 (least 0 load program in the lowest
significant possible part of the
byte) ’ supplied address space
1 load program in the highest

possible part of the
supplied address space

1l - 15 (decimal) 0 Reserved, should be set to
. zero.

The CCP uses the Program Load Function to load a command file.
The CCP places a return address to itself on the top of the stack
for the program being loaded. The program can exit and return to the
CCP by performing a Return from Subroutine (RTS) instruction.
However, if the program modifies the stack, it must reset the top of
the stack to point to the CCP address before the program executes a
RTS instruction. The CCP also places the base page address on the

Al Information Presenced nere is Proprietary to Digital Research

86

—e e o o mea = e - s aapo—

¢
H

C2/M-68K Programmer's Guide. 4.5 System Control Functions

program's stack. The base page address is located four bytes from
the address pointed to by register A7, the stack pointer. The
assembly language notation for this offset is 4 (A7) or 4(sp). The
format of the base page is outlined in Appendix C.

The BDOS allocates memory for the base page within the limits
set by the low and high addresses in the LPB and returns the address.
of the allocated base page in the LPB. Locations 000QH - 0024H of
the base page are initialized by the BDOS. Locations 0025H through
0037H are not initialized but are allocated and reserved by the
BDOS. The CCP initializes the remaining base page values when it
loads a program.

The BDOS allocates a user stack located in the highest address
of the TPA. The maximum size of the stack equals the address of the
stack pointer minus the last address of the program plus 1. The
value of the initial stack pointer is passed to the LPB by the BDOS.

For programs loaded by a transient program rather than the ccp,
refer to Section 2.2.3. Appendix B contains two examples, an
assembly language program and a C language program, that illustrate
how a transient program loads another program with the Program Load
Function but without the CCP.

4.6 Exception PFunctions . .
This section describes the Set Exception (61), Set SupérviSér

State, (62), and the Get/Set TPA Limits Functions that set
exceptions for error handling and other exception processing.

all Information Presentad Hera is Prcpriatars

CP/M-68K Programmer's Guide 4.6 Exception Functions

4.5.1 Set Exception Vector Functicn

FUNCTION 6l1l: SET EXCEPTION VECTOR

Entry Parameters:
Register DO.W: 3DH
Register Dl1.L: EPB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: FFH

The Set Exception Vector Function allows a program to reset
current exception vectors, set new exception vectors, and create
exception handlers for the 68000 microprocessor.

In addition to passing the function number in register DO.W, a
program must pass the address of the Exception Parameter Block (EPB)
in register Dl.L. The EPB is a 10-byte data structure containing a
one-word vector number and two longword vector values. See Figure
4-7. The EPB specifies the exception and the address of the new
exception handler. Table 4-21 1lists valid exceptions that
correspond to 68000 microprocessor hardware. The starting location
of the EPB must be an even-numbered address.

Field Size
Vector Number 1 word
New Defined Vector Value 1 longword

0l1ld Vector Value Returned by BDOS 1 longword

Figure 4-7. Exception Parameter Block (EPB)

The vector number identifies the exception. The New Vector
Value specifies the address of the new exception handler for the
specified exception. The BDOS returns in the Old Vector Value Field,
the value that the exception vector contained before this function
was invoked. The BDOS replaces the old vector value with the new
vector value in its table of exception handlers and returns the
address of the old exception handler to the old vector value in the
EPB. After the BDOS sets the new exception vector, it passes the

) Lo e e . T S Ve Temee o nves N~ P~k e vonn
L1l Irfc-mz-ion Presented Here 1S PICcpILletary to D 2l Resesarch

Cr/M—0O0R rIOgrdiuner 's sdlide 4.0 LACRpLLIOn cuncTt.ions

value 00H in register DO.W. However, if an errcr, such as a bad
vector, occurs while the vector is being set, this function passes
the value FFH in register DO.W. The bad vector error occurs when a
vector other than one listed in Table 4-21 is specified for this
function.

When an exception occurs, before the BDOS passes control to an
exception handler, the BDOS restores the system state (user or
supervisor) to the state of the system before it incurred the
exception. To return from an exception handler to the normal
processing state, the last instruction an exception handler executes
is a Return and Restore (RTR) instruction.

Bus and address errors require special handling because they
push four additional words onto the stack. For example, when a bus
error occurs, the system pushes flags, the access address, and the
instruction register onto the stack. An exception handler must pop
these off the stack before it executes a RTR instruction.

If an exception handler does not exist for an exception, when
that exception occurs, the BDOS default exception handler returns an
exception message to the logical console device (CONSOLE) before it
aborts the program. The BDOS exception message format is defined
below:

Exception nn at user address aaaaaaaa. Aborted.
where:

nn is a hexadecimal number in the range 2 through 17 or 24
through 2F that defines all exceptions excluding reset,
hardware interrupts, and system Traps 0 through 3.

aaaaaaaa 1is the address of the instruction following the one that
caused the exception.

Except for exceptions handled by resident system extensions (RSXs),
the BDOS reinitializes all vectors to the default exception handler
when the BDOS System Reset Function (0) is invoked. Any exception
vectors, which your program sets, are reset after the BDOS warm
boots the system. An RSX is a program that is not configured in the
operating system but remains resident in memory after it is loaded.
RSXs normally provide additional system functions. The Get/Set TPA
Limits Function (63) allows you to create an area in the TPA in
which one or more RSXs can reside.

All Informaticon Presented Here 15 2roprietarv to Digital Resezrccn

CP/M-68K Programmer's Guide 4.6 Exception Functions

Table 4-21.

valid Vectors and Bxceptions

Vector Exception
2 Bus Error | {,\
3 Address Error —
4 Illegal Instruction
5 Zero Divide
6 CHK Instruction
7 TRAPV Instruction
8 Privilege Violation
9 Trace
10 Line 1010 Emulator
11 Line 1111 Emulator
32* Trap 0
33* Trap 1
36%* Trap 4 <:
37%* Trap 5
38%* Trap 6
39** Trap 7

* Vectors reserved for Resident System Extensions (RSX)
implemented with the Get/Set TPA Limits Function (63).

** Recommended Trap vectors for applications.

()

CP/M=-68K Programmer's Guide 4.6 Exception Functions

4.56.2 Set Supervisor State

FUNCTION 62: SET SUPERVISOR STATE

Entry Parameters:
Register DO.W: 3EH

Returned Values:
Register DO.W: O00H

The Set Supervisor Function puts the calling program in
supervisor state. This function should not be used by novice
programmers and experienced programmers should be careful when
invoking this function.

The user stack is swapped when the program enters supervisor
state. On return from this function, the stack pointer, register
A7, is the supervisor stack pointer and not the user stack pointer.
Thus, you cannot use register A7 to reference the user stack.

The supervisor stack is used by the BDOS and BIOS. This stack
is 300 longwords or 1200 bytes long. The percent of the stack used
by the system is dependent on the operation being performed and - -
those previously performed. Therefore, you cannot predict how much
of the stack is available for program operations. To avoid stack
overflow and overwriting the system, you should not push more than a
few dozen bytes onto the stack, especially when you call BDOS and
BIOS functions.

An alternate method of avoiding stack overflow is to switch to
a private supervisor stack. You create the stack by loading into A7
the address of an area in memory that you use as the supervisor
stack. The address must be an even address. If you call BDOS and
BIOS functions, your private supervisor stack should be 300
longwords, more than the space required by the program. If your
program exits supervisor mode, make sure your program restores the
system stack pointer to its original value. The supervisor stack is
reinitialized when the system warm boots. .

Note that in future CP/M-68K upward compatible systems, this
function may not exist, or will require privilege for the calling
process to access this function, or the function will fail. If it
fails the value FFH will be passed to DO.W. However, no privilege
is currently necessary. The function is always successful and the
value 00H is passed in register DO.W.

All Information Presented Here is 2rcprietary &0 Digital Research

CP/M-68K Programmer's Guide 4.6 Exception Functions

4.6.3 Get/Set TPA Limits

FONCTION 63: GET-SET TPA LIMITS

Entry Parameters:
Register DO.W: 3FH
Register Dl.L: TPAB Address

Returned Values:
Register DO.W: O0OH
Register TPAB: Contains TPA -
Values

The Get/Set TPA Limits Function allows you to obtain or set the
boundaries of the Transient Program Area (TPA). You must load the
address of the Transient Program Area Block (TPAB) in register Dl.L.
The TPAB is a 5-word data structure consisting of one word and two
longwords. You create the TPAB in the TPA as illustrated in Figure
4-8.

Byte Offset Field Size
00H Parameters : 1 word
02H Low TPA address 1 1ohgwo:d
06H . High TPA address + 1 1 longword

Pigure 4-8. Transient Program Parameter Block

The value of the first two bits in the one-word Parameters
Field determines whether this function gets or sets the TPA limits
and which fields you supply. Figure 4-9 illustrates the format of
the parameters field.

All Information Presented Here is Proprietary to Digital Research

e e s mt L e e e e ——— e s o e+ e =

(N

()

CP/M-68K Programmer's Guide 4.6 Exception Functions

Parameters 15{14 13112} 11}1019|8|7|6|5{4|3{2]1{0

Field
reserved bits (2-15) = 0
bits: 1 0
values = - 1/0 1/0

Figure 4-9. Parameters Field in TPAB

Bit Zero determines whether you get or set the TPA limits.
When the value of bit zero is zero, the BDOS returns the current TPA
boundaries in the Low and High Address fields of the TPAB. When the
value of bit zero is one, the BDOS sets new TPA boundaries. The
BDOS uses the values that you specify in the Low and High TPA
address fields of the TPAB to set the new TPA boundaries.

When you set the TPA boundaries, bit one determines whether the
boundaries are temporary or permanent. When the value of bit one is
zero, the TPA boundaries that you set are temporary; when the system
warm boots, the previous TPA limits are restored. When the value of
bit one is one, the TPA values that you set are permanent; they are
not changed when the system warm boots.

Bits 2 through 15 contain zeroes. These bits are reserved for
future use. Table 4-22 summarizes the values of bits zero and one.

Table 4-22.
Values For Bits 0 and 1 in the TPAB Parameters Field
Bit Value Explanation
0 0 Return boundaries of current TPA in
TPAB.Low and High Address Fields.
1 Set new TPA boundaries with the values
loaded in TPAB Low and High address
fields. .
1 0 Restore previous TPA values when the

system warm boots.

1 Permanently replace the TPA boundaries
with the ones you specify in the Low
and High TPAB Address Fields.

All Information Presented Her2 is5 Prcorietarw oo Tigital Research

CP/M-68K Programmer's Guide

4.6 Exception Functions

The examples below illustrate and explain values for bits zero and

one.
Examples:
l) Get TPA Limits
1 0
0 0
This function returns the boundaries of the current TPA in
the Low and High Address Fields of the TPAB when the value
of bit zero equals 0.
2) Temporarily Set TPA Limits

1 0

0 1

This function temporarily sets the TPA boundaries to the
boundaries that you supply in the Low and High Address
Fields of the TPAB when bit 2zero equals 1 and bit one

equals 0. The TPA boundaries are reset when the system warm
boots. '

3) Permanently Set TPA Limits

1 0

1 1

This function permanently sets the TPA boundaries to the
values that you supply in the Low and High Address Fields
of the TPAB when the value of bit zero equals 1 and bit one
equals 1. The TPA limits remain set until this function is
called to reset the boundaries or you cold boot system.

End of Section 4

A

Section 5
ASG68 Assembiler

S.1 Assembler Operation

The CP/M-68K Assembler, AS68, assembles an assembly language
source program for execution on the a 68000 microprocessor. It
produces a relocatable object file and, optionally, a listing. The
assembly language accepted by AS68 is identical to that of the
Motorola 68000 assembler described in the Motorola manuals: M68000
Resident Structured Assembler Reference Manual M68KMASM(D4) and the
16-bit Microprocessor User's Manual, third edition MC68000UM(AD3).
Appendix D contains a summary of the instruction set. Exceptions
and additions are described in Sections 5.6 and 5.7.

5.2 1Initializing ASé68

If the file AS68SYM.DAT is not on your disk, you must create
this file to initialize AS68 before you can use AS68 to assemble
files. To initialize AS68, specify the AS68 command, the -I option,
and the filename AS68INIT as shown below.

AS68 -I AS68INIT

AS68 creates the output file AS68SYMB.DAT, which AS68 requires when
it assembles programs. After you create this file, you need not
specify this command line again unless you reconfigure your system
to have different TPA boundaries.

5.3 Invoking the Assembler (AS68)
Invoke AS68 by entering a command of the following form:
AS68 (-F d:] [-P] [-s d4:] [-U] ([-L] ([-N] [-I]

(-0 object filename]
source filename [>listing filename]

-4

3 : = ;o a2 : e e M e e S neas
Informaticn 2rssented Jer2 13 Froprisciry D JlILTas ase32arch

e
b
[

-~y s

WAL b WY A GBS & & VUM oo o

AlAVINALLILY WMUT ADDTUMLTL

Table 5-1. Assembler Optioms

\NO9vVo;

Option

Meaning

-F 4:

The -F option specifies the drive on which
temporary files are created. The variable 4d: is
the drive designation, which must be followed by
a colon. If this option is not specified, the
temporary £iles that AS68 creates are created on
the current drive.

The -I option initializes the assembler. See

Sect;on 5.2 for details.

If specified, AS68 produces and prints a listing
on the standard output device which, by default,
is the console. You can redirect the listing,
including error messages, to a file by using the
>listing filename parameter. Note that error
messages are produced whether or not the -P
option is specified. No listing is produced,
however, unless you specify the -P option.

-S d:

The -S option indicates the drive on which the
assembler initialization file, AS68SYMB.DAT,
resides. This file is created when you
initialize AS68. See Section 5.2. AS68 reads
the file AS68SYMB.DAT before it assembles a
source file. The variable, d:, is the drive
designation; it must be followed by a colon. If
you do not specify this option, AS68 assumes the

initialization file is on the default drive.

Causes all undefined symbols in the assembly to
be treated as global references.

All Infcrmasion Presente

d Here 1is Proprietary to Digital

96

Research

CP/M-68K Programmer's Guide 5.3 Invoking the Assembler (ASé68)

A

9
e

1
S

Tablie 5-1. (continued)

Option Meaning

Ensures all address constants are generated as
longwords. Use the -L option for programs that
require more than 64K for execution or if the
TPA is not contained in the first 64K bytes of
memory. If -L is not specified, the program is
assembled to run in the first 64K bytes of
memory. If an address in the assembly does not
fit within one word an error occurs. Appendix E
describes all AS68 errors.

Disables optimization of branches on forward
references. Normally, wherever possible, AS68
uses the 2-byte form of the conditional branch
and the 4-byte BSR instruction to speed program
execution and reduce the instruction size
instead of the 6~byte JSR instruction.

source filename

This is the only required parameter. It ‘is the
file specification of the assembly language
source prodram to be assembled.

>listing filename

If specified, the listing requested with the -P
option is directed to the specified file rather
than to your console terminal, the standard
output device. The error messages are produced
in the listing file. Note that if you do not
request a listing file, you can still redirect
the error messages to a file by specifying the
greater than symbol (>) immediately followed by
a file specification.

Information Presencad Here is Proprietary o Sijltai Rese

-
-

CP/M Programmer's Guide

5.4 Assembly Language Directives

This section alphabetically lists and briefly describes the

directives AS68 supports.

Table 5-2. Assembly Language Directives

5.4 Assembly Lénguage Directives

Directive

Meaning

comm label, expression

The common directive (comm) specifies the
label and size of a common area, which can be
shared by separately assembled programs. The
linker, LO68, links all common areas with the
same label to the same address. The size of
the common area is determined by the value of
the largest expression when more than one
common area with the same label exists.

data
The data directive instructs AS68 to change
the assembler base segment to the data
segment.

bss

The bss directive instructs AS68 to change
the assembler base segment to the block
storage segment (bss). Instructions and data
cannot be assembled in the bss. However,
symbols can be defined and storage can be
reserved with the .ds directive in the bss.

dc operand [,operand, ...]

The define constant directive (dc) defines
one or more constants in memory. When you
specify more than one operand, separate each
with a comma. The operand can contain a
symbol or an expression that is assigned a
numeric value by AS68, or the value of the
constant in decimal, hexadecimal, or ASCII
notation. If you specify an ASCII value, you
must enclose the string in single quotes (').
Although an ASCII character is only seven
bits in length, each character is assigned a
byte of memory. The eighth bit always equals
zero.

.”-\

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

You can specify the constants to be
bytes, words, or longwords. The list below
illustrates the notation for each of these
size specifications and describes the rules
that apply to them.

dc.b The constants are byte constants. If
you specify an odd number of bytes,
AS68 fills the odd byte on the right
with zeroes unless the next statement
is another dc.b directive. When the
next statement is a dc.b directive,
the dc.b uses the odd byte. Byte
constants are not relocatable.

dc.w The constants are word constants. If
you specify an odd number of bytes,
AS68 fills the last word on the right
with zeroes to force an even byte
count. The only way to specify an odd
number of bytes is with an ASCII
constant. Word constants can Dbe
relocated.

dc.l The constants are longword constants.

If less than a multiple of four bytes

is entered, AS68 fills the last

~ longword on the right with zeroes to

force a multiple of four bytes.
Longword constants can be relocated.

ds operand

The define storage directive (ds) reserves
memory locations. The contents aof the memory
that it reserves is not initialized. The
operand specifies the number of bytes, words,
or longwords that this directive reserves.
The notation for these size specifications is
shown below. :

ds.b reserves memory locations in bytes

ds reserves memory locations in words

ds.l reserves memory locations in
longwords

All Informacicn 2Presentzed Here i3

V]
(B
)
ke
(R
]
W
(1
)
{2
[}
’

99

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

end
The end directive informs AS68 that no more
source code follows this directive. Code,
comments, or multiple carriage returns cannot
follow this directive.

endc

The endc directive denotes the end of the
code that is conditionally assembled. It is
used with other directives that conditionally
assemble code.

egu expression

The equate directive (equ) assigns the value
of the expression in the operand field to the
symbol in the label field that precedes the
directive. The syntax for the egquate
directive is below.

label EQU expression

The label and operand fields are required.
The label must be unigue; it cannot be
defined anywhere else in the program. The
expression cannot include an aundefined symbol
or one that is defined following the
expression. Forward references to symbols
are not allowed for this directive.

even

The even directive increments the location
counter to force an even boundary. For
example, if specified when the location
counter is odd, the location counter is
incremented by one so that the next
instruction or data field begins on an even
boundary in memory.

=g
}

'..‘
(2]
o]
th
(@]
ry
1t
'l
[0}
o
'y
(2]
®
O]
(0]
ja)
(r
1
()l
ey
1]
5]
1]
[2]
n
"
'
Q

prieczary to Digital Research

100

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

globl label(,label...]
xdef label(,label...]
xref label(,label...]

These directives make the label(s) external.
If the labels are defined in the current
assembly, this statement makes them available
to other routines during a load by LO68. If
the labels are not defined in the current
assembly, they become undefined external
references, which LO68 links to external
values with the same label in other routines.
If you specify the -U option, the assembler
makes all undefined labels external.

ifeq expression
ifne expression
ifle expression
iflt expression
ifge expression-
ifgt expression

All of the directives listed above are
conditional directives in which the
expression is tested against zero for the
condition specified by the directive. If the
expression is true, the code following is
assembled; otherwise, the code is ignored
until an end conditional directive (endc) is
found. The directives and the conditions
they test are listed below.

ifeq equal to zero
ifne not equal to zero
ifle less than or equal to zero
iflt less than zero

. , ifge greater or equal to zero
ifgt greater than zero

ifc 'stringl', 'string2'
ifnc ‘'stringl', 'string2'

The conditional string directive compares two
strings. The 'c' condition is true if the
strings are exactly the same. The ‘'nc'
condition is true if they do not match.

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

offset expression

The offset directive creates a dqummy storage
section by defining a table of offsets with
the define storage directive (ds). The
storage definitions are not passed to the
linker. The offset table begins at the
address specified in the expression. Symbols
defined in the offset table are internally
maintained. No instructions or code-
generating directives, except the egquate
(equ) and register mask (reg) directives, can
be used in the table. The offset directive
is terminated by one of the following
directives:

bss
data
end
section
text

org expression

The absolute origin directive (org) sets the
location counter to the value of the

- expression. Subsequent statements are
assigned absolute memory locations with the
new value of the location counter. The
expression cannot contain any forward,
undefined, or external references.

page

The page directive causes a page break which
forces text to print on the top of the next
page. It does not require an operand or a
label and it does not generate machine code.

The page directive allows you to set
the page length for a listing of code. 1If
you use this directive and print the source
code by specifying the -P option in the ASé68
command line, pages break at predefined
rather than random places. The page
directive does not appear on the printed

. program listing.

17
- e

Information Presented Here is Proprietary to Digital Research

162

()

)

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

reg reglist

The register mask directive builds a register
mask that can be used by movem instruction.
One or more registers can be listed in
ascending order in the format:

R?2[-R{/R?[-R?...]...]]

Replace the R in the above format with a
register reference. Any of the following
mnemonics are valid:

AQ-A7
D0-D7
RO-R15

The example below illustrates a sample
register list.

A2-A4/A7/D1/D3-DS

You can also use commas to separate registers
as shown below.

Al,A2,D5,D7

section §

The section directive defines a base segment.
The sections can be numbered from 0 to 15
inclusive. Section 14 always maps to data.
Section 15 is bss. All other section numbers
denote text sections.

text

The text directive instructs AS68 to change
the assembler base segment to the text
segment. Each assembly of a program begins
with the first word in the text segment. e

All Information Presentad Here i3 Prcpristars <o Sizitzl Research

CP/M-68K Programmer's Guide 5.5 Sample Commands Invoking AS68
S.5 Sample Commands Iavoking AS68
A>AS68 -U -L TEST.S

This command assembles the source file TEST.S and produces the
object file TEST.O. Error messages appear on the screen. Any
undefined symbols are treated as global.

A>A568 -P SHPL.S >SMPLOL

This command assembles the source file SMPL.S and produces the
object file SMPL.O. The program must run in the first 64K of
memory; that is, no address can be larger than 16 bits. Error
messages and the listing are directed to the file SMPL.L.

5.6 Assembly Language Differences

The syntax differences between the AS68 assembly language and
‘Motorola's assembly language are listed below.

1) All assembler directives are optionally preceded by a period
(.). For example,

.equ or equ
.ds or ds

2) AS68 does not support the following Motorola directives:

comline
mask2
idnt
opt

3) The Motorola .set directive is implemented as the equate

directive (equ).

4) AS68 accepts upper- and lower-case characters. You can
specify instructions and directives in either case.
However, labels and variables are case sensitive. For
example, the label START and Start are not equivalent.

5) For AS68, all labels must terminate with a colon (:). For
example,

A:
FOO:

However, if a label begins in column one, it need not
terminate with a colon (:).

All Inicrmazion Presented Here 1is Proprietary to Digital Kesearch

104

e

A CP/M-68K Programmer's Guide 5.6 Assembly Language Differences

6)

7)

8)

9)

10)

11)

12)

For AS68, ASCII string constants can be enclosed in either
single or double quotes. For example,

'ABCD’
"acl4"

For AS68, registers can be referenced with the following
mnemonics:

r0-rls
RO-R15
do-47
D0-D7
ad-a7
AQ0-A7

Upper- and lower-case references are equivalent. Registers
RO-R7 are the same as DO-D7 and R8-R1l5 are the same as AQ-
A7.

For AS68, comment lines cannot begin with an asterisk that
is immediately followed by an equals sign (*=), since the
location counter can be manipulated with a statement of the
form:

*=expr

Use caution when manipulating the location counter forward.
An expression can move the counter forward only. The
unused space is filled with zeros in the text or data
segments. -

For AS68, comment lines can begin with an asterisk followed
by an equals sign (* =) but only if one or more spaces
exist between the asterisk and the equals sign as shown
below.

* = This command loads Rl with zeros.
* = Branch to subroutine X¥2Z

For AS68, the syntax for short form branches is Bxx.b rather
than bxx.s

The Motorola assembler supports a programming model in which
a program consists of a maximum of 16 separately
relocatable sections and an optional absolute section.
AS68 distributed with CP/M-68K does not support this model.
Instead, AS68 supports a model in which a program contains
three segments, text, data, and bss as described in
Sections 2 and 3 of this guide.

All Information Presented Here i3 Proprietary to Digital Research

CP/M-68K Programmer's Guide 5.7 Assembly Language Extensions

5.7 Assembly Language Extensions

The enhancements listed below have been added to AS68 to aid
the assembly language programmer by making the assembly language
more efficient:

1)

2)

3)

4)

5)

6)

7)

8)

9)

i ———— e

When the instructions add, sub, cmp are used with an address
register in the source or destination, they generate adda,
suba, and cmpa. When the clr instruction is used with an
address register (Ax), it generates sub Ax, AX.

add, and, cmp, eor, or, sub are allowed with immediate first
operands and actually generate addi, andi, cmpi, eori, ori,
subi, instructions if the second operand is not register
direct.

<N
All branch instructions generate short relative btanchesJ
where possible, including forward references.

Any shift instruction with no shift count specified assumes
a shift count of one. For example, "asl rl" is equivalent
to "asl #1,rl".

_ N
A jsr instruction is changed to a bsr instruction if the
resulting bsr is shorter than the jsr instruction. I

The .text directive causes the assembler to begin assembling
instructions in the text segment.

The .data directive causes the assembler to begin assembling

initialized data in the data segment. .

The .bss directive instructs the assembler to begin defining
storage in the bss. No instructions or constants can be
place in the bss because it is for uninitialized data only.
Bowever, the .ds directives can be used to define storage
locations, and the location counter (*) can be incremented.

The .globl directive in the form:
.globl label[,label] ...

makes the labels external. If they are otherwise defined
(by assignment or appearance as a label) they act within
the assembly exactly as if the .globl directive was not
given. However, when 1linking this program with other
programs, these symbols are available to other programs.
Conversely, if the given symbols are not defined within the
current assembly, the linker can combine the output of this
assembly with that of others which define the symbols.

CP/M-68K Programmer's Guide 5.7 Assembly Languade Extensions

10)

11)

12)

The common directive (comm) defines a common region, which
can be accessed by programs that are assembled separately.
The syntax for the common directive is below.

.comm label, expression

The expression specifies the number of bytes that is
allocated in the common region. If several programs
specify the same label for a common region, the size of the
region is determined by the value of the largest
expression.

The common directive assumes the label is an undefined
external symbol in the current assembly. However, the
linker, LO68, is special-cased, so all external symbols,
which are not otherwise defined, and which have a nonzero
value, are defined to be in the bss, and enough space is
left after the symbol to hold expression bytes. All
symbols which become defined in this way are located before
all the explicitly defined bss locations.

The .even directive causes the location counter (*), if
positioned at an odd address, to be advanced by one byte so
the next statement is assembled at an even address.

The instructions, move, add, and sub, specified with an
immediate first operand and a data (D) register as the
destination, generate Quick instructions, where possible.

5.8 Error Messages

Appendix E lists the error messages generated by AS68.

Info

End of Section 5

rmation Presen:tad dere is 2rcprietary 2 Digital Researcn

Section 6
LOG8 Linker

6.1 Linker Operation

L068 is the CP/M-68K Linker that combines several AS68
assembled (object) programs into one executable command file. All
external references are resolved. The linker must be used to create
executable programs, even when a single object program contains no
unresolved references. The argument routines are concatenated in
the order specified. The entry point of the output is the first
instruction of the first routine.

6.2 Invoking the Linker (L068)
Invoke L068 by edtering a command of the following form:
L068 [~F d:] [-R] [-S] ([-I] [-Umodname]
[-O filename] [-X] [-Zaddress]

[-Daddress] [-Baddress] object filename [object filename]
[>message filename] ’

Table 6-1. Linker Command Options

Option Meaning

-F d:

The -F option specifies the drive on which
temporary files are created. The variable d:
is the drive designation.

-R
The -R option preserves the relocation bits so
the resulting executable program is
relocatable.

-S

If specified, the output is stripped; the
symbol table and relocation bits are removed to
save memory Sspace.

All Information Presented dere is Propristary o DJigital Researcn

CP/M-68K Programmer's Guide 6.2 1Invoking the Linker

Table 6-1. (continued)

Option Meaning

If -I is specified, no 16-bit address overflow
messages are generated. When you assemble a
program without the AS68 -L option, the linker
may generate address overflow messages if the
program contains addresses longer than 16 bits.

-Umodname

Links a module within the library with other
modules in the command line. The module name,
specified by the modname parameter, cannot
exceed eight characters. You can use this
option to create a program from modules within
a library, if the module following the U option
calls other modules in the library.

-0 filename

If specified, the object file produced by LO068

has the filename that you specify following the

-0 option. The -0 option and filename are

separated by one or more spaces. If you do not

specify a filename, the object file has the
- name C.OUT..

If specified, the symbol table includes all
local symbols except those that begin with the
letter L. If not specified, L068 puts only
global symbols in the symbol table. This
option is provided so that you can discard
compiler internally-generated labels that begin
with the letter L while retaining symbols local
to routines.

()

(™

CP/M-68K Programmer's Guide 6.2 Invoking the Linker

Table 6-1. (continued)

Option Meaning

-Taddress
-Zaddress

The -T and -Z options are equivalent. If
specified, the hexadecimal address given is
defined by L068 as the beginning address for
the text segment. This address defaults to
zero, or it can be specified as any hexadecimal
number between 0 and FFFFFFFFH. This option is
especially useful for stand-alone programs, or
for putting programs in ROM. Hexadecimal
characters can be in upper-case or lower-case.

-Daddress

I1f specified, the hexadecimal address given is
defined by L068 as the beginning address for
the data segment. This address defaults to the
next byte after the end of the text segment, or
it can be specified as any hexadecimal number
between 0 and FFFFFFFF. This option is
especially useful for stand-alone programs or
for putting programs in ROM. Hexadecimal
address characters can be in upper-case or
lower-case.

-Baddress

If specified, the hexadecimal address given is
defined by L068 as the beginning address for
the bss. This address defaults to the next
byte after the end of the data segment, or it
can be specified as any hexadecimal number
between 0 and FFFFFFFF.

object filename [object filename]

The name of one or more object files produced
by the assembler AS68. These are the object
files that L068 links.

- - . -

All Informatiocn Prasenzed dere i3 2rosriscary o Tloltali Fes=2arfzn

CP/M-68K Programmer's Guide 6.2 Invoking the Linker

Table 6-1. (centinued)

Option Meaning

>message filename

If specified, error messages produced by L068
are redirected to the file that you specify
immediately after the greater than (>) sign.
If you do not specify a filename, error
messages are written to the standard default
output device, which typically is your console
terminal.

6.3 Sample Commands Invoking LO68
A>L068 -S -0 TEST.68K TEST.O

This command links assembled file TEST.O into file TEST.68K and
strips out the symbol table and relocation bits.

A>L0O68 -T4000 -D8000 -BC000 A.O0 B.O C.O

This command links assembled files A.O0, B.O, and C.0 to the
default output file C.OUT. The text segment starts at location
4000H; the data segment starts at location 8000H; and the bss starts

at location COOOH.
A>L068 -I -O TERST.68K TEST.O0 TEST1.0 ?BRBOR

This command links assembled files TEST.O and TEST1.0 to file
TEST.68K. Any l6-bit address overflow errors are ignored; error
messages are directed to the file ERROR.

6.4 L068 Error Messages

Appendix E lists the error messages that LO068 displays.

End of Section 6

at S e s ; - = R - e vt - e Y - 3
ALl Infcrmation P-sssentec nere 1s Pooprietarl I© Cigitzl Research

Section 7
Programming Utilities

CP/M-68K supports five programming utilities: Archive (AR68),
DUMP, Relocation (RELOC), SIZE68, and SENDC68. AR68 allows you to
create and modify libraries. DUMP displays the contents of files in
hexadecimal and ASCII notation. RELOC creates an absolute command
file from a relocatable command file. SIZE68 displays the total
size of a memory image command file and the size of each of its
program segments. SENDC68 creates a file of Motorola S-records from
a command file. S-records are described in the CP/M-68K Operating
System System Guide. This section describes each of these utilities
in a separate subsection. -

7.1 Archive Utility

The Archive Utility, AR68, creates a library or replaces, adds,
deletes, lists, or extracts object modules in an existing library.
AR68 can be used on the C Run-Time Library distributed with CP/M-68K
and documented in the C Language Reference Manual for the 68000
"microprocessor.

7.1.1 AR68 Syntax | -

To invoke AR68, specify the components of the command line
shown below. Optional components are enclosed in square brackets
(1.

AR68 DRTWX([AV] [F D:] [OPMOD] ARCHIVE OBMOD1l [OBMOD2...] [>filespec]
You can specify multiple object modules in a command line provided

the command line does not exceed 127 bytes. The delimiter character
between components consists of one or more spaces.

Table 7-1. AR68 Command Line Components

Component Meaning

AR68

invokes the Archive Utility. However, if
you specify only the AR68 command, AR68
returns the command line syntax and the
system prompt as shown below.

A>AR68
usage: AR68 DRTWX(AV] ([P D:] (OPMOD] ARCHIVE OBMODl (OBMOD2...] (>filespec]
A>

All Information Presented Here I3 2Proprietary to Tigital Research

CP/M-68K Programmer's Guide 7.1 Archive Utility

®able 7-1. (continued)

Component Meaning

DRTWX
/'

indicates you must specify one of these
letters as an AR68 command. Each of these
one-letter commands and their options are
described in Section 7.1.3.

AV

indicates you can specify one or both of
these one-letter options. These options are
described with the commands in Section
7.1.3.

OPMOD

is an object module within the library that
you specify. The OPMOD parameter indicates
the position in which additional object
modules reside when you incorporate modules
in the library and specify the A option.

Kl "\ /

e

specifies the drive on which the temporary
file created by AR68 resides. The variable
D is the drive select code; it must be
followed by a colon (:). AR68 creates a
temporary file called AR68.TMP that ARG68
uses as a scratchpad area.

ARCHIVE

is the file specification of the library.

OBMOD1 [OBMOD2 ...]

indicates one or more object modules in a
library that AR68 deletes, adds, replaces,
or extracts.

N

All Informa<:on Presented Here 1s Proprietary to Digital Research

114

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-1. (continued)

Component Meaning

>filespec

redirects the output to the file
specification that you specify, rather than
sending the output to the standard output
device, which is usually the console device
(CONSOLE). You can redirect the output for
any of the AR68 commands described in
Section 7.1.3. :

7.1.2 AR68 Operation

AR68 sequentially parses the command line only once. AR68
Searches for, inserts, replaces, or deletes object modules in the
library in the sequence in which you specify them in the command
line. Section 7.1.3 describes each of the commands AR68 supports.

When AR68 processes a command, it creates a temporary file
called AR68.TMP. AR68 creates and uses AR68.TMP when it processes
AR68 commands. After the operation is complete AR68 erases
AR68.TMP. However, depending on when an error occurs, AR68.TMP is
not always erased. If this occurs, erase AR68.TMP with the ERA
command and refer to Appendix E for error messages output by AR6S8.

7.1.3 AR68 Commands and Optioms
This section describes AR68 commands and their options.

Examples illustrate the effect and interaction between each command
and the options it supports.

Table 7-2. AR68 Commands and Optioms

Command/Option Meaning

D deletes from the library one or more
object modules specified in the
command. You can specify the V option
for this command.

v lists the modules in the library and
indicates which modules are retained
and deleted by the D command. The V
option precedes modules retained in
the library with the lower-case letter
¢ and modules deleted from the library
with the lower-case letter d as shown
below.

"
Q
g
[a)
'_‘
W
a4
(9]
]
.
3
R
[¢]
()
-
9]
12
ii
§.
}
W
()
{1
1]
v
"
Q
91

All Information Prasaented Zera is D2

115

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command/Option Meaning

A>AR68 DV MYRAH.ARC ORC.O
¢ red.o

¢ blue.o

d orc.o

c white.o

A>

The D command deletes the module ORC.O
from the library MYRAH.ARC. In
addition to listing the modules in the
library, the V option indicates which
modules are retained and deleted.

R creates a library when the one
specified in the command line does not
exist or, replaces or adds object
modules to an existing library. You
must specify one or more object
modules. '

You can replace more than one
object module in the library by.
specifying their module names in the
command line. However, when the
library contains more than one module
with the same name, AR68 replaces only
the first module it finds that matches
the one specified in the command line.
AR68 replaces modules already in the
library only if you specify their
names prior to the names of new
modules to be added to the library.
Por example, if you specify the name
of a module that you want replaced
after the name of a module that you
are adding to the library, AR68 adds
both modules to the end of the
* library.

By default, the R command adds
new modules to the end of the library.
The R command adds an object module to
a library if:

CP/M-68K Programmer's Guide : 7.1 Archive Utility

Table 7-2. (continued)

Command/Option Meaning

e The object module does not
already exist in the library.

e You specify the A option in the
command line.

e The name of a module follows the
name of module that does not
already exist in the library. ‘

The A option indicates where AR68
adds modules to the library. You
specify the relative position by
including the OPMOD parameter with the
A option. '

In addition to the A option, the
R command also supports the V option,
which lists the modules in the library
and indicates the result of the
operation performed on the library.
All options are described below.
Examples illustrate their use.

A adds one or more object modules
following the module specified in the
command line as shown below.

A>AR68 RAV SDAV.0 MYRAH.ARC WORK.O MAIL.O
much.o
sdav.o
work.o
mail.o
less.o

Qa0

The RAV command adds the object
modules WORK.O and MAIL.O after the
module SDAV.O0 in the 1library
MYRAH.ARC. The V option, described
below, lists all the modules in the
library. New modules are preceded by
the lower-case letter a and existing
modules are preceded by the lower-case
letter c.

All Information Presented Here is Proprietary to Digital Research

117

CP/M-68K Programmer's Guide 7.1 Archive Utility

rable 7-2. (continued)

Command/Option Meaning

v lists the object modules that the R
command replaces or adds.

A>AR68 RV JNNK.MAN NAIL.O WRENCH.O
saw.o

ham.o

nail.o

screw.o

wrench.o

pPOROO

A>

The R command replaces the object
module NAIL.O and adds the module
WRENCE.O to the library JNNK.MAN. The
V option lists object modules in the
library and indicates which modules
are replaced or added. Each object
module that is replaced is preceded
with the lower-case letter r and each
one that is added is preceded with the
lower-case letter a.

T requests AR68 print a table of contents
or a list of specified modules in the
library. The T command prints a
table of contents of all modules in
the library only when you do not
specify names of object modules in the
command line.

\' : displays the size of each file in the
table of contents as shown in the
example below.

A>AR68 TV WINE.BAD

rw-rw-rw- 0/0 6818 rose.o
‘rw-rw-rw- 0/0 2348 white.o
rw=rw=-rw- 0/0 396 red.o
A>

21l Information Presenteé Here is Proprietary to Digital Research

¢

118

N

.

Ned fbd VUL S LW LQUUUST AL

Table 7-2. (continued)

Command/Option

Meaning

The T command prints a table of
contents in the library WINE.BAD. In
addition to listing the modules in the
library, the V option indicates the
size of each module. The character
string rw-rw-rw- 0/0 that precedes the
module size is meaningless for CP/M-
68K. However, 1if the file is
transferred to a UNIX® system, the
character string denotes the file
~protection and file owner. The size
specified by the decimal number that
precedes the object module name
indicates the number of bytes in the
module.

writes a copy of an object module in
the library to the >filespec parameter
specified in the command line. This
command allows you to extract a copy
of a module from a library and rename
the copy when you write it to another
disk, as shown below. For this
command, the >filespec parameter is
not optional.

A>AR68 W GO.ARC NOW.O >B:NEWNAME.O

The W command writes a copy of the
object module NOW.O0 from the library
GO.ARC to the file NEWNAME.O on drive
B. .

extracts a copy of one or more object
modules from a library and writes them
to the default disk. If no object
modules are specified in the command
line, the X command extracts a copy of
each module in the library.

2 Juiuc . /e ALCillve UTLLLITY

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. {(continued)

Command/Option Meaning
v Lists only those modules the X command
extracts from the 1library. It

precedes each extracted module with
the lower-case letter as shown below.

A>AR68 XV JNNK.MAN SAW.O HAM.O SCREW.O
X saw.o

x ham.o

X screw.o

The V option with the X command lists
only the modules SAW.0, HAM.O, and
SCREW.0O that the X command extracts
from the library JNNK.MAN and precedes
each of these modules with the lower-
case letter Xx.

7.1.4 BErrors

When AR68 incurs an error during an operation, the operation is
not completed. The original library is not modified if the
operation would have modified the library. Thus, no modules in the
library are deleted, replaced, added, or extracted. Refer to
Appendix E for error messages output by AR6S8.

When you specify the >filespec parameter in the command line to
redirect the output and one or more errors occur, the error messages
are sent to the output file. Thus, you cannot detect the errors
without displaying or printing the file to which the output was
sent. If the contents of the output file is an object file (see the
W command), you must use the DUMP Utility described in Section 7.2
to read any error messages.

7.2 DUMP Utility

The DUMP Utility (DUMP) displays the contents of a CP/M file in
both hexadecimal and ASCII notation. You can use DUMP to display
any CP/M file regardless of the format of its contents (bxnary data,
ASCII text, an executable file).
7.2.1 Invoking DUMP

Invoke DUMP by entering a command in the following format.

DUMP [-sxxxx] filenamel [>filename2]

All Information Presented Eere is Proprietary to Digital Research

&

120

7

O

CP/M-68K Programmer's Guide . /.4 VUMK uvtilllTy

Table 7-3. DUMP Command Line Components

Component Meaning

-SXXXX XXXX 1s an optional offset (in

' hexadecimal) into the file. If specified,
DUMP starts dumping the contents of the
file from the byte-offset xxxx and
continues until it displays the contents
of the entire file. By default, DUMP
starts dumping the contents of the file
from the beginning of the file until it
dumps the contents of the entire file.

"filenamel is the name of thesfile you want to dump.

>filename2 the greater than sign (>) followed by a
filename or logical device optionally
redirects the output of DUMP. You can
specify any valid CP/M specification, or
one of the logical device names CON:
(console) or LST: (list device). If you
do not specify this optional parameter,
DUMP sends its output to the console.

7.2.2 DUMP Output
DUMP sends the output to the console (or to a filé or device,
if specified), 8 words per line, in the following format:

rrrr oo (E£££££): hhhh hhhh hhhh hhhh hhhh hhhh hhhh hhhh *aaaaaaaaaaaaaaaa*

Table 7-4. DUMP Output Components

Component) Mean ing

Crrr is the record number (CP/M records are 128
bytes) of the current line of the display.

oo is the offset (in hex bytes) from the
beginning of the CP/M record.

ffEffsf is the offset (in hex bytes) from the
beginning of the file.

hhhh is the contents of the file displayed in
hexadecimal.

aaaaaaaa is the contents of the file displayed as

ASCII characters. If any character is not
representable in ASCII, it is diplayed as
a period (.).

All Information Presented Hers is Propriecary =0 Sifital

121

Lr/mToon rLUngllmleL'h' Su LU . i ok MUmMr vlkdhdhdty

7.2.3 DUMP Examples

An example of the DUMP Utility is shown below. The example shows
the contents of a command file that contains both binary and ASCII
information. I

A>dump dump.68k

0000 00 (000000): 60la 0000 1lb34 0000 011d 0000 Oe5e 0000 *“....4....... Sl
0000 10 (000010): 0000 0000 0000 0000 0900 £££ff 6034 4320 *...c.ccvevee t4C

0000 20 (000020): 5275 6e74 696d 6520 436f 7079 7269 6768 *Runtime Copyrigh*
0000 30 (000030): 7420 3139 3832 2062 7920 4469 6769 7461 *t 1982 by Digita*
0000 40 (000040): 6c20 5265 7365 6172 6368 2056 3031 2c30 *1 Research vol.0*
0000 50 (000050): 3320 206f 0004 2268 0018 2649 d3e8 00lc *3 o.."h..&ISh..*

. « « » (and so on) . . .

7.3 Relocation Utility

The Relocation Utility (RELOC) creates an absolute file from a
relocatable command file. See Section 3 for a description of the
CP/M-68K command file format. An absolute file is a file that is
loaded at an absolute address. RELOC creates the absolute file by
relocating the address constants in the file before it strips off
the relocation bits. Thus, RELOC creates a new file but does not
alter the original file. :

-The advantage of using RELOC is RELOC decreases the size of the
file and increases performance. You can load the absolute command
file into memory approximately twice as fast as its relocatable
counterpart and it occupies half the disk storage space.

7.3.1 Invoking RELOC

You invoke RELOC by entering a command in the format shown

below. -

- RELOC [-Baddress] input filename output filename

()

* vy

411 Informaczion Presented Here 1S Proprietary to Digital Research

122

CP/M-68K Programmer's Guide 7.3 Relocation Utility

Table 7-5. RELOC Command Line Components

Component Meaning

-Baddress The address parameter is the
absolute address for the command
file. The address parameter is
optional. If you do not specify
the address parameter, RELOC uses
the base address at which it runs
as the default address for
relocating the input file. See the
first example in Section 7.3.2.
The base address of the file is the
lowest address in the TPA.

input filename The input filename is the file
specification of the relocatable
command file that RELOC converts to
an absolute file.

output filename The output filename is the file
specification of the absolute file
RELOC creates.

7.3.2 RELOC Examples

This section contains two examples of RELOC. The first example
illustrates how to relocate a file with the filetype of REL to the
bottom of the TPA. You can use this example to create an absolute
command file that runs in the bottom of the TPA. The second example
illustrates how to specify an alternate address for a command file.

1) In this example, the RELOC.REL file distributed with CP/M-

2)

68K is used to relocate itself. The resulting file,
RELOC.68K, uses its base address for the absolute address
of an input file when the address parameter of the input
file is not specified. You can use this example to
relocate other utilities with a filetype of REL so that
they also run in the bottom of the TPA.

A>RELOC.REL RELOC.REL RELOC.68K

The RELOC.REL file relocates itself and outputs the file
RELOC.68K. The command file RELOC.68K is an absolute file
that runs at the bottom of the TPA.

In this example, RELOC creates an absolute file that must be
loaded at a specific address.

A>RELOC -B500 JUNK.REL JUNK.68K

- n - aeie T e

All Informaticn Prasented Hers i3 Prosrizcazy <o Diglial Fassaren

CP/M-68K Programmer's Guide 7.3 Relocation Utility

RELOC converts the relocatable command file, JUNK.REL, to
the absolute command file, JUNK.68K, which must locad into
memory at location 500H.

7.4 SIZE68 Utility

The SIZE68 Utility (SIZE68) displays the sizes of each program
segment within one or more command files and the total memory needed
by each file. CP/M-68K command files usually have a filetype of
.68K or .REL. The size of a command file returned by SIZE68 and the
size of a command file returned by the STAT command are not equal.
The file size returned by SIZE68 includes the size of the text,
data, and bss program segments but does not include the size of the
header, symbol table, and relocation bits. For more details on the
CP/M-68K command file format, refer to Section 3. For more details
on the STAT command, refer to the CP/M-68K User's Guide.

7.4.1 1Invoking SIZE68

You invoke SIZE68 by entering the SIZE68 command line in the
format shown below.

SIZE68 filename [filename2 filename3 ...] [>outfile]

Table 7-6. SIZE68 Command Line Components

Component Meaning

filename the file specification of a file whose
size you want to determine.

filenamel one or more additional file

filename2 specifications of files whose size you

want to determine. SIZE68 can process
multiple files, provided the command line
does not exceed 128 bytes.

>outfile specifies the file specification to which
SIZE68 sends its output. If you do not
specify an output £file specification,
SIZE68 sends the output to the console.
For the output file specification, you can
specify a valid CP/M filename, or one of
the logical device names CON: (console),
or LST: (list device).

7.4.2 SIZEB68 Output

SIZE68 produces one output line for each input file you
specify. The format of the output line is shown below.

filename: csize+dsize+bsize=totsize (hexsize) stack size = ssize
Lll Information Presented Here ig Proprietary to Digital Resea:ch

124

()

CP/M-68K Programmer's Guide . , 7.4 SIZE68 Utility

Table 7-7. SIZE68 Output Components

Component Meaning

csize is the size, in decimal bytes, of the
text segment of the file.

dsize is the size, in decimal bytes, of the
' data segment of the file.

--bsize is the size, in decimal bytes, of the
block storage segment (bss) of the file.

totsize is the total size, in decimal bytes, of
the memory image occupied by the file.
It is the sum of c¢size, dsize, and
bsize.

hexsize " is the same value as totsize, expressed
‘ in hexadecimal bytes.

ssize is the size of the stack required by the
file.

For an explanation of the program segments of a command flle, see
Section 3, Command File Format.

7.4.3 SIZE68 Examples

This section contains examples of the SIZE68 Utility.

1) The SIZE68 command line specified in this example returns
the size of one command file and its program segments.

A>size68 reloc.68k
reloc.68k:11330+1012+2922=15264 (3BAO) stack size = 0

The program file reloc.68k contains a 11330-byte (decimal)
text segment, a 1l0l2-byte (decimal) data segment, and a
2922-byte (decimal) bss. The total size of the program
file is 15264 decimal bytes, which is the same as 3BAO
hexadecimal bytes. The header in the Reloc.68k file does
not specify a minimum stack size. However, when CP/M-68K
loads a command file, CP/M-68K always reserves at least 256
bytes for the user stack. CP/M-68K also creates a 256-byte
base page. Therefore, to run reloc.68k, the minimum size
of the TPA cannot be less than 15776 -decimal bytes (15264
bytes for the program, 256 bytes for the stack, and 256
bytes for the base page).

All Information Presentad dere i3 Propristary ©o Zigital

CP/M-68K Programmer's Guide 7.4 SIZE68 Utility

2) The SIZE68 command line specified in this example returns
the size of several program files and their program
segments.

A>8ize68 size.68k, dump.68k
size68.68k:7010+388+3706=11104 (2B60) stack size = 0
dump.68Kk:6964+286+3678=10928 (2AB0) stack size = 0

When you specify multiple file specifications in a command
line, use a comma to delimit each file specification.

A>size68 clink.sub
Not c.out format: clink.sub

SIZ2E68 printed an error message because clink.sub is an
ASCII file and not a command file. Files input to SIZE68
must be command files. Refer to Section 3 for the format
of CP/M-68K command files.

7.5 SENDC68 Utility

The SENDC68 Utility (SENDC68) creates a file with Motorola S-
record format from an absolute command file. S-records are a means
of representing an absolute program in ASCII character form. For a
detailed description of the S-record format, refer to the CP/M-68K
Operating System System Guide.

7.5.1 Invoking SENDC68

You invoke SENDC68 by entering a command in the format shown
below. '

SENDC68 [~] input file [output file]

Table 7-8. SENDC68 Command Line Compoments

Component Meaning

- The hyphen is optional. 1If you specify
the hyphen, SENDC68 does not create any S-
records for the bss program segment. If
you do not specify the hyphen, SENDCé68
fills the bss with zeroes. Thus, if you
specify the hyphen, SENDC68 creates a
smaller S-record file.

input file The file specification for the command
file that SENDC68 converts to S-record
format. The command file must be an
absolute file in the format produced by
1068 or RELOC.

~

CP/M-68K Programmer's Guide 7. SENDCS58 Utility

(W]

Table 7-8. (continuéd)

Component Meaning

output file The file specification of the SENDC68
output file containing the S-records. If
you do not specify a file, SENDC68 sends
the S-record that it outputs to the
console.

7.5.2 SENDC68 Example

This section contains an example of the SENDC68 command line.
The example below illustrates how to create a file that contains
Motorola S-records from an absolute command file.
A>SENDC68 - JUNK.68K JUNK.SR
In the above example, SENDC68 creates the S—reéord file JUNK.SR from

the absolute command file JUNK.68K. However, the file JUNK.SR does
not contain S-records for the bss program segment.

End of Section 7

All Information Presenzad Hera s 2roprietary %o Dizlzal Research

127

Section 8
DDT-68K

8.1 DDT-68K Operation

DDT-68K allows you to test and debug programs interactively in
a CP/M-68K environment. You should be familiar with the MC68000
Microprocessor, the assembler (AS68) and the CP/M-68K operating
system.

8.1.1 Invoking DDT-68K
Invoke DDT-68K by entering one of the following commands:

DDT
- DDT filename

The first command loads and executes DDT-68K. After displaying
its sign-on message and the hyphen (-) prompt character. DDT-68K
is ready to accept commands. The second command invokes DDT-68K and
loads the file specified by filename. If the filetype is not
specified, it defaults to the 68K filetype. The second form of the
command is equivalent to the sequence:

A>DDT

DDT-68K

Copyright 1982, Digital Research
-Efilename

At this point, the program that was loaded is ready for execution.

8.1.2 DDT-68K Command Conventioms

wWhen DDT-68K is ready to accept a command, it prompts you with
a hyphen (-). In response, you can type a command line or a
CONTROL-C ("C) to end the debugging session (see Section 8.1.4). A
command line can have as many as 64 characters, and must be
terminated with a RETURN. While entering .the command, -use standard
CP/M line-editing functions to correct typing errors. See Table 4-
12. DDT-68K does not process the command line until you enter a
RETURN.

The first nonblank character of each command line determines
the command action. Table 8-1 summarizes DDT-68K commands. They
are defined individually in Section 8.2.

All Information 2resented Here 15 Procriecary ©o Diglital Research

Py

129

CP/M—08K FProgrammer's Guiae 0.4 ULui-oon uperacivi

Table 8-1. DDT-68K Command Summary

Command Action
D display memory in hexadecimal and ASCII
E load program for execution
F fill memory block with a constant
G begin execution with optional breakpoints
H hexadecimal arithmetic
I set up file control block and command tail
L list memory using MC68000 mnemonics
M move memory block
R read disk file into memory
S set memory to new values
T trace program execution
U untrace program monitoring
v show memory layout of disk file read
w write contents of memory block to disk
X examine and modify CPU state

The command character may be followed by one or more arguments,
which may be hexadecimal values, filenames, or other information,
depending on the command. Some commands can operate on byte, word,
or longword data. The letter W for word or a L for longword must be
appended to the command character for commands that operate on
multiple data lengths. Details for specific commands are provided
with the command descriptions. Arguments are separated from each
other by commas or spaces.

8.1.3 Specifying Addresses

Most DDT-68K commands reqguire one or more addresses as
operands. All addresses are entered as hexadecimal numbers of up to
eight hexadecimal digits (32 bits)
8.1.4 Terminating DDT-68K

Terminate DDT-68K by typing a 1C in response to the hyphen
prompt. This returns control to the CCP.
8.1.5 DDT-68K Operation with Interrupts

DDT-68K operates with interrupts enabled or disabled, and
preserves the interrupt state of the program being executed under

. DDT-68K. When DDT-68K has control of the CPU, either when it is

initially invoked, or when it regains control from the program being
tested, the condition of the interrupt mask is the same as it was
when DDT-68K was invoked, except for a few critical regions where
interrupts are disabled. While the program being tested has control
of the CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt mask.

21 Informz-icn Presenteé Here is Proprietary to Digital Research

130

M

)

C2/M-68BK Programmer's Guide 8.1 DDT-68K Operation

Note that DDT-68K uses the Trace and Illegal Instruction
exceptions. Therefore, programs debugged under test should not use
these.

8.2 DDT-68K Commands

This section defines DDT-68K commands and their arguments.
DDT-68K commands give you control of program execution and allow you
to display and modify system memory and the CPU state.

8.2.1 The D (Display) Command

The D command displays the contents of memory as 8-bit, l6-bit,
or 32-bit hexadecimal values and in ASCII. The formns are:

D

Ds
Ds,f
DW
DWs
DWs, £
DL
DLS
DLS r f

where s is the starting address, and f is the last address that DDT-

.68K displays.

Memory is displayed on one or more lines. Each line shows the
values of up to 16 memory locations. For the first three forms, the
display line appears as follows:

aaaaaaaa bb bb ... bbecec ... cc

where aaaaaaaa is the address of the data being displayed. The bb's
represent the contents of the memory locations in hexadecimal, and
the c's represent the contents of memory in ASCII. Any nongraphic
ASCII characters are represented by perlods.

In response to the DS form of the D command, shown above, DDT-
68K displays 12 lines that start from the current address. Form
Ds,f displays the memory block between locations s and £. Forms DW,
DWs, and DWs,f are identical to D, Ds, and Ds,f except the contents
of memory are displayed as l6-bit values, as shown below:

Adaadaaa WWWW WWWW ... WwWww CCCC cee cc

Forms DL, DLs, and DLs,f are identical to D, Ds, and Ds,f
except the contents of memory are displayed as 32-bit or longword
values, as shown below:

aaaaaaaa 11111111 11111111 ... 1111111l ccceceecee ...

n

All Inifcrmaticn Presented Here is Proprietary tc Sigiczal Fesearch

Aﬂ

131

CP/M—-68K Programmer's Guide 8.2 DDT-68K Commands

puring a display, the D command may be aborted by typing any
character at the console.

8§.2.2 The E (Load for Execution) Command

The E command loads a file in memory so that a subsequent G, T
or U command can begin program execution. The syntax for the E
command is:

E<filename>

where <filename> is the name of the file to be loaded. If no file
type is specified, the filetype 68K is assumed.

An E command reuses memory used by any previous E command.
Thus, only one file at a time can be loaded for execution.

When the load is complete, DDT-68K displays the starting and
ending addresses of each segment in the file loaded. Use the V
command to display this information at a later time.

If the file does not exist or cannot be successfully loaded in
the available memory, DDT-68K displays an error mesSsage. See
appendix E for error messages returned,by DDT-68K.

8.2.3 The F (Fill) Command

The F command fills an area of memory with a byte, word, or
longword constant. The forms are

Fs,£,b
FWs,f,w
FLs,£,1

where s is the starting address of the block to be filled, and £ is
the address of the final byte of the block within the segment
specified in s. '

In response to the first form, DDT-68K stores the 8-bit value b

in locations s through f£. In the second form, the 16-bit value w is
stored in locations s through f in standard form: the high 8 bits
are first, followed by the low 8 bits. In the third form, the 32-
bit value 1 is stored in locations s through f with the most
significant byte first.

1f s is greater than £, DDT-68K responds with a gquestion mark.
Also, if b is greater than FF hexadecimal (255), w is greater than
FFFF hexadecimal (65,535), or 1 is greater than FFFFFFFF hexadecimal
(4,294,967,295), DDT-68K responds with a guestion mark. DDT-68K
displays an error message if the value stored in memory cannot be
read back successfully. This error indicates a £faulty or
nonexistent RAM location.

4.1 Information Presentec Here 1is Proprietary te Digital Research

132

-,

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.4 The G (Go) Command

The G command transfers control to the program being tested,
and optionally sets one to ten breakpoints. The forms are

G
-G,bl,...bl0
- Gs

Gs,bl,...bl0

where s is the address where program begins executing and bl through
bl0 are addresses of breakpoints.

In the first two forms, no starting address is specified. DDT-
68K starts executing the program at the address specified by the
program counter (PC). The first form transfers control to your
program without setting any breakpoints. The second form sets
breakpoints before passing control to your program. The next two
forms are analogous to the first two except that the PC is first set
to s.

Once control has been transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, DDT-68K regains control, clears all breakpoints, and displays
the CPU state in the same form as the X command. When a breakpoint
returns control to DDT-68K, the instruction at the breakpoint
address has not yet been executed. To set d breakpoint at the same
address, you must specify a T or U command first. '

8.2.5 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 32-bit
values. The form is:

Ha,b
where a and b are the values whose sum and difference DDT-68K
computes. DDT-68K displays the sum (ssssssss) and the difference
(dddddddd) truncated to 1l6- bits on the next line as shown below:

ssssssss dddddddd

8.2.6 The I (Input Command Tail) Command

- The I command prepares a file control block (FCB) and command
tail buffer in DDT-68K's base page, and copies the information in
the base page of the last file loaded with the E command. The form
is

I<command tail>

All Information Presentad Here is 2zcprietary to Digical Isesearch

133

o o — i 45

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

where <command tail> is the character string wnich usually contains
one or more filenames. The first filename is parsed into the
default file control block at 005CH. The optional second filename,
if specified, is parsed into the second default file control block
beginning at 0038H. The characters in the <command tail> are also
copied to the default command buffer at 0080H. The length of the
<command tail> is stored at 0080H, followed by the character string
terminated with a binary zero.

If a file has been loaded with the E command, DDT-68K copies
the file control block and command puffer from the base page of DDT-
68K to the base page of the program loaded.

8.2.7 The L (List) Command

The L command lists the contents of memory in assembly
language. The forms are

L
Ls
Ls,f .

where s is the starting address, and £ is the last address in the

The first form lists 12 lines of disassembled machine code from
the current address. The second form sets the list address to s and
then lists 12 lines of code. The last form lists disassembled code
from s through £. 1In all three cases, the list address is set to
the next unlisted location in preparation for a subsequent L
command. When DDT-68K regains control from a program being tested
(see G, T and U commands), the list address is set to the address in
the program counter (PC). ’

Long displays can be aborted by typing any key during the list
process. Or, enter CONTROL-S (1s) to halt the display temporarily.
A CONTROL-Q (1Q) restarts the display after 1S halts it. :

The syntax of the assembly language statements produced by the
L command is described in the Motorola 16-Bit Microprocessor User's
Manual, third edition, MC68000UM(AD3).

8.2.8 The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is

Ms,f,d
where s is the starting address of the block to be moved, f is the
address of the final byte to be moved, and d is the address of the

first byte of the area to receive the data. Note that if 4 is
between s and £, part of the block being moved will be overwritten

221 Informacion Presented Here 1E Preprietary to Digital. Research

- - —— e e e e o S £ S TS S ST S T e v m—re o e w—na - ——

o~

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

before it is moved, because data is transferred starting from
location s. ‘

8.2.9 The R (Read) Command

The R command reads a file to a contiguous block in memory.
The format is

R<filename>
where <filename> is the name and type of the file to be read.
DDT-68K read the file in memory and displays the starting and
ending addresses of the block of memory occupied by the file. A
Value (V) command can redisplay the information at a later time.

The default display pointer (for subsequent Display (D) commands) is
set to the start of the block occupied by the file.

8.2.10 The S (Set) Command

The S command can change the contents of bytes, words, or
longwords in memory. The forms are

Ss
SWs
SLs

where s is the address where the change is to occur.

DDT-68K displays the memory'addteSS and its current contents on
the following line. 1In response to the first for@, the display is

aaaaaaaa bb

In response to the second form, the display is
aaaaaaaa wwww

In response to the third form, the display is
aaaaaaaa 11111111

where bb, wwww, and 11111111 are the contents of memory in byte,
word, and longword formats, respectively. ’

In response to one of the above displays, you can alter the
memory location or leave it unchanged. If a valid hexadecimal value
is entered, the contents of the byte, word, or longword in memory is
replaced with the value entered. If no value is entered, the
contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-68K continues to display
successive memory addresses and values until either a period or an
invalid value is entered. ’

All Information Presented Heres is Procrierary =c Digital Research

135

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

DDT-68K displays an error message if the value stored in memory
cannot be read back successfully. This error indicates a faulty or
nonexistent RAM location.

8;2.11 The T (Trace) Command

The T command traces program execution for 1 to OFFFFFFFFH
program steps. The forms are

T
Tn

where n is the number of instructions to execute before returning
control to the console.

After DDT-68K traces each instruction, it displays the current
CPU state and the disassembled instruction in the same form as the X
command display. ‘

Control transfers to the program under test at the address
indicated in the PC. If n is not specified, one instruction is
executed. Otherwise, DDT-68K executes n instructions and displays
the CPU state before each step. You can abort a long trace before
all the steps have been executed by typing any character at the
console.

After a Trace (T) command, the list address used in the L
command is set to the address of the next instruction to be
executed.

Note that DDT-68K does not trace through a BDOS interrupt
instruction, since DDT-68K itself makes BDOS calls and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

8.2.12 The U (Untrace) Command

The U command is identical to the Trace (T) command except that
the CPU state is displayed only after the last instruction is
executed, rather than after every step. The forms are

U
Un

where n is the number of instructions to execute before control
returns to the console. You can abort the Untrace (U) command
before all the steps have been executed by typing any key at the
console.

]
1
)
1
i
)
1
)]
1
l(_!
ty
1l
n
1]
0
[
w
[}
8¢
{4
L4}
[}
on
"y
(B
0
ty

136

N

N

N
()

™)

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.13 fThe V (Value) Command

The V command displays information about the last file loaded
with the Load For Execution (E) or Read (R) commands. The form is

v

If the last file was loaded with the E command, the V command
displays the starting address and length of each of the segments
contained in the file, the base page pointer, and the initial stack
pointer. The format of the display is

Text base=00000500 data base-00000372 bss base=00003FDA
text length=00000672 data length=00003468 bss length=0000A1B0
base page address=00000400 initial stack pointer=000066D4

If no file has been loaded, DDT-68K responds to the V command with a
question mark (?).

8.2.14 The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The forms are

W<filename> .
W<filename>,s, f

The <filename> is the file specification of the disk file that
receives the data. The letters s and f are the first and last
addresses of the block to be written. If f does not specify the
last address, DDT-68K uses the same value that was used for s.

If the first form is used, DDT-68K assumes the values for s and
f from the last file read with a R command. If no file is read by
an R command, DDT-68K responds with a question mark (?). This form
is useful for writing out files after patches have been installed,
assuming the overall length of the file is unchanged.

If the file specified in the W command already exists on disk,
DDT-68K deletes the existing file before it writes the new file.

8.2.15 The X (Examine CPU State) Command

The X command displays the entire state of the CPU, including
the program counter (PC), user stack pointer (usp), system stack
pointer (ssp), status register (by field), all eight data registers,
all eight address registers, and the disassembled instruction at the
memory address currently in the PC. The forms are

AR - . - h - N - - s s - - - -~ < .- he .
te- -3I0rmacicn Fr2senctad Here 15 Propri2carv o Zizizzl Research

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

where r is one of the following registers:
The first form displays the CPU state as follows:

PC=00016000 USP=00001000 SSP=00002000 ST=FFFF=> (etc.)
D 00001000 00000DO1 ... 00000001

A 000BOAOO 000A0010 ... 00000000

lea $16028,A0

The f£irst line includes:

PC Program Counter

Usp User Stack Pointer
Ssp System Stack Pointer
ST Status Register

Following the Status Register contents on the first display line,
the values of each bit in the status register are displayed. A
sample is shown below:

TR SUP IM=7 EXT NEG ZER OFL CRY

This sample display includes:

TR Trace Bit
sup Supervisor Mode Bit
IM=7 Interrupt Mask=7
EXT Extend
NEG Negative
ZER Zero
OFL Overflow -
CRY Carry

The second form, Xr, allows you to change the value in the
registers of the program being tested. The r denotes the register.
DDT-68K responds by displaying the current contents of the register,
leaving the cursor on that line. If you type a RETURN, the value is
not changed. If you type a new valid value and a RETURN, the
register is changed to the new value. The contents of all registers
except the Status Register can be changed.

)

C
N

CP/M-68K Programmer's Guide 8.3 Assembly Language Syntax

8.3 Assembly Lanquage Syntax for the L Command

In general, the syntax of the assembly language statements used
in the L command is standard Motorola 68000 assembly language.
Several minor exceptions are listed below.

-® DDT-68K prints all numeric values in hexadecimal.

® DDT-68K uses lower-case mnemonics.

® DDT-68K assumes word operations unless a byte or longword
specification is explicitly stated.

End of Section 8

Appendix A
Summary of BIOS Functions

Table A-1 lists the BIOS functions supported by CP/M-68K.

more details on these functions, refer to the CP/M-68K Operating

System System Guide.

For

Table A-1. Summary of BIOS Functions

Function F§ Description

Init 0 Called for Cold Boot

Warm Boot 1 Called for Warm Start

Const 2 Check for Console Character
Ready

Conin 3 Read Console Cha:acter In

Conout 4 Write Console Character Out

List 5 Write Listing Character Out

Auxiliary Output 6 Write Character to Auxlllary
OQutput Device

Auxiliary Input 7 Read from Auxiliary Input

, Device

Home 8 Move to Track 00

Seldsk 9 Select Disk Drive

Settrk 10 Set Track Number

Setsec 11 Set Sector Number

Setdma 12 Set DMA Offset Address

Read 13 Read Selected Sector

Write 14 Write Selected Sector

Listst 15 Return List Status

Sectran 16 Sector Translate

Get Memory Region

Table Address 18 Address of Memory Reg1on
Table

Get I/O Byte 19 "Get I/0 Mapping Byte

Set I/0 Byte 20 Set I/0 Mapping Byte

Flush Buffers 21 Writes Modified Buffers

Set Exception Vector 22 Sets Exception Vector

End of Appendix A

ALl Information Presented Jere is Proprietarvy tc Digital Research

141

)

Appendix B
Transient Program Load Examples

This appendix contains two examples, an assembly language
program and a C language program. Both illustrate how a transient
program loads another program with the BDOS Program Load Function
(59) but without the CCP.

Examples:

1) The example below is an AS68 assembly language program that
loads another program into the TPA.

* BDOS Function Definitions
*
ceboot = 0
printstr = 9
open = 15
setdma = 26
pgmldf = 59
gettpa = 63
. text
. s
* OPEN file to be loaded
*
start: link a6,4#0 *mark stack frame
move.l 8(aé6),al *get the address of the base page
lea $5c(al),al *get address of lst parsed FCB in base page
move.l al,dl *put that address in register dl
move.w #open,do *put BDOS function number in register 40
trap $2 *try to open the file to be loaded
cmpi $255,40 *test d0 for BDOS error return code
beq openerr *if 40 = 255 then goto openerr

»

Compute Address to Load File

move.l $18(a0),d2 *get starting address of bss from base page

move.l S$lc(al0),d3 *get length of bss

add.1l d2,d3 *compute first free byte of memory
*after bss

move.l $20(a0),d4 *get length of free memory after bss

sub $$100,44 *leave some extra room

move.l d4,d5 *save that length in register 45

add.1l 43,44 *compute high end of free memory after bss

move.,l d3,a3 . *get the starting address of free memory
*into a3)

sub $1,d45 *adjust loop counter

clear: clr.b (a3)+ *clear out free memory

Listing B-1l. Transient Load Program Example 1

All Informacion Presencad Heras i 2zcmrli2ctary o Jigizal Researcn

143

CP/M-68K Programmer's Guide B Transient Program Load Examples

abf d5,clear *decrement loop counter and loop until
* *negative
*
* FILL the LPB
*
* Low address becomes first free byte of memory after bss
* High address of area in which to load program becomes
* the Low address plus length of free memory
*
®
move.l d3,lowadr *get low end of area in which to load
* *program
move.l d4,hiadr *get high end of area in which to load
* *program
move.l al,LPB *put address of open FCB into LPB
move.w #pgmldf,do *get BDOS program load function number
move.l $LPB,dl *put address of LPB into register dl
trap $2 *do the program load
tst do *was the load successful?
bne lderr *if not then print error message
*
* Set default DMA address
*
move.l baspag,dl *d]l points to new program's base page
add #$80,d1 *dl points to default dma in base page
move.w $setdma,do *get BDOS function number
trap $2 *get the default dma address
* .
* Now push needed addresses on stack
* -
movea.l usrstk,a’ *get up user stack pointer
move.l baspag,al *get address of base page
move.l al,-(sp) *push base page address
move.l #cmdrtn,-(sp) *push return address
move.l 8(al),-(sp) *push address to jump to
rts *jump tO new program
*
* Print ERROR message
*
openerr:
move.l $openmsg,dl *get address of error message
* *to be printed
bra print
iderr: move.l #loaderr,dl *get address of error message to
*be printed
print: move.w #printstr,dl *get BDOS function number
trap $2 *print the message
cmdrtn: move.w #reboot,dol *get BDOS function number
trap $2 , *warmboot and return to the CCP
*
* DATA
*
.data
. even
»
Listing B-1l. (continued)
51 Infcrmecicn Presented Here Ls Propristary o Digital EEsearch

/'\

27N

CP/M-68K Programmer's Guide B Transient Program Load Examples

* LOAD PARAMETER BLOCK
»
LPB: .ds.1 1 *PCB address of program file
lowadr: .ds.1l 1 *Low boundary of area in which
* *to load program
hiadr: .ds.l 1 *High boundary of area in which to
* *to load program '
baspag: .ds.l 1 *Base page address of loaded program
usrstk: .ds.l 1 *Loaded program's initial stack pointer
flags: .dc.w 0 *Load program function control flags
*
* TPA Parameter Block
*
.even
TPAB: .dc.w 0
low: .ds.l 1
high: .ds.1 1
.even.
loaderr: .dec.b 13,10,'Program Load Error$'
openmsg: .de.b 13,10,'Unable to Open File$'
.end

Listing B-1l. (continued)

CP/M—-bY8K Programmer-'s Guide

B Transient Program Load Examples

2) The example below is a C language transient program that
loads another program in the TPA without the assistance of
the CCP. The C language program calls an AS68 assembly
language routine to perform tasks not permitted by the C

language.

/t
'C' Language Program to Load Another
Program into the TPA
*®
/* DEFINES */
$define BSS_OFFSET (long)0x18
$define FCB_OFFSET (long)0x5C
#¢define BSS_LENGTH (long) 0xl1C
#define FREE_MEMORY (long)0x20
$define DMA_OFFSET (long)0x80
$¢define ROOM (long)0x100
#define NULL 'o’
§define CR (long)1l3
$define LF (long)l0
§define REBOOT 0
#define CON_OUuT 2
$define PRINTSTR 9
$define , OPEN"’ 15
$define SETDMA 26
$define PGMLDF 59
$define GETTPA 63
/* Error Messages */

char openmsg[20] = "Unable to Open File$";
char loadmsg{l19] = "Program Load Error$";

/* Load Parameter Block */

extern long LPB,lowadr, hzad:.baspag,usrstk,

extern int flags;

/* TPA Parameter Block */

extern int TPAB;
extern long low,high;

tc Digital Research

w“\

CP/M-68K Programmer's Guide B Transient Program Load Examples

Openfile (baseaddt) /*it!tttt*t.i*ttittttttit*ttti*tt/
— register char *baseaddr; /* base page address */
/* */
register long *el,*e2; /* pointers to long word values */
register long count; /* long word value */
register char *ptrl,*ptr2; /* pointers to character values */

: * *
7 %
ptrl = baseaddr + FCB_OFFSET; /* get address of FCB */
if (bdos(OPEN, ptrl) <= 3) . /* try to open the file */
1 /* ./
tl = baseaddr + /* set pointer to STARTING addr */
BSS_OFFSET; /* of the BSS segment */
t2 = baseaddr + /* set pointer to LENGTH of */
BSS_LENGTH; /* the BSS segment */
lowadr = *tl + *t2; /* compute the first free byte */
/* address of memory after the */
/* BSS segment */
ptr2 = lowadr /* *ptr2 now points to first */
/* free byte in memory */
t2 = baseaddr + /* get length of free memory */
FREE_MEMORY; /* after the BSS segment */
/* */
hiadr = *t2 + lowadr /* compute high end of avaiable */
/* memory */
count = *t2 - ROOM /* Leave some extra room in Mem */
while(count--) /* Clear out available Memory */
) *ptr2++ = NULL; /* with NULL byte values */
{’~\‘ LPB = ptri; /* first long of parameter blk */
o /* gets the address of the FCB */
S /ﬁ'itt*ﬁ'*‘h'**t'*t"*tt**ttttt*tt/

/* *

- If the Load is Successful
1. Set the Default DMA address
2. Call Assembly Code to push

the base page address, the
return address, and the
address you wish to jump to.

* */
%f(bdos(PGHLDF,&LPB) == ()

bdos (SETDMA, (baspag + DMA_OFFSET))";
push();

else
error (PGMLDF) ;

Listing B-2. (continued)

All Information Presented Here is Proprietary zo Digital Research

147

CP/M-68K Programmer's Guide B Transient Program Load Examples

else
error (OPEN); '

}

error (£flag)
%nt flag;

bdos (CON_OUT,CR) ;
bdos (CON_OUT,LF) ;
‘if(flag == QPEN)

bdos (PRINTSTR,openmsg) ;
else

bdos (PRINTSTR, loadmsg) ;
bdos (REBOOT, (1long)0) ;

main ()
| bdos (REBOOT, (1long)0);
AR R AR R R RN RN RN R RN RN RRRR NN AR N NP AARCTRNE RSN R
* ®
* Assembly Language Module Needed to *
* Assist 'C' code to Load a Program into the TPA *
* *
Yy R 22 222223222 XT XSRS X2 22422 2 2 2 2 2 4222222222 2]
4
* - .
* Make All these labels GLOBAL
*
.globl _bdos
.globl _LPFB -
.globl _lowadr-
.globl _hiadr
.globl _baspag
.globl _usrstk
.globl _flags
.globl _TPAB
.globl _low
.globl _high
.globl _start
.globl _openfile
.globl _push
.globl _main
*
* Get the address of the base page
*
. . . o~
Listing B-2. (continued) K“
L11 Information Presentel Bere 1 Propriletary t©o Dicita. Resezcfch

CP/M-68K Programmer's Guide

B Transient Program Load Examples

*link and allocate
*push the address of the base page
*Jjump to 'C' code to open the file

*get the BDOS function number
*get the BDOS parameter
*call the BDOS

*set up the user stack pointer
*get address of user base page
*push base page address

*push return address

*push address to jump to

*jump to new program

*FCB address of program file

*Low boundary of area in which

*to load program

*High boundary of area in which to

*to load program

*Base page address of loaded program
*loaded program's initial stack pointer
*Load program function control flags

_start:
link a6,#0
move.l 8(a6),-(sp)
jsr _openfile

*

* Call the BDOS

»

_bdos:
move.w 4 (sp),do
move.l 6(sp),dl
trap $2
rts *return

.

* Push the needed addresses on to the stack

*

_Pbush:
movea.l _usrstk,a7
move.l _baspag,al
move.l al,-(sp)
move.l # main,-(sp)
move.l 8(al),-(sp)
cts

*

* DATA

»
'dau
.even

* N .

* Load Parameter Block

»

_LPB: .ds.1 1

lowadr: .ds.l1 1

*

hiadr: .ds.l 1

¥

_baspag: .ds.l1 1

_usrstk: .ds.l 1

_flags: .dc.w 0

*

* TPA Parameter Block

*
.even

_TPAB: .dc.w 0

_low: .ds.l 1

_high: .ds.1 1

»

* END of Assembly Language Code

»

.end

Listing B-2.

(continued)

End of Appendix B

e is ?ropriaczary &5 Digimal Research

Appendix C
Base Page Format

Table C-1 shows the format of the base page. The base page
describes a program's environment. The Program Load Function (59)
allocates space for a base page when this function is invoked to
load an executable command file. For more details, on the Program
Load Function and command files, refer to the appropriate sections
in this manual.

Table C-1. Base Page Format: Offsets and Contents

Offset Contents

- 0000 - 0003 Lowest address of TPA (from LPB)

0004 - 0007 1 + Highest address of TPA
(from LPB)

0008 - 000B Starting address of the Text

) Segment

QoocC é-OOOF) Length of Téxt Segment (bytes)

0010 - 0013 Starting address of the Data
Segment (initialized data)

0014 - 0017 Length of Data Segment

0018 - 001B Starting address of the bss
(uninitialized data)

001C - Q01lF Length of bss

0020 - 0023 Length of free memory after bss.

0024 - 0024 Drive from which the program was
loaded

0025 - 0037 Reserved, unused

0038 - 00SB 2nd parsed FCB from Command Line

005C - 007F lst parsed FCB from Command Line

0080 - OOFF Command Tail and Default DMA
Buffer

End of Appendix C
All Information Presented Here Is Proprierary o Zigizal Research

151

”

S

Appendix D
Instruction Set Summary

This appendix contains two tables that describe the assembler
instruction set distributed with CP/M-68K. Table D-1 summarizes the
assembler (AS68) instruction set. Table D-2 lists variations on the
instruction set listed in Table D-l1. For details on specific
instructions, refer to Motorola's 1l6-Bit Microprocessor User's
Manual, third edition, MC68000UM(AD3) .

Table D-1. Instruction Set Summary

Instruction Description
abecd Add Decimal with Extend
add Add
and Logical AND
asl Arithmetic Shift Left
asr Arithmetic Shift Right
bece Branch Conditionally
bchg Bit Test and Change
belr Bit Test and Clear
bra Branch Always
bset Branch Test and Set
bsr Branch to Subroutine
btst Bit Test
chk Check Register Against Bounds
clr Clear Operand
cmp Compare
dbcc Test Condition, Decrement and Branch
divs Signed Divide
divu Unsigned Divide
eor ExXclusive Or
exg Exchange Registers
ext Sign Extend
jmp Jump
jsr Jump to Subroutine
lea " Load Effective Address
link Link Stack
1sl Logical Shift Left
1src Logical Shift Right

CP/M-68K Programmer's Guide D Instruction Set Summary

‘*able D-1. (comntinued)

Instruction Description
move Move
movem Move Multiple Registers
movep Move Peripheral Data
muls Signed Multiply
mulu Unsigned Multiply
nbecd Negate Decimal with Extend
neg Negate
nop No Operation
no Ones Complement
or Logical OR
pea Push Effective Address
reset Reset External Devices
rol Rotate Left without Extend
ror Rotate Right without Extend
roxl Rotate Left with Extend
roxr Rotate Right with Extend
rte Return From Exception
rtr Return and Restore
rts Return from Subroutine
sbcd Subtract Decimal with Extend
scc Set Conditional
stop Stop
sub Subtract
swap Swap Data Register Halves
tas Test and Set Operand
trap Trap
trapv Trap on Overflow
tst Test
unlk Unlink
L)
all Informatiorn Presented Here .8 Propriecary to Digital Research

154

P

7Y

)

CP/M-68K Programmer's Guide

D Instzuction Set Summary

Table D-2. Variatioms of Instructicn Types
Instruction Variation Description
add add Add
adda Add address
addg Add Quick
addi Add Immediate
addx Add with Extend
and and Logical AND
andi AND Immediate
andi to cecr AND Immediate to Condition
: Code
andi to sr AND Immediate to Status
Register
cmp _ cmp Compare
cmpa Compare Address
cmpm Compare Memory
cmpi Compare Immediate
eor eor Exclusive OR
eori Exclusive OR Immediate
eori to cecr Exclusive Immediate to
Condition Codes
eori to sr Exclusive OR Immediate to
Condition Codes
move move Move
movea Move Address
moveq Move Quick
move to ccr Move to Condition Codes
move to sr Move to Status Register
move from sr Move from Status Register
move to usp Move to User Stack Pointer
neg neg Negate
negx Negate with Extend
or or Logical OR
ori OR Immediate
ori to ccr OR Immediate to Condition
Codes
ori to sr OR Immediate to Status
Register
sub sub Subtract
suba Subtract Address
subi Subtract Immediate
subg Subtract Quick
subx Subtract with Extend

End of Appendix D

All Informaticn Pre2senced Hers

i3 Propristary "o 2igital Research

)

Appendix E
Error Messages

This appendix lists the error messages returned by the internal
components of CP/M-68K and by the CP/M-68K programmer's utilities.
The sections are arranged alphabetically by the name of the internal
component or utility. The error messages are listed alphabetically
within each section, with explanations and suggested user responses.

‘

E.1l AR68 Error Messages

The CP/M-68K Archive Utility, AR68, returns two types of fatal
error messages: diagnostic and logic. Both types of fatal error
messages are returned at the console as they occur.

E.1l.1 Patal Diagnostic Error Messages

The AR68 errors are listed below in alphabetic order with
explanations and suggested user responses.

Table E-1. FPatal Diagnostic Error Messages

Message Meaning

filename not in archive file

The object module indicated by the
variable “"filename” is not in the library.
Check the filename before you reenter the
command line.

cannot create filename

The drive code for the file indicated by
the variable "filename” is invalid, or the
disk to which AR68 is writing is full.
Check the drive code. If it is valid, the
-disk is full. Erase unnecessary files, if
any, or insert a new disk before you
reenter the command line.

All Information Presented Fer2 is 2Proprietary o Z:igizal Research

CP/M-68K Programmer's Guide E.1l AR68 Error Messages

Table E-1. (continued)

Message Meaning

cannot open filename

The file indicated by the variable
"filename®™ cannot be opened because the
filename or the drive code is incorrect.
Check the drive code and the filename
before you reenter the command line.

invalid option flag: X

The symbol, letter, or number in the
command line indicated by the variable "x"
is an invalid option. Refer to the
section of this manual on AR68 for an
explanation of the command line optionms.
Specify a valid option and reenter the
command line.

not archive format: filename

The file indicated by the variable
"filename®™ is not a library. Ensure that {
you are using the correct filename before
you reenter the command line.

not object file: filename

The file indicated by the variable
*"filename®™ is not an object file, and
cannot be added to the library. Any file
added to the library must be an object
file, output by the assembler, AS68, or
the compiler. Assemble or compile the
file before you reenter the AR68 command
line.

one and only one of DRTWX flags required

The AR68 command line requires one of the
D, R, T, W, or X commands, but not more
than one. Reenter the command line with ’
the correct command. Refer to the section x
of this manual on AR68 for an explanation
of the AR68 commands.

AL) Irformation Prasented Here .s Proprietarv te Digital Research

c e m— o ——————— e i o e e s e e s [ot e e ooty v e = A o e i % e o s o

P
\

~,

p—ag

CP/M-68K Programmer's Guide E.1 AR68 Error Messages

Table E-~1. (continued)

Message Meaning

filename not in library

The object module indicated by the
variable "filename” is not in the library. _
Ensure that you are requesting the
filename of an existing object module
before you reenter the command line.

Read error on filename

The file indicated by the variable
"filename” cannot be read. This message
means one of three things: the file
listed at "filename” is corrupted; a
hardware error has occurred; or when the
file was created, it was not correctly
written by AR68 due to an error in the
internal logic of AR68.

Cold start the system and retry the
operation. If you receive this error
message again, you must erase and recreate
the file. Use your backup file, if you
maintained one. If the error. reoccurs,
check for a hardware error. If the error
persists, contact the-place you purchased
your system for assistance. You should
provide the following information:

® Indicate which version of the operating
system you are using.

® Describe your system's hardware
configuration.

® Provide sufficient information to
reproduce the error. Indicate which
program was running at the time the
error occurred. If possible, you
should also provide a disk with a copy
of the program.

temp file write error

The disk to which AR68 was writing the
temporary file is full. Erase unnecessary
files, if any, or insert a new disk before
you reenter the command line.

All

Informaticn 2rasented .-

[
1}
"
®
]
u
[V}
[a]
[®)
‘g
~
]
17
{1
1]
[}
ir
O
@)
'J
[V ¥}
14
ot
| #]
t
wJ
1}
un
1)
fu
re
QO
o3

159

CP/M-68K Programmer's Guide E.1 AR68 Error Messages

Table E-1l. (continued)

Message Meaning

usage: AR68 DRTWX{AV][F D:] [OPMOD] ARCHIVE OBMOD1l (OBMOD2...]) [>filespec]

This message indicates a syntax error in
the command line. The correct format for
the command line is given, with the
possible options in brackets. Refer to
the section in this manual on AR68 for a

more detailed explanation of the command
line.

Write error on filename

The disk to which AR68 is writing the file
indicated by the variable “filename" is
full. Erase unnecessary files, if any, or

insert a new disk before you reenter the
command line.

E.1l.2 AR68 Internal Logic Error Messages

This section lists messages indicating fatal errors in the
internal logic of AR68. If you receive one of these messages,
contact the place you purchased your system for assistance. You
should provide the following information:

1) Indicate which version of the operating system you are
using.
2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

cannot reopen filename

seek error on library

Seek error on tempname

Unable to re-create--library is in filename

Note: for the above error, "Unable to re-create--library is in
filename,” you should rename the temporary file indicated by the
variable "filename.® AR68 used the library to create the temporary

file and then deleted the library in order to replace it with the
updated temporary file. This error occurred because AR68 cannot

e e g v s+ s e e

R

C?/M-68K Programmer's Guide E.1 AR68 Error Messages

write the temporary f£ile back to the original location. The entire
library is in the temporary file.

E.2 AS68 Error Messages

The CP/M-68K assembler, AS68, returns both nonfatal, diagnostic
error messages and fatal error messages. Fatal errors stop the
assembly of your program. There are two types of fatal errors:
user-recoverable fatal errors and fatal errors in the internal logic
of AS68.

E.2.1 AS68 Diagnostic Error Messages

Diagnostic messages report errors in the syntax and context of
the program being assembled without interrupting assembly. Refer to
the Motorola 16-Bit Microprocessor User's Manual for a full
discussion of the assembly language syntax.

Diagnostic error messages appear in the following format:

& line no. error message text

The ampersand (&) indicates that the message comes from AS68. The
"line no." indicates the line in the source code where the error
occurred. The "error message text"™ describes the error. Diagnostic
error messages are printed at the console after assembly, followed
by a message indicating the total number of errors. In a printout,
they are printed on the 1line preceding the error. The AS68
diagnostic error messages are listed below in alphabetic order.

Table E-2. AS68 Diagnostic Error Messages

Message Meaning

& line no. backward assignment to *

The assignment statement in the line
indicated illegally assigns the location
counter (*) backward. Change the location
counter to a forward assignment and
reassemble the source file. /

& line no. bad use of symbol

A symbol in the source line indicated has
been defined as both global and common. A
symbol can be either global or common, but
not both. Delete one of the directives
and reassemble the source file. -

All In: ar7 Iz Jizizcal Research

(&1
0]
21
3]
[V
(44
'l
0
o)
(V]
(]
(1]
n
1]
o
or
[
o}
13}
®
[a}
14
[4

1)
'y
"
O
8
n
)

v
Y

161

B L ———

Ccp/M-68K Programmer's Guide E.2 AS68 Error Messages

Table E-2. (continued)

Message Meaning

& line no. constant required

An expression on the line indicated
requires a constant. Supply a constant
and reassemble the source file.

& line no. end statement not at end of source

The end statement must be at the end of
the source code. The end statement cannot
be followed by a comment or more than one
carriage return. Place the end statement
at the end of the source code, followed by
a single carriage return “only, and
reassemble the source file.

& line no. illegal addressing mode

The instruction on the line indicated has

an invalid addressing mode. ‘Provide a

valid addressing mode and reassemble the
- . source file.

& line no. illegal constant

The line indicated contains an illegal
constant. Supply a valiad constant and
reassemble the source file.

& line no. illegal expr

The line indicated contains an illegal
expression. Correct the expression and
reassemble the source file.

& line no. illegal external

The line indicated illegally contains an
external reference to an 8-bit guantity.
Rewrite the source code to define the
reference locally or use a l6-bit
reference and reassemble the source file.

VR

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

Table E-2. (continued)

Message Meaning

& line no. 1illegal format

An expression or instruction in the line
indicated is illegally formatted. Examine
the line. Reformat where necessary and
reassemble the source file.

& line no. illegal index register

The line indicated contains an invalid
index register. Supply a valid reglster
and reassemble the source file. '

& line no. 1illegal relative address

An addressmg mode spec:.fied is not valid
for the instruction in the line indicated.

Refer to the Motorola 16-Bit
Micr_o_gtocessor User's Manual for valid
register modes for the specified
instruction. Rewrite the source code to
C use a valid mode and reassemble the file.

& line no. 1illegal shift count

The instruction in the line indicated
shifts a quantity more than 31 times.
Modify the source code to correct the
error and reassemble the source file.

& line no. illegal size .
The instruction in the line indicated
requires one of the following three size
specifications: b (byte), w (word), or 1
(longword) . Supply the correct size
specification and reassemble the source
file.

C & line no. illegal string

The line indicated contains an illegal
. string. Examine the line. Correct the
string and reassemble the source file.

\

All Information Presentad Here is Proprietary to Digital Research

163

CP/M—-68K Programmer's Guide

wable E-2. {(continued)

Message

Meaning

& line no.

illegal text delimiter

The text delimiter in the line indicated
is in the wrong format. Use single quotes
(*text') or double guotes ("text®") to
delimit the text and reassemble the source
file.

& line no.

illegal 8-bit displacement

The line indicated illegally contains a
displacement larger than 8-bits. Modify
the code and reassemble the source file.

& line no.

illegal 8-bit immediate

The line indicated illegally contains an
immediate operand larger than 8~bits. Use
the 16- or 32-bit form of the instruction
and reassemble the source file.

& line no.

illegal 16-bit displacement

The line indicated illegally contains a
displacement larger than l6-bits. Modify
the code and reassemble the source file.

line no.

f

illegal 16-bit immediate

The line indicated illegally contains an
immediate operand larger than l6-bits.
Use the 32-bit form of the instruction and
reassemble the source file. '

& line no.

invalid data 1list

One or more entries in the data list in
the line indicated is invalid. Examine
the line for the invalid entry. Replace
it with a valid entry and reassemble the
source file. '

E.Z2 ASb8 Error Messages

)

CP/M-68K Programmer's Guide

Table E~2. (continued)

Message

Meaning

& line no.

invalid first operand

The first operand in an expression in the
line indicated is invalid. Supply a valid
operand and reassemble the source file.

& line no.

invalid instruction length

The instruction in the 1line indicated
requires one of the following three size
specifications: b (byte), w (word), or 1
(longword). Supply the correct size
specification and reassemble the source
file.

& line no.

invalid label

A required operand is not present in the
line indicated, or a label reference in
the line is not in the correct format.
Supply a valid label and reassemble the
source file. . : L

& line no.

invalid opcode

The opcode in the line indicated is
nonexistent or invalid. Supply a valid
opcode and reassemble the source file.

& line no.

invalid second operand

The second operand in an expression in the
line indicated is invalid. Supply a valid
operand and reassemble the source file.

& line no.

label redefined

This message indicates that a label has
been defined twice. The second definition
occurs in the line indicated. Rewrite the
source code to specify a unique label for
each definition and reassemble the source
file.

All Information Presented Here is Provrietary o Digital Research

165

E.2 AS68 Error Messages

CP/M-68K Programmer's Guide E.2 AS5b8 Error messages

Table E-2. {continued)

Message Meaning

& line no. missing)

An expression in the line indicated is
missing a right parenthesis. Supply the
missing parenthesis and reassemble the
source file.

& line no. no label for operand

An operand in the 1line indicated is
missing a 1label. Supply a label and
reassemble the source file.

& line no. opcode redefined

A label in the line indicated has the same
mnemonics as a previously specified
opcode. Respecify the label so that it
does not have the same spelling as the
mnemonic for the opcode. Reassemble the
source file.

& line no. register required

The instruction in the line indicated
requires either a source or destination
register. Supply the appropriate register
and reassemble the source file.

& line no. relocation error

An expression in the line indicated
contains more than one externally defined
global symbol. Rewrite the source code.
Either make one of the externally defined
global symbols a local symbol, or evaluate
the expression within the code.
Reassemble the source file.

& line no. symbol required

A statement in the line indicated requires
a symbol. Supply a valid symbol and
reassemble the source file.

™

St LR

=/t won riuyiLawmer s Gulae E.2 AS68 Error Messages

Table E-2. (continued)

Message ~ Meaning

& line no. undefined symbol in equate -

One of the symbols in the equate directive
in the 1line indicated is undefined.
Define the symbol and reassemble the
source file.

& line no. undefined symbol

The line indicated contains an undefined
symbol that has not been declared global.
Either define the symbol within the module
or define it as a global symbol and
reassemble the source file.

E.2.2 User-recoverable Fatal Error Messages

Described below are the fatal error messages for AS68. When an
érror occurs because the disk is full, AS68 creates a partial file.

You should erase the partial file to ensure that you do not try to
link it. :

Table E~3. User-recoverable Fatal Error Messages

Message Meaning

& cannot create init: AS68SYMB.DAT

AS68 cannot create the initialization file
because the drive code is incorrect or the
disk to which it was writing the file is
full. If you used the =-S switch to
redirect the symbol table to another disk,
check the drive code. If it is correct,
the disk is full. Erase unnecessary
files, if any, or insert a new disk before
you reinitialize AS68. Erase the partial
file that was created on the full disk to
ensure that you do not try to link it.

& expr opstk overflow

An expression in the 1line indicated
contains too many operations for the
operations stack. Simplify the expression
before you reassemble the source code.

-

All Infcrmation Presented Here is 2ropriestary “o Digital Research

167

e e e e U ——

-—— -- - e w g e —————— o~ —— o w o SO WY Adle e Ph VAL OUDUY SO

Table E-3. (continued)

Message Meaning

& expr tree overflow

The expression tree does not have space
for the number of terms in one of the
expressions in the indicated line of
source code. Rewrite the expression to
use fewer terms before you reassemble the
source file.

& I/0 error on loader output file

The disk to which AS68 was writing the
loader output file is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk and reassemble
the source file. Erase the partial file
that was created on the full disk to
ensure that you do not try to link it.

& 1/0 write error on it file

The disk to which AS68 was writing the o
intermediate text file is full. AS68
wrote a partial file. Erase unnecessary
files, if any, or insert a new disk and
reassemble the source file. Erase the
partial file that was created on the full
disk to ensure that you do not try to link
it.

& it read error itoffset= no.

The disk to which AS68 was writing the
intermediate text file is full. ASé68
wrote a partial file. The variable

* "Itoffset= no." indicates the first zero-
relative byte number not read. Erase
unnecessary files, if any, or insert a new
disk and reassemble the source file.
Erase the partial file that was created on
the full disk to ensure that you do not
try to link it.

)

-~

11 Infermation Presented Here 1c Proprietary to Digital Research

l68

Lf/m—uon rrogrammer s Gulde E.2 AS68 Error Messages

Table E~3. (continued)

Message Meaning

& Object file write error

The disk to which AS68 was writing the
object file is full. AS68 wrote a partial
file. Erase unnecessary files, if any, or
. insert a new disk and reassemble the
source file. Erase the partial file that
was created on the full disk to ensure
that you do not try to link it.

& line no. overflow of external table

The source code uses too many externally
defined global symbols for the size of the
external symbol table. Eliminate some
externally defined global symbols and
reassemble the source file.

& Read Error On Intermediate File: ASXXXXn

The disk to which AS68 was writing the
intermediate text file ASXXXX is full.
- AS68 wrote a partial file. The variable
"n" indicates the drive on which ASXXXX is
- located. Erase unnecessary files, if any,
or insert a new disk and reassemble the
source file. Erase the partial file that
was created on the full disk to ensur
that you do not try to link it. ‘

& symbol table overflow

The program uses too many symbols for the
symbol table. Eliminate some symbols
before you reassemble the source code.

& Unable to open file filename

The source filename indicated by the
variable *filename®™ is invalid or, has an
invalid drive code or user number. Check
the filename, drive code, and user number.
Respecify the command line before you
réeassemble the source file.

All Information Presented Sere is frooristary %o Digital Research

169

CP/M-68K Programmer's Guide

Table E-3. (continued)

E.2 AS68 Error Messages

Message

Meaning

&

Unable to open input file

The filename in the command line indicated
does not exist, or, has an invalid drive
code or user number. Check the filename,
drive code, and user number. Respecify
the command line before you reassemble the
source file.

Unable to open temporary file

Invalid drive code or the disk to which
AS68 was writing is full. Check the drive
code. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert
a new disk before you reassemble the
source file.

Unable to read init file: AS68SYMB.DAT

The drive code or user number used to
specify the initialization file is invalid
or the assembler has not been initialized.
Check the drive code and user number.
Respecify the command line before you
reassemble the source file. If the
assembler has not been initialized, refer
to the section in this manual on AS68 for
instructions.

P

&

Write error

on init file: AS68SYMB.DAT

The disk to which AS68 was writing the
initialization file is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk and reassemble
the source file. Erase the partial file
that was created on the full disk to
ensure that you do not try to link it.

&

write error

on it file

The disk to which AS68 was writing the
intermediate text is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk. Erase the
partial file that was created on the full
disk to ensure that you do not try to link
it. Reassemble the source file.

m

e e - ety | om e s mme s

~forma-.on Presented Here 15 Proprietary to Di

18}

ital Research

)

()

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

BE.2.3 AS68 Internal Logic Error Messaqges

This section lists messages indicating fatal errors in the
internal logic of AS68. If you receive one of these messages,
contact the place you purchased your system for assistance. You
should provide the information below.

1) Indicate which version of the operating system you are
using.

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

Errors:

& doitrd: buffer botch pitix=nnn itbuf=nnn end=nnn

& doitwr: it buffer botch

& invalid radix in oconst

& 1i.t. overflow

& it sync error itty=nnn

& seek error on it file

& outword: bad rlflg

E.3 BDOS Error Messages

The CP/M-68K Basic Disk Operating System, BDOS, returns fatal
error messages at the console. The BDOS error messages are listed
below in alphabetic order with explanations and suggested user
responses.

All Infcrmation 2Prasencza

[o!
1l
(]
"
1]
-
w0
'
"
Q
'g
"
’—A
1]
ct
w
Lo
e
(34
O
(9
"
S
+
ot
[¥]
b
v
n
1]
W
re
Q
oy

CP/M-68K Programmer's Guide E.3 BDOS Error Messages

Table E—-4. BDOS Error Messages

Message Meaning

CP/M Disk change error on drive x

The disk in the drive indicated by the
variable ®"x" is not the same disk the
system logged in previously. When the
disk was replaced you did not enter a
CTRL-C to 1log in the current disk.
Therefore, when you attempted to write to,
erase, or rename a file on the current
disk, the BDOS set the drive status to
read-only and warm booted the system. The
current disk in the drive was not
overwritten. The drive status was
returned to read-write when the system was
warm booted. Each time a disk is changed,
you must type a CTRL-C to log in the new
disk.

CP/M Disk file error: filename is Read-Only.
Do you want to: Change it to read/write (C),
or Abort (A)?

You attempted to write to, erase, or
rename a file whose status is Read-Only.
Specify one of the options enclosed in
parentheses. If you specify the C option,
the BDOS changes the status of the file to
read-write and continues the operation.
The read-only protection previously
assigned to the file is lost.

If you specify the A option or a
CTRL~C, the program terminates and CPM-68K
returns the system prompt.

CP/M Disk read error on drive x
Do you want to: Abort (A), Retry (R), or Continue
with bad data (C)?2

BDOS. This message indicates a hardware
error. Specify- one of the options
enclosed in parentheses. Each option is
described below.

-

All Infcrmation Presented Here 1s Proprietary to Digital Research

172

Y

®

CP/M-68K Programmer's Guide E.3 BDOS Errcr Messages

Table E-4. (continued)

Message Meaning

Option Action

A or CTRL~C Terminates the operation and
CP/M-68K returns the system

prompt.

R Retries the operation. 1If
the retry fails, the system
reprompts with the option
message.

Cc Ignores the error and
continues program
execution. Be careful if
yYyou use this option.
Program execution should
not be continued for some
types of programs. For
example, if you are
updating a data base and
receive this error but
continue program execution,
you can corrupt the index
fields and the entire data
base. For other programs,
continuing program
execution is recommended.
For example, when you
transfer a long text file
and receive an error
because one sector is bad,
you can continue
transferring the file.
After the file 1is
transferred, review the
file, and add the data that
was not transferred due to
the bad sector.

CP/M Disk write error on drive x
Do you want to: Abort (A), Retry (R), or
Continue with bad data (C)?

BDOS. This message indicates a hardware
error. Specify one of the options
enclosed in parentheses. Each option is
described below.

All Information Presented Here is Proprietary to Digital Research

173

e et e e~ s

CP/M-68K Programmer's Guide

E.3 BDOS Error Messages

Table E-4. (continued)

Message Meaning

Option Action

A or CTRI-C Terminates the operation and
CP/M-68K returns the system

prompt.

R Retries the operation. 1If

. the retry fails, the system
reprompts with the option
message.

(o Ignores the error and
continues progranm
execution. Be careful if
you use this option.
Program execution should
not be continued for some
types of programs. For
example, if you are
updating a data base and
receive this error but
continue program execution,
you can corrupt the index
fields and the entire data

- base. For other programs,-
continuing program
execution is recommended.
For example, when you
transfer a long text file
and receive an error
because one sector is bad,
you can continue
transferring the file.
After the file \is
transferred, review the
file, and add the data that
was not transferred due to
the bad sector.

CP/M Disk select error on drive x
Do you want to: Abort (A), Retry (R)

There is no disk in the drive or the disk
is not inserted correctly. Ensure that
the disk is securely inserted in the
drive. If you enter the R option, the
system retries the operation. If you
enter the A option or CTRL-C the program
terminates and CPM-68K returns the system

prompt.

-9 2
Ha o

Iinformation Cresented Here 1is Proprietarv to Digitzl Research
- -

174

e e e e e -

&

CP/M-68K Programmer's Guide E.3 BDOS Error Messages

Table E-4. (continued)

Message Meaning

CP/M Disk select error on drive x

The disk selected in the command line is
outside the range A through P. CP/M-$8K
can support up to 16 drives, lettered A
through P. Check the documentation
provided by the manufacturer to find out
which drives your particular system
configuration supports. Specify the
correct drive code and reenter the command
line.

E.4 BIOS Error Messages

The CP/M-68K BIOS error messages are listed below in alphabetic
order with explanations and suggested user responses.

Table E-5. BIOS Error Messages

Message Meaning

C g BIOS ERROR -- DISK X NOT SUPPORTED

The disk drive indicated by the variable
"X" is not supported by the BIOS. The
BDOS supports a maximum of 16 drives,
lettered A through P. Check the
manufacturer's documentation for your
system configuration to find out which of
the BDOS drives your BIOS implements.
Specify the correct drive code and reenter
the command line.

BIOS ERROR -- Invalid Disk Status

The disk controller returned unexpected or
incomprehensible information to the BIOS.
Retry the operation. If the error
persists, check the hardware. If the
error does not come from the hardware, it
is caused by an error in the internal
- logic of the BIOS. Contact the place you
C purchased your system for assistance. You
should provide the information below.

All Information Presented Here is Proprietary to Digital Research

175

[PPSO

CP/M-68K Programmer's Guide E.4 BIOS Error Messages

Table E-5. (continued)

Message

Meaning

1) Indicate which version of the operating
system you are using.

2) Describe your system's hardware
configuration.

3) Provide sufficient information to
reproduce the error. Indicate which
program was running at the time the
error occurred. If possible, you
should also provide a disk with a copy
of the progranm.

E.5 CCP Error Messages

of error messages at the console:

The CP/M-68K Console Command Processor, CCP, returns two types
diagnostic and internal logic

error messages.

E.5.1 Diagnostic Error Messages

The CCP error messages are listed below in alphabetic order

with explanations and suggested user responses.

Table E-6. CCP Diagnostic Error Messages

-

Message

Meaning

bad relocation

information bits

This message is a result of a BDOS Program
Load Function (59) error. It indicates
that the file specified in the command
line is not a valid executable command
file, or that the file has been corrupted.
Ensure that the file is a command file.
Section 3 of this manual describes the
format of a command file. If the file has
been corrupted, reassemble, or recompile
the source file, and relink the file
before you reenter the command line.

""\\

CP/M-68K Programmer's Guide E.5 CCP Error ﬁ:ésages

Table E-6. (continued)

Message Meaning

File already exists

This error occurs during a REN command.
The name specified in the command line as
the new filename already exists. Use the
ERA command to delete the existing file if
you wish to replace it with the new file.
If not, select another filename and
reenter the REN command line.

insufficient memory or bad file header

This error could result from one of three
causes:

1) The file is not a valid executable
command file. Ensure that you are
requesting the correct file. This
eérror can occur when you enter the
filename before you enter the command
for a utility. Check the appropriate
section of this manual or the CP/M=-68K

ting System User's Guide for the
correct command syntax before you
reenter the command line. If you are
trying to run a program when this
error occurs, the program file may
have been corrupted. Reassemble or
recompile the source file and relink
the file before you reenter the
command line.

2) The program is too large for the
available memory. Add more memory
boards to the system configuration, or
rewrite the program to use less
memory. .

3) The program is linked to an absolute
location in memory that cannot be
used. The program must be made
relocatable, or linked to a usable
memory location. The BDOS Get/Set TPA
Limits Punction (63) returns the high
and low boundaries of the memory space
that is available for loading
programs.

All Information Presented Here is Proprietary to Digital Research

177

CP/M-68K Programmer's Guide

E.5 CCP BError messages

Table E-G. (continued)

Message Meaning

No file

The filename specified in the command line
does not exist. Ensure that you use the
correct filename and reenter the command
line.

No wildcard filenames

The command specified in the command line
does not accept wildcards in file
specifications. Retype the command line
using a specific filename.

read error on program load

This message indicates a premature end-of-
file. The file is smaller than the header
in formation indicates. Either the file
header has been corrupted or the file was
only partially written. Reassemble, Or
recompile the source file, and relink the
file before you reenter the command line.

SuB file not found

The file requested either does not exist,
or does not have a filetype of SUB.
Ensure that you are requesting the correct
file. Refer to the section on SUBMIT in
the CP/M~-68K gerating System User's Guide
for information on creating and using
submit files.

Ssyntax: REN newfile=oldfile

The syntax of the REN command line is
incorrect. The correct syntax is given in
the error message. Enter the REN command
followed by a space, then the new
filename, followed immediately by an
equals sign (=) and the name of the file
you want to rename.

+
ja
’—
O
]
H
ot
yl
o]
[
‘g
r
11
0
(D
o |
ot
M
(o))
at
(1]
La]
1)
}.J
n
rd
"
0]
&}
"
H
M
B
(3]
o
ot
(e]
o
[WH
Vo]
...‘.
ct
W
Pt
v
wn
M
oY)
(a1
Q
o

.~

7™

CP/M-68K Programmer's Guide E.5 CCP Error Messages

Table E-6. (continued)

Message Meaning

Too many arguments: argument?

The command line contains too many
arguments. The extraneous arguments are
indicated by the variable "argument."
Refer to the CP/M-68K Operating System
User's Guide for the correct syntax for
the command. Specify only as many
arguments as the command syntax allows and
reenter the command line. Use a second
command line for the remaining arguments,
if appropriate.

User # range is [0-15]

The user number specified in the command
line is not supported by the BIOS. The
valid range is enclosed in the square
brackets in the error message. Specify a
user number between 0 and 15 (decimal)
when you reenter the command line.

)

E.5.2 CCP Internal Logic Error Messages

The following message indicates an undefined failure of the
BDOS Program Load Function (59).

Program Load Error
If you receive this message, contact the place you purchased your
system for assistance. You should provide the information below.
1) Indicate which version of the operating system you are
using. .
2) Describe your system's hardware configuration.
3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

()

etary to Digital Research

P

All Informacion Presentad Here is Proor

179

e .- vy —

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

E.6 DDT-68K Error Messages
The CP/M-68K debugger, DDT-68K, returns two types of error

messages: nonfatal diagnostic error messages and fatal errors in the
internal logic of DDT-68K.

E.6.1 Diagnostic Error Messages
Diagnostic error messages are returned at the console as the

error occurs., The DDT-68K error messages are listed below in
alphabetic order with explanations and suggested user responses.

Table E-7. DDT-68K Diagnostic Error Messages

Message Mean ing

Bad or nonexistent RAM at HEX no.

This error occurs in response to a Set
(S), Set Wword (SW), or Set Longword (SL)
command. The message indicates one of two
things.

"1) The memory location at "HEX no." is
read-only, an I/0 port, or
nonexistent. Use another location.

2) The memory location is damaged. Check
the hardware.

Bad relocation bits

This message is returned from the BDOS
Program Load Function (59), and means one
of two things:

l) The command file has been corrupted.
Rebuild the file. Reassemble or
recompile the source file, and relink
the file before you reenter the DDT-
68K command line. :

h g £ - - =y - - 3 . - 3
All Information Presented Hers 1s Propriecary tc Digital Research

- - - § = ——— - -— ——— —- - - — - Twes e w wm cow Yy W

Table B-7. (continued)

Message Meaning

2) The file is linked to an absolute
location ih memory that is already
occupied by DDT-68K. Link the file to
another location: DDT-68K occupies
approximately 20K of memory, and
resides at the highest addresses
within the TPA. The recommended
location for linking your file is the
base address of the TPA + 100E. BDOS
Function 63, Get/Set TPA Limits,
returns the high and low boundaries of
the TPA. '

Cannot create file

This error occurs during a Write (W)
command. The disk to which DDT-68K is
writing has no more directory space
available: in effect, the disk is full.
If you have another drive available,
reenter the Write (W) command and direct
the file to the disk on that drive. 1If
you do not have another drive available,
you must exit DDT-68K (and lose the
contents of memory). Erase unnecessary
files, if any, or insert a new disk.

Cannot open file

This error occurs during a Read (R)
command. It indicates an incorrect user
number, drive code, or filename. Check
the user number, drive code, and filename
before you reenter the command line.

Cannot open program file

This message occurs in response to a Load
for Execution (E) command. It indicates
an incorrect user number, drive code, or
filename. Check the user number, drive
code, and filename before you reenter the
command line.

All Information 2resentad Here 15 Proorietary to Digital Research

181

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E~-7. (continued)

Message Meaning

ERROR, no program or file loaded

This error message occurs in response to a
Value (V) command when you specify the
command but no file is loaded. Load a
file before you reenter the V command.
The file can be loaded with a ILoad for
Execution (E) or Read (R) command, or by
specifying the filename when you invoke
DDT-68K.

File too big -- read truncated

This message occurs during a Read (R)
command when the file being read is too
large to fit in memory. DDT-68K reads
only the portion of the file that can be
read into the existing memory. To debug
this program, additional memory boards
must be added to the system configuration.

File write error

The disk to which DDT-68K is writing is
full or the disk contains a bad sector.
Retry the command. If the error persists,
and you have another disk drive available,
redirect the output to the disk on that
drive. If you do not have another drive
available, you must exit DDT-68K. Use the
STAT command to check the space on the
disk. If it is full, erase unnecessary
files, if any, or insert a new disk.
Because the contents of memory are lost
when you exit DDT-68K, you must reload the
file in memory. If the disk was not full,
it has a bad sector. You should replace
the disk.

A1l Information Presented

Y

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

**jllegal size field -

, This error occurs during a List (L)
- command. The size field of the
instruction being disassembled has an
illegal value. Use a Display (D) command
to display the location of the error.
This error could be caused by one of three
things:

1) The memory location being disassembled
does not contain an instruction.
Ensure that the area selected is an
instruction. If not, reenter the L

. command with a correct location.

2) The size field of the instruction has
been corrupted. Use the debugging
commands in DDT-68K to look for an
error that causes the program to
overwrite itself. Refer to the
section in this manual on DDT-68K for
a complete description of the DDT-68K

C. commands and options.

3) An invalid instruction was generated by
the compiler or assembler used to
create the progranm. Recompile or
reassemble the source file before you
reinvoke DDT-68K.

Insufficient memory or bad file header

This message occurs in response to a Load
for Execution (E) command. The error
could be caused by one of three things:

)

All Information Presented Here is Proprisctary Lo Jigital Research

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E~7. (continued)

Message Meaning

1) The system you are using does not have
enough memory available. Ensure that
the program and DDT-68K £it into the
TPA. Exit DDT-68K. Use the SIZE68
Utility to display the amount of space
your program occupies in memory. DDT-
68K is approximately 20K bytes. The
BDOS Get/Set TPA Limits FPunction (63)
returns the high and low boundaries of
the TPA. If you do not have
sufficient space in the TPA to execute
your command £file and DDT-68K
simultaneously, additional memory
boards must be added to the system
configuration.

2) The file is not a command file or has a
corrupted header. If the command file
does not run, but you are sure that
your memory space is adequate, use the
R command to look at the file and
check the format. You may be trying
to debug a file that is not a command
file. If it is a command file, the

header may have been corrupted.
Reassemble or recompile the source
file before you reenter the E command
line. If the error persists, it may
be caused by an error in the internal
logic of DDT-68K. Contact the place
you purchased your system for
assistance. You should provide the
information below. o

7N

a. Indicate which version of the
operating system you are using.

b. Describe your system's hardware
configuration.

c. Provide sufficient information to
reproduce the error. Indicate
which program was running at the
time the error occurred. If
possible, you should also provide a
disk with a copy of the program.

VN

All Informac.on Presented Here ic Proprietarcy to Digital Research

184

s ——— i e minn o o ———— -

O

CP/M-68K Programmer's Guide

Table E-7. (coantinued)

E.6 DDT-68K Error Messages

Message

Meaning

3) The command file you are debugging is
linked to an absolute location in
memory that is already occupied by
DDT-68K. DDT-68K is approximately 20K
bytes, and usually resides in the
highest addresses of the TPA. The
recommended location for linking your
file is the base address of the TPA +
100H. The BDOS Get/Set TPA Limits
Function (63) returns the high and low
boundaries of the TPA. '

Read error

This message may indicate one of three
things. Try the operation again. If the
error persists, try the responses
indicated:

‘1) A write error at the time the file was

Created. You must recreate the file.
If the error reoccurs, or if you
cannot write to the disk, the disk is
bad. ’ '

- 2) A bad disk. Use PIP or COPY to copy

the file from the bad disk to a new
disk. Any files that cannot be copied
must be recreated or replaced from
backup files. Discard the damaged
disk.

3) A hardware error. If the error
persists, check' your hardware.

unknown opcode

This error occurs in response to a List
(L) command if the memory location being
disassembled does not contain a valid
instruction. The error may have been
caused by one of three things:

185

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

1) You gave the L command the wrong
address. Reenter the L command with
the correct address. ’

2) The file is not a command file. Ensure
that the file you specify is a command
file and reenter the L command.

3) The command file has been corrupted.
Reassemble or recompile the source
file before you reread it into memory
with a Load for Execution (E) or Read
(R) command, as appropriate. If the
problem persists, use the debugging
commands in DDT-68K to look for an
error in the program that causes it to
overwrite itself. Refer to the
section in this manual on DDT-68K for
a complete description of the DDT-68K
commands and options.

B.6.2 DDT-68K Intermal Logic Error Messages
This section lists fatal errors in the internal logic of DDT-
68K. If you receive one of these messages, contact the place you

purchased your system for assistance. You should provide the
information below.

1) Indicate which version of the operating system you are
using. .

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

Errors:

illegallinstruction format #

Unknown program load error

LY 1 T & - T 5 ; 3 iy
1l Iinformecion Pressnted Here it Proprietary to Digital Research

LN

9

&

CP/M-68K Programmer's Guide E.7 DUMP Error Messages

E.7 DUMP Error Messages
DUMP returns fatal, diagnostic error messages at the console.

The DUMP error messages are listed below in alphabetic order with
explanations and suggested user responses.

Table E-3. DUMP Error Messages

Me ssage Meaning

Unable to open filename

Either the drive code for the input file
indicated by the variable "filename"™ is
incorrect, or the filename is misspelled.
Check the filename and drive code before
You reenter the DUMP command line.

Usage: dump [-shhhhhh] file

The command line syntax is incorrect. The
- correct syntax is given in the error
message. Specify the DUMP command and the
- filename. - If -you want to ‘display the
contents of the file from a specific
address in the file, specify the =S option
followed by the address. Refer to the
section in-this manual on the DUMP Utility
for a discussion of the DUMP command line

and options.

E.8 LO68 Error Messages

The CP/M-68K Linker, LO68, returns two types of fatal error
messages: diagnostic and logic. Both types of fatal error messages
have the following format:

¢ error message text

The colon (:) indicates that the error message comes from LO68. The
"error message text" describes the error.

E.8.1 Fatal Diagnostic Error Messages

A fatal diagnostic error prevents your program from linking.
When the error is caused by a full disk, erase the partial file that
LO68 created on the disk that received the error to ensure that you
do not use the file. The LO68 diagnostic errors are listed below in
alphabetic order with explanations and suggested user responses.

All Information Presented Zere is Preoprietary =o Jigital Research

187

< ——————r— o —

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

eable E-9. LO68 Fatal piagnostic Error Messages

Message Meaning

: duplicate definition in p,filename

The symbol indicated by the variable "p"
is defined twice. The variable "filename”
indicates the file in which the second
definition occurred. Rewrite the source
code. Provide a unique definition for
each symbol and reassemble or recompile
the source code before Yyou relink the
file.

(1]

file format error: filename

The file indicated by the variable
"filename" is either not an object file or
the file has been corrupted. Ensure that
the file is an object file, output by the
assembler or compiler. Reassemble oOr
recompile the file before you relink it.

(1]

Filg Format Error: Invalid symbol flags = flags

LO68 does not recognize the symbol flags
indicated by the variable "flags." The
file 1068 read is either not an object
file or it has been corrupted. Ensure
that the file is an object file, output by
the assembler or compiler. Reassemble or
recompile the file before you relink it.

: File Format Error: jnvalid relocation flag in filename

The contents of the file indicated by the
variable "filename®" are incorrectly
formatted. The file either is not an
object file or has been corrupted. Ensure
that the file is an object file, output by
the assembler or compiler. If the file is
an object file but this error occurs, the
file has been corrupted. Reassemble oOr
recompile the file before you relink it.

All Information presentel Here

.l
0w
rd
(R
[¢)
g
"
[
(1]
(1
fv
[a]

1]
or
(@]
(W)
(¥
1
[X3
(R}
fv
' '
i
n
(1]
[}
(A
0N
¥y

13

188

o o————— o — v

@

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

Table E-3. (continued)

Message Meaning

: File Format Error: no relocation bits in filename

The file indicated by the variable
"filename"” either is not an object file or
has been corrupted. Ensure that the file
is an object file, output by the assembler
or compiler. If the file is an object
file but this error occurs, then the file
has been corrupted. Reassemble or
recompile the file before you relink it.

: Illegal option p

The option in the command line indicated
by the variable "p” is invalid. Supply a
valid option and relink.

Invalid 1068 argument list |

This message indicates format errors or
invalid options in the command line.
Examine the command line to locate the
error. Correct the error and relink.

: output file write error

The disk to which LO68 is writing is full.
Erase unnecessary files, if any, or insert
a new disk before you reenter the LO68
command line.

read error on file: filename

The object file indicated by the variable
"filename," does not have enough bytes.
The file either is incorrectly formatted
or has been corrupted. This error is
commonly caused when the input to LO68 is
a partially assembled or compiled object
file. The assembler, AS68, and some
compilers create partial object files when
they receive the "disk full abor t®" message
while assembling or compiling a file.
Ensure that the file is a complete object
file. Reassemble or recompile the file
before you relink it.

All Information Presented Here is Propriectary to Digital Research

189

CP/M-bBK Programmer-s uliae . £.5 LUOS LIIOr messayes

Table E-9. {continued)

Message Meaning

: symbol table overflow

The object code contains too many symbols
for the size of the symbol table. Rewrite
the source code to use fewer symbols.
Reassemble or recompile the source code
before you relink the file.

Unable to create filename

Either the output file indicated by
“filename"” has an invalid drive code, or
the disk to which LO68 is writing is full.
Check the drive code. If it is correct,
the disk is full. Erase unnecessary
files, if any, or insert a new disk before
you reenter the 1068 command line.

unable to open filename

The filename indicated by the variable
"filename"” is invalid, or the file does
not exist. Check the filename before you
reenter the.LO68 command line.

Unable to open temporary file: filename

Either the file, indicated by *filename"”,
has an invalid drive code, specified by
the "f" option, or the disk to which LO68
is writing is full. Check the drive code.
If it is correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the 1068 command
line. .

: Undefined symbol(s)

The symbol or symbols which are listed one
per line on the lines following the error
message are undefined. Provide a valid
definition and reassemble the source code
before you reenter the LO68 command line.

7 "

()

CP?/M-68K Programmer's Guide

E.8 LO68 Error Messages

2.8.2 LO68 Internal Logic Error Messages

This section lists messages indicating fatal errors in the
internal logic of LO68. If you receive one of these messages,
contact the place you purchased your system for assistance. You

should
1)

2)
3)

Errors:

(1)

.
-

.
.

provide the information below.

Indicate which version of the operating system you are
using.

Describe your system's hardware configuration.
Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

asgnext botch

finalwr: text size error

relative address ove;flqwhat_lx in sn

seek error on file filename
short addréés overflow in filename

unable to reopen filename

BE.9 HNHM68 Error Messages

NM68 returns fatal diagnostic error messages at the console.
The NM68 error messages are listed below in alphabetic order with
explanations and suggested user responses.

Aill Incfcrmation Present2d Here i3 2ropriecarv o Digital Research

CP/M=-0BK Programmer's Guiae L.¥Y DNMOY LIIOI MEeSsages

Table E-10. RKM68 Error Messages

Message Meaning

file format error: filename

The input file indicated by the variable
"filename" is neither an object file nor a
command file. This message can also
indicate a corrupted file. NM68 prints
the symbol table of an object file or a
command file. Ensure that the file is one
of these types of file. If the file is an
object or command file and you receive
this message, the £file is corrupted.
Rebuild the file with the compiler or
assembler. If the file is a command file,
relink it. Reenter the NM68 command line.

read error on file: filename

The input file indicated by the variable
"filename" is truncated. Rebuild the file
with the compiler or assembler. If the
file is a command file, relink it.
Reenter the NM68 command line.

unable to open filename

The filename indicated by the variable
"filename"™ is incorrect. Check the
spelling of the filename and reenter the
command line.

Usage: nmé68 objectfile

The command line syntax is incorrect. Use
the syntax given in the error message and
reenter the command line.

E.10 RELOC Error Messages -

The Relocation Utility (RELOC) returns fatal error messages at
the console. RELOC error messages are listed below in alphabetic
order with explanations and suggested user responses. s

Paun

~ 3

All Information Presented

Lr/MmToon rrogrammer-s wulae k.LU RELOC Error Messages

Table E-11. RELOC Error Messages

Message Meaning

create filename

Either the drive code for the output file
indicated by the variable "filehame" is
incorrect, or the disk to which RELOC is
writing is full. Check the drive code.

. If it is correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the RELOC command
line. «

Cannot open filename

The input file indicated by the variable
“filename"” does not exist. Ensure that
you type the correct filename when you
reenter the RELOC command line.

Cannot re-open filename

This error message indicates a hardware
error. Check the hardware for errors.
This error most often occurs in the disk,
disk drive, or memory. :

File format error: filename

This error occurs because the first word
in the header record of the command file
must contain the value 601AH and the file
must contain relocation bits. If your
file does not meet these criteria, you
cannot use RELOC.

1) The file indicated by the variable
"filename” is not a command file with
contiguous program segments (the first
word in the header record is 601AH).
If the file is an object file, link it
before you reenter the RELOC command
line.

2) The file does not have relocation bits
because it is already linked to an
absolute location. Use the original
source file that contains relocation
bits with RELOC.

All
< el

Infcrnation Presented Fere I3 Propriezazy i3 Digital Research

193

- — e g < o S e m———

CP/M-68K Programmer's Guide E.10 RELOC Error Messages

Table E-11. {continued)

Message Meaning

Illegal base address=hex no.

The odd base address indicated by the
variable "hex no." is invalid under CP/M-
68K. Base addresses must be even.
Specify an even base address and reenter
the RELOC command line.

Illegal option: X

The option specified for the RELOC command
must be -b. The invalid option is
indicated by the variable "x". Replace
the invalid option with -b and reenter the,
RELOC command line.

Illegal reloc = x at address

This message may indicate one of two -
things:

1) The command file is truncated or
corrupted. RELOC recognized the error -
because the relocation value indicated
by the variable "x" is invalid. The
variable "address" indicates the
location in memory of the invalid
relocation value. Rebuild the file.
Reassemble, or recompile, and relink
the file before you reenter the RELOC
command line. ~

2) The file has no relocation bits. Use
the original source code with
relocation bits and try again.

Read error on filename

The input file indicated by the variable

"filename® is truncated or corrupted..
Rebuild the file. Reassemble, or

recompile, and relink the file before you -
reenter the RELOC command line.

CP/M-68K Programmer's Guide E.1l0 RELCC Error Messages

Table E-11. (continued)

Message Meaning

l6-bit overflow at address

L The address indicated by the variable
"address"™ cannot contain a l6-bit
quantity. Source code that uses 1l6-bit
offsets must fit in the first 64K bytes of
memory. BDOS Function 63, Get/Set TPA
Limits, returns the high and low
boundaries of -the memory available for
loading programs. SIZE68 displays the
amount of memory space a program occupies.
Use the Get/Set TPA Limits Function and
SIZE68 to ensure that the program fits in
the first 64K of memory. If the program
does not fit, you must rewrite the source
code to use 32-bit offsets.

Usage: reloc -bhhhhhh input output
-where: hhhhhh is new base address
input is relocatable file
output is absolute file

4 This message indicates a syntax error in
e the RELOC command line. The correct
syntax is given in the error message.
Retype the command line with the correct
syntax. Refer to the section in this
manual on the RELOC Utility for more
detailed information on the command line
syntax.

Write error on filename Offset = x data = x error = x

The disk to which RELOC is writing is
full. Erase unnecessary files, if any, or
insert a new disk before you reenter the
RELOC command line.

E.1ll1 SENDC68 Error Messages

SENDC68 returns two types of fatal error messages: diagnostic
N and internal logic error messages.

N

All Information Prasentad Hers i3 Proprietarv 0 DJigital Research

195

e ————— e e e g ————

CP/M-68K Programmer's Guide E.1l1 SENDC68 Error Messages

E.1l1.1 Diagnostic Error Messages

The SENDC68 diagnostic error messages are listed below in

alphabetic order with explanations and suggested user responses.

Table E-12. SENDC68 Diagnostic Error Messages

Message Meaning

file format error: filename

The file indicated by the variable
"filename" is not a command file. The
file input to SENDC68 must be a command
file, output by the linker (LO68). Ensure
that the file specified is a command file.

read error on file: £filename

The file indicated by the variable
"filename” is truncated. Rebuild the file
by recompiling or reassembling, and relink
it before you reenter the SENDC68 command
line.

" unable to create filename

This message indicates an invalid drive
code for the output file indicated by the
variable "“filename". It can also mean
that the disk to which SENDC68 is writing
js full. Check the drive code. If it is
correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the SENDC68
command line.

unable to open filename

The input file indicated by the variable
“filename® does not exist. Check the
filename and retype the SENDC68 command
line.

Usage: sendc68 [-] commandfile [outputfile]

This message indicates a syntax error in
the SENDC68 command line. The correct
- syntax is given in the error message.
Retype the command line using the correct
syntax.

A1l Information Presented Here is Proprietary to Digital Research

196

7N

{

C

CP/M-68K Programmer's Guide E.11 SENDC68 Error Messages

E.1l.2 SEHDCG8 Internal Logic Error Messages

The following is a fatal error in the internal logic of
SENDCS68.

INTERNAL LOGIC ERROR: seek error on file filename

If you receive this message, contact the place you purchased your
system for assistance. You should provide the information below.

1) Indicate which version of the operating system you are
using.

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

E.12 SIZE68 Error Messages
SIZE68 returns fatal, diagnostic error messages at the console.

The SI ZE68 error messages are listed below in alphabetic order with
explanations and suggested user responses. , ’

Table E~13. SIZE68 Error Messages

Message Meaning

File format error: filename

The file indicated by the variable
"filename" is neither an object file nor a
command file. SIZE68 requires either an
object file, output by the assembler or
the compiler, or a command file, output by
the 1linker. Ensure that the file
specified is one of these and reenter the
SIZ2E68 command line.

read error on filename

The file indicated by the variable
“filename™ is truncated. Rebuild the
file. Reassemble or recompile, and relink
the source file before you reenter the
SIZE68 command line. .

All Information Presented Here is Proprietary to Digital Research

197

CP/M=-o0BK rProgrammer-s suiae Dedd DilblLOO DilVL MEDdDIAYTS

Table E-13. (continued)

Message

Meaning

unable to open filename

Either the drive code is incorrect, or the
file indicated by the variable "filename"”
does not exist. Check the drive code and
filename. Reenter the SIZE68 command

line.

End of Appendix E

(

functions and additional

. Appendix F
New Functions and Implementation Changes

CP/M-68K has six new Basic Disk Operating System
implementation changes in the BDOS

(BDOS)

functions and data structures that differ from other CP/M systems.

Table P-1. New BDOS Functioas

Function Number
Get Free Disk Space 46
Chain to Program 47
Flush Buffers 48
Set Exception Vector 61
Set Supervisor State 62
Get/Set TPA Limits 63

F.1l BDOS Function and Data Structure Changes

Implementation changes in CP/M-68K BDOS functions and
data structures are described in the following table:

Table P-2. BDOS Punction Implementation Changes

Implementation
Change

BDOS Function Number
Return Version Number 12
Reset Disk System 14
Open File 15

Get Disk Parameters 31

Contains the version
number 2022H indicating
CP/M-68K Version 1l.1l.

Does not log in disk drive
A when it resets the disk
system.

Opens a file only at
extent 0, the base
extent.- -

Returns a copy of the Disk
Parameter Block (DPB).

All

Informaticon Presentad Here 1is

wr/m=oon rroyrammer - -S suliae

Table F-3.

el

pUUS function cnanges

BDOS Data Structure Implementation Changes

Structure Implementation

Change

Base Page

File Control Block

Additional information has been

added. The base page is no
longer located at a fixed
address. Appendix C outlines the
structure of the base page.

The byte sequence for the Random

Record Field has changed. The
most significant byte (r0) 1is
first and the least significant
byte (r2) is last.

F.2 BDOS FPunctions Not Supported By cP/M~-68K

The list below contains function
by other CP/M systems, but that are no

s and commands suppor ted
t supported by CP/M-68K.

Table F-4. BDOS Functiomns Not Supported by CP/M-68K
BDOS Function Number
Get Address of Allocation Vector 27
Set DMA Base+ 51
Get DMA Base+ 52
Get Maximum Mémo:y* 53
Get Absolute Memory* 54
Allocate Absolute Memory* 55
Free Memory* 56
Free All Memory* 57

The 68000 microprocessor

does not have a segmented

architecture. Therefore, functions involving segment
registers are not relevant to CP/M-68K.

* CP/M-68K does not have memory management functions.

DDT-68K does not support the Assemble (A) command.

End of Appendix F

srmation Presented Here s Propriezary zc Digital Research

200

‘-._,/v

Index

A

A command (AR68), 117
a user stack, 10
absolute file, 122
absolute origin directive
(org): 102
access operating system, 2
additional serial I/0
functions, 72
address, 7
address errors, 89
AR68, 3, 113
commands, 115
error messages, 157
errors, 122
archive utility (AR68), 3, 113
AS68, 3
assembly language, 104
error messages, l61
instruction set, 153
invoking, 95, 104
assembler (AS68) operation,
” 95 7
assemgly language directives,
9

assembly language extensions,
106

auxiliary input, 72, 141
auxiliary output, 73, 141

-Baddress (L068), 113
bad vector error, 89
base page, 2, 10, 87, 151
Basic Disk Operating System
(BDOS), 1, 12
Basic I/0 System (BIOS), 1, 12
.bass directive, 108
BDOS, 1
functions, 23
direct console I/0, 66
error messages, 171
invoking, 24
organization of, 25
output console function, 2S
parameters, 24

system reset function, (0), 12

201

BIOS, 1
error messages, 175
functions, 141.
parameter block (BPB), 84
return code, 84
block storage segment (bss), 7
branch instructions, 108
bsr instruction, 108
bss, 7
bss directive, 98
built-in commands,” 9
bus errors, 89

Cc
ccp, 1, 86
CDPB, 59

chain to program function, 82
character I/O functions, 62
close file function, 32, 43
cold start loader, 1
command file format, 2, 15
command tail, 11 :
common directive (comm), 98, 107
compute file size function, 48
conditional directives, 101
Conin function, 141
Conout function, 141
console buffer, 69
Console Command Processor
(Ccp), 1, 12
console I/0 functions, 64-65
Const function, 141
CP/M-68K,
architecture, 1
commands, 3, 4
default memory model, 13
file specification, 5
operating system, 1
terminology, 7
- text editor, 4
CPM.SYS file, 1
CPU, state of, 139
current default disk numbers,
56

D
D (Display) command (DDT-68K),

131
D command (AR68), 115

~Daddress (L068), 113
data directive, 98, 108
data segment, 7
DDT-68K, 3
command conventions,
command summary, 130
error messages, 180
operation, 129
terminating, 130
define constant directive
(dec), 98
define storage directive (ds),
99
delete file function, 35
delimiter characters, 5
DIR*, 4
direct BIOS call function, 84
diregt console 1I/0 function,
6
DIRS*, 4
disk
change error, 28, 57
directory, 33
file error, 28, 30
read error, 28
select error, 28
write error, 28
DMA buffer, 41
DPB, 59
drive functions, 52
drive select code, 5
DUMP, 3, 113, 120
DUMP :
error messages, 187
invoking, 120
output, 121

129

E (Load for Execution) command
(DDT-68K), 132 ‘
editing control functions, 69

end directive, 100

endc directive, 100

equate directive (equ), 100

ERA*, 4

error messages
AR68 fatal,
AS68, 161
BDOS, 171
BIOS, 175
DUMP, 187
LO68, 187
NM68, 191

157

180

202

RELOC, 192
SENDC68, 195
SIZE 68, 197
errors,
address, 89 o
AR68, 120 7
bus, 89 ‘)
even directive, 102, 100
exception functions, 87
exception handler, 88, 89
exception parameter block
(EPB), 88
exception vectors, 1, 12, 88
exiting transient programs, 1ll

F

F (Fill) command (DDT-68K),
132

-F option (L068), 1lll

file access functions, 25

file attributes, 43

File Control Block (FCB), 26

file processing errors, 28

file size, 48

file structure, 1
file system access, 2
file loading, 10

O

filetype fields, 5 .
141

flush buffers function, 83,
free sector count, 62
function code, 85
functions-

‘BDOS, 23

console, 63

G

G (Go) command (DDT-68K), 133

get address of disk parameter
block, 60

get console status function, 71

get disk free space function, 62

get disk parameters function, 59

get I/0 byte function, 76, 141

get memory region table
address function, 141

get or set user code, 81 ..

get Read-Only vector function, A;“>
58 ‘

get/set TPA limits, 92
.globl directive, 108

H

H (Hexadecimal Math) command
(DDT-68K), 133

header, 15

home function, 141

I

I (Input Command Tail) command
(DDT-68K), 133

'I/0 byte functions, 74

I/0 functions

character, 62

direct console, 66
-I option (L068), 112
init function, 141
initial stack pointer, 87
instruction set summary,
’ (AS68), 153
invoking AR68, 113
invoking ASé68, 104
invoking BDOS functions, 25
invoking DUMP, 120
invoking RELOC, 122
invoking SIZE68, 124
IOBYTE, 74

J
jsr instruction, 108
L

L (List) command (DDT-68K),
134, 141
line editing controls, 70
linker (L068) operation, 109
List
function, 141
output function, 74
Listst function, 141
Lo68, 3
error messages, 187
load parameter block (LPB),
85, 86
loading a program in memory,
0 ,

logical console device, 64,
69, 89

logical list device (LIST), 74

login vector, 55

longword, 7

203

M (Move) command (DDT-68K),
134

make file function, 39

message filename (L068), 114

multiple programs, loading, 10

nibble, 7

NM68
error messages, 191
utility, 3

o
object filename option (L068),
111 -

offset directive, 7, 102
-0 option (L068), 112

open file function, 31, 43
operating system access, 2
options, AR68, 117

P

page directive, 102
physical file size, 48
PIP, 4 ‘ o
print string function, 68
printer switch, 65
program control functions, 77
program counter (PC), 133,
138
program execution
tracing of, 136
program load function, 85, 87
program load parameter block
(LPB), 20
program segments, 10, 15 .
program
loading, 10
programming tools and
commands, 2
programming utilities, 113

R

R (Read) command (DDT-68K),
135

R command (AR68), 116

random record field and
number, 44, 49

read console buffer function,
69
read error, 28
Read function, 141
read random function, 44
read sequential function, 36
read-only bit, 58
register mask directive, 103
RELOC error messages, 192
relocation information, 19
relocation utility (RELOC)
invoking, 4, 124, 113, 122
relocation words, 20
REN*, 4
rename file function, 40
reset disk system function, 53
reset drive function, 61
resident system extensions
(RSXs), 89
return current disk function, 56
return from subroutine (RTS), 86
return login vector function, 55
return version number function,
79
-R option (L068), 1lll
RSX, 89

S

S (Set) command (DDT-68K), 135
search for first function, 33
search for next function, 34
section directive, 103
Sectran function, 141
segment
block, 7
data, 7
text, 7 .
Seldsk function, 141
select disk function, 54
SENDC68
error messages, 195
utility, 4, 113, 126
gerial I/0 functions, 72
set direct memory access (DMA)
address function, 41
set exception vector function,
88, 141
set file attributes function,
42, 43
set I/0 byte function, 77, 141
set random record function,
49, 50
set supervisor state, 91
Set/Get user code, 81

204

Setdma function, 141
Setsec function, 141
Settrk function, 141
shift instruction, 108
SIZE68
error messages, 197
output, 124
utility, 4, 126
-S option (LO068), 1lll
sparse files, 48
start scroll, 65
status register, 138
stop scroll, 65
SUBMIT*, 4
supervisor stack and state, 91
symbol table, 15, 17
printing, 19
symbol type, 18
system control functions, 77
system reset function, 78
system stack pointer, 138
system state, 89
system/program control
functions, 77

T

-Taddress (L068), 113

T (Trace) command (DDT-68K),
136

T command (AR68), 118

tab characters, 64

terminating DDT-68K, 130

text directive, 108

text directive, 103

text segment, 7

TPAB parameters field, 93

transient command, 9

transient program area
(TPA), 92

transient programs, 2

exiting, 11 -
Trap 2 instruction, 25
TYPE*, 4

1]

-Umodname option (L068), 112

U (Untrace) command (DDT-68K),
136 :

user number, 81

user stack pointer, 138

USER*, 4

-

v

V (Value) command (DDT-68K),
137

V option (AR68), 115, 118-121

vector number and values, 88

version dependent programming,
79

version numbers, 79

return, 80
virtual file size, 48

W

W (Write) command (DDT-68K),
137
W command (AR68), 119
warm boot function, 141
wildcards, 6, 31
word, 7
write
error, 28
function, 141
protect disk function, 57
random function, 46
sequential function, 37, 38

X

X (Examine CPU State) command
(DDT-68K), 139

X command (AR68), 122

-X option (L068), 112

2

-Zaddress (L068), 113

205

	cpm68_prog_guide_pt1
	cpm68_prog_guide_pt2

