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SECTION 1
INTRODUCTION

The MCB8000 is the first in a family of advanced microprocessors from Motorola. Utilizing VLSI
technology, the MCB8000 is a fully-implemented 16-bit microprocessor with 32-bit registers, a rich
basic instruction set, and versatile addressing modes.

The MC68000 possesses an asynchronous bus structure with a 24-bit address bus and a 16-bit data
bus.

The resources available to the MCE8000 user consist of the following:
@® 17 32-Bit Data and Address Registers
@ 16 Megabyte Direct Addressing Range
@® 56 Powerful Instruction Types
@ Operations on Five Main Data Types
@ Memory Mapped I/0O
@ 14 Addressing Modes

As shown in the programming model (Figure 1-1), the MCB8000 offers seventeen 32-bit registers, a
32-bit program counter, and a 16-bit status register. The first eight registers (DO-D7) are used as
data registers for byte (8-bit), word (16-bit), and long word (32-bit) operations. The second set of
seven registers (A0-AB6) and the system stack pointer may be used as software stack pointers and
base address registers. In addition, the registers may be used for word and long word operations.
All of the 17 registers may be used as index registers.

The status register (Figure 1-2) contains the interrupt mask (eight levels available) as well as the
condition codes: extend (X), negative (N}, zero {Z), overflow (V), and carry (C). Additional status
bits indicate that the processor is in a trace (T) mode and in a supervisor (S) or user state.

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:
@ Bits
@ BCD Digits (4 bits)
® Bytes (8 bits)
® Words (16 bits)
@ Long Words (32 bits)

In addition, operations on other data types such as memory addresses, status word data, etc., are
provided in the instruction set.
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Figure 1-2. Status Register

The 14 address modes, shown in Table 1-1, include six basic types:
® Register Direct
@ Register Indirect
@® Absolute
® Program Counter Relative
® |mmediate
@ Implied
Included in the register indirect addressing modes is the capability to do postincrementing,

predecrementing, offsetting, and indexing. The program counter relative mode can also be
modified via indexing and offsetting.
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Table 1-1. Addressing Modes

Mode Generation
Register Direct Addressing
Data Register Direct EA=Dn
Address Register Direct EA = An
Absolute Data Addressing
Absolute Short EA = [Next Word)
Absolute Long EA = (Next Two Words)
Program Counter Relative Addressing
Relative with Offset EA=(PC)+dyg
Relative with Index and Oftset EA = (PC) + (Xn) + dg
Register Indirect Addressing
Register Indirect EA=(An)
Postincrement Register Indirect EA={Anl, An*— An+N
Pradecrement Register Indirect An*—An-N, EA=(An)
Register Indirect with Offset EA=(Anl +dyg
Indexed Register Indirect with Offset | EA=(An) + (Xn) + dg
Immediate Data Addressing
Immediate DATA = Next Word(s|
Quick Immediate Inherent Data
Implied Addressing
Implied Register EA=SR, USP, SP, PC
NOTES:

EA = Effective Address

An = Address Register

Dn = Data Register

Xn = Address or Data Register Used as Index Register

SR = Status Register

PC = Program Counter

{1 = Contents of

dg = 8-Bit Offset (Displacement)

dig = 16-Bit Offset |Displacement)

N =1 for byte, 2 for word, and 4 for long word. If An is
the stack pointer and the operand size is byte, N=2
to keep
the stack pointer on a word boundary.

== = Replaces

1.2 INSTRUCTION SET OVERVIEW

The MCB8000 instruction set is shown in Table 1-2. Some additional instructions are variations, or
subsets, of these and they appear in Table 1-3. Special emphasis has been given to the instruction
set’s support of structured high-level languages to facilitate ease of programming. Each instruction,
with few exceptions, operates on bytes, words, and long words and most instructions can use any
of the 14 addressing modes. Combining instruction types, data types, and addressing modes, over
1000 useful instructions are provided. These instructions include signed and unsigned, multiply and
divide, “quick” arithmetic operations, BCD arithmetic, and expanded operations (through traps).
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Table 1-2. Instruction Set Summary

Mnemonic Description Mnemonic Description
ADBC Add Decimal With Extend MOVE Move
ADD Add MULS Signed Multiply
AND Logical And MULU Unsigned Multiply
ASL Arithmetic Shift Left NBCD Negate Decimal with Extend
ASR Arithmetic Shift Right NEG Negate
Bce Branch Conditionally NOP No Operation
BCHG Bit Test and Change NOT One’'s Complement
BCLR Bit Test and Clear OR Logical Or
ahA Branch/Always PEA Push Effective Address
BSET Bit Test and Set -
BSR Branch 10 Subroutine RESET Reset Externa! Devices
BTST Bit Test ROL Rotate Left without Extend
- ROR Rotate Right without Extend
CHK Check Register Against Bounds ROXL Rotate Left with Extend
CLR Claar Operand ROXR Rotate Right with Extend
CMP Compare RTE Return from Exceplion
DBcc Test Condition, Decrement and Branch RTR Return and Restore
DiVS Signed Divide RTS Return from Subroutine
Divy Unsigned Divide SBCD Subtract Decimal with Extend
EOR Exclusive Or scc Sel Conditional
EXG Exchange Registers STOP Stop
EXT Sign Extend SUB Subtract
JMP Jump SWAP Swap Data Register Halves
JSR Jump to Subroutine TAS Test and Set Operand
LEA Load Effective Address TRAP Trap
LINK Link Stack TRAPY Trap on Overflow
LSL Logical Shift Left TST Test
LSR Logical Shift Right UNLK Unlink
Table 1-3. Variations of Instruction Types
Instruction Instruction
Type Variation Description Type Variation Description
ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Peripheral Data
ADDX Add with Extend MOVEQ Move Quick
AND AND Logical And MOVE from SR| Move from Status Register
ANDI And Immediate MOVE to SR | Move 10 Status Register
ANDI to CCR | And Immediate to MOVE to CCR | Move 1o Condition Codes
Condition Codes MOVE USP Move User Stack Pointer
ANDI 10 SR And Immediate to NEG NEG Negate
Status Register NEGX Negate with Extend
CMP CMmP Compare OR OR Logical Or
CMPA Compare Address ORI Or Immediate
CMPM Compare Memory ORI 10 CCR Or Immediate to
CMPI Compare Immediate Condition Codes
EOR EOR Exclusive Or ORIl to SR Or Immediate to
EORI Exclusive Or Immediate Status Register
EORI to CCR | Exclusive Or Immediate SUB suUB Subtract
to Condition Codes SUBA Subtract Address
EORI to SR Exclusive Or Immediate SuUBI Subtract Immediale
to Status Register suBQ Subtract Quick
SUBX Subtract with Extend




SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the MC68000.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a long word
equals 32 bits. The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Implicit instructions support some subset of all three
sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
together with the stack pointers support address operands of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands the
low order 16 bits, and long word operands the entire 32 bits. The least significant bit is addressed as
bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the appropriate low
order portion is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and the stack pointer is 32 bits wide and holds a full 32-bit address. Address
registers do not support the sized operands. Therefore, when an address register is used as a source
operand, either the low order word or the entire long word operand is used depending upon the
operation size. When an address register is used as the destination operand, the entire register is af-
fected regardless of the operation size. If the operation size is word, any other operands are sign ex-
tended to 32 bits before the operation is performed.

2.3 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address the same as the
word, as shown in Figure 2-1. The low order byte has an odd address that is one count higher than
the word address. Instructions and muiltibyte data are accessed only on word (even byte) boun-
daries. If a long word datum is located at address n (n even), then the second word of that datum is
located at address n + 2.



Word 000000
Byte 000000 | Byte 000001
Waord 000002

Byte 000002 Byte 000003

N
I

Word FFFFFE
Byle FFFFFE | Byte FFFFFF

Figure 2-1. Word Organization in Memory

The data types supported by the MC68000 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad-
dresses and binary coded decimal data. Each of these data types is put in memory, as shown in
Figure 2-2. The numbers indicate the order in which the data would be accessed from the
processor.

2.4 ADDRESSING

Instructions for the MCB8000 contain two kinds of information: the type of function to be per-
formed and the location of the operand(s) on which to perform that function. The methods used to
locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of three ways:
Register Specification — the number of the register is given in the register field of
their instruction.
Effective Address — use of the different effective addressing modes.
Implicit Reference — the definition of certain instructions implies the use of specific registers.

2.5 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2-3. The length of the instruc-
tion and the operation to be performed is specified by the first word of the instruction which is
called the operation word. The remaining words further specify the operands. These words are
either immediate operands or extensions to the effective address mode specified in the operation
word.

2.6 PROGRAM/DATA REFERENCES

The MCB8000 separates memory references into two classes: program references and data
references. Program references, as the name implies, are references to that section of memory that
contains the program being executed. Data references refer to that section of memory that contains
data. Operand reads are from the data space except in the case of the program counter relative ad-
dressing mode. All operand writes are to the data space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in-
struction specify whether the register selected is an address or data register and how the register is
to be used.
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Bit Data — 1 Byte =8 Bits

7 6 5 4 3 2 1 0
Integer Data — 1 Byte=8 Bits
15 14 13 12 n 10 9 8 7 6 4 2 1 0
MSB Byte 0 LSE Byte 1
Byte 2 Byte 3
1 Word= 16 Bits
15 14 13 12 Al 10 9 a 7 6 4 2 1 0
MSB Weordi) LsB
Waord 1
Word 2
1 Long Word = 32 Bits
15 14 13 12 11 10 9 3 7 6 b 4 3 2 1 0
MSB
High Order
— —LlongWord0— — — — — — — — — — — — — — — — — —_—— — —
Low Order LSE
— —longWord 1—m — — — — — — — — — — — — - — - — — —
— —lomgWod2——— — — — — — — — — ¥ — — — — — — — — — —
Addresses — 1 Address =32 Bits
15 14 13 12 1 10 9 8 7 ki) 5 4 3 2 1 0
MSB .
High Order
— — Address) — — — — — — —— — — — — —— — ——_——_————
Low Order LSB
== Address] = = = B StE v r v T £ T ST e
e AAresSD: T e e i ey e e o v e e e S
L
MSB = Most Significant Bit LSB = Least Significant Bit
Decimal Data — 2 Binary Coded Decimal Digits=1 Byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSD
BCD O BCD 1 LSD BCD 2 BCD 3
BCD 4 BCD 5 BCD 6 BCD 7

MSD = Most Significant Digit

LSD = Least Significant Digit

Figure 2-2. Memory Data QOrganization
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation Word
(First Word Specities Operation and Modes)

Immediate Operand
If Any, One or Two Words)
Source Effective Address Extension
{1f Any, One or Two Words!

Destination Effective Address Extension
(It Any, One or Two Words)

Figure 2-3. Instruction Operation Word General Format

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the
operation word. Far example, Figure 2-4 shows the general format of the single-effective-address
instruction operation word. The effective address is composed of two 3-bit fields: the mode field
and the register field. The value in the mode field selects the different address modes. The register
field contains the number of a register.

The effective address field may require additional information to fully specify the operand. This ad-
ditional infarmation, called the effective address extension, is contained in the following word or
words and is considered part of the instruction, as shown in Figure 2-3. The effective address
modes are grouped into three categories: register direct, memory addressing, and special.

15 14 13 12 1 10 9 -] i 6 3 4 3 2 1 0

Effective Address
x| w) ow x| % X | X [ x| x| X Mode | Register

Figure 2-4. Single-Effective-Address Instruction Operation Word

2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of 16 multifunction registers.

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the effective ad-
dress register field.

2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by the ef-
fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide the specific
address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the exception of
the jump and jump-to-subroutine instructions.
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2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
in the address register specified by the register field. After the operand address is used, it is in-
cremented by one, two, or four depending upon whether the size of the operand is byte, word, or
long word. If the address register is the stack pointer and the operand size is byte, the address is in-
cremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the operand is in
the address register specified by the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether the operand size is byte, word, orlong
word. If the address register is the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

9.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addressing mode requires
one word of extension. The address of the operand is the sum of the address in the address register
and the sign-extended 16-bit displacement integer in the extension waord. The reference is classified
as a data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This addressing mode requires one word of
extension. The address of the operand is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of the extension word, and the contents
of the index register. The reference is classified as a data reference with the exception of the jump
and jump-to-subroutine instructions.

2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special addressing
mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension. The
address of the operand is the extension word. The 16-bit address is sign extended before it is used.
The reference is classified as a data reference with the exception of the jump and jump-to-
subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The high order
part of the address is the first extension word; the low order part of the address is the second exten-
sion word. The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word
of extension. The address of the operand is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is classified as a program reference.



2.8.3.4 PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of exten-
sion. The address is the sum of the address in the program counter, the sign-extended displace-
ment integer in the lower eight bits of the extension word, and the contents of the index register.
The value in the program counter is the address of the extension word. This reference is classified
as a program reference.

2.8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on the size of the operation.
Byte Operation — operand is low order byte of extension word
Word Operation — operand is extension word
Long Word Operation — operand is in the two extension words, high order 16 bits are in the
first extension word, low order 16 hits are in the second extension
word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
(PC), the system stack pointer (SP), the supervisor stack pointer {SSP), the user stack pointer
(USP), or the status register (SR). A selected set of instructions may reference the status register by
means of the effective address field. These are:

ANDI to CCR EQRI to SR MOVE to CCR
ANDI to SR ORI to CCR MOVE to SR
EORI to CCR ORI to SR MOVE from SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table 2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.

Table 2-1. Effective Address Encoding Summary

Addressing Mode Maode Register Addressing Mode Mode Register
Data Register Direct 000 Register Number| |Address Register Indirect with
Address Register Direct 001 Register Number Index 110 Register Number
Address Register Indirect 010 Register Number| [Absolule Short L] 000
Address Register Indirect with Absolute Long 111 001
Postincrement 01 Register Number| |Program Counter with
Address Register Indirect with Cisplacemant m 010
Predecrement 100 Register Number| |Program Counter with Index 111 011
Address Register Indirect with Immediate 111 100
Displacement 101 Register Number

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address register seven (A7) is the system stack
pointer (SP). The system stack pointer is either the supervisor stack pointer {SSP} or the user stack
pointer (USP), depending on the state of the S bit in the status register. If the S bit indicates super-
visor state, SSP is the active system stack pointer and the USP cannot be referenced as an address
register. If the S bit indicates user state, the USP is the active system stack pointer, and the SSP
cannot be referenced. Each system stack fills from high memory to low memory.
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SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MCB8000 instruction set. The
instructions form a set of tools that include all the machine functions to perform the following
operations:

Data Movement Bit Manipulation
Integer Arithmetic Binary Coded Decimal
Logical Program Control
Shift and Rotate System Control

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move (MOVE) in-
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data move instructions allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to memory, and register to register. Address
mave instructions allow word and long word operand transfers and ensure that only legal address
manipulations are executed. In addition to the general move instruction there are several special
data movement instructions: move multiple registers (MOVEM), move peripheral data (MOVEP),
exchange registers (EXG), load effective address (LEA), push effective address (PEA), link stack
(LINK}, unlink stack {UNLK), and move quick (MOVEQ). Table 3-1 is a summary of the data move-
ment operations.

Table 3-1. Data Movement Operations

Instruction Operand Size Operation Instruction Operand Size Operation
EXG 32 Rx == Ry (EA) == Dn
MOVEP 16, 3
LEA 32 EA—An 4 Dn— (EA)
An— —(SP) MOVEQ 8 #xxx == Dn
LINK - SP==An PEA 32 EA= —(SPI
SP + displacement— SP SWAP 32 Dn(31:16] == Dn[15:0)
MOVE 8, 16, 32 s—d —
(EA)— An, Dn HHLK B {Sﬁ?+ ji\n
MOVEM 16, 32 BE DR
NOTES:
S=source = I=indirect with predecrement
d = destination [ )+ =indirect with postdecrement
| 1=bit number #=immediate data



3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB), multiply
(MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and negate (NEG}. The
add and subtract instructions are available for both address and data operations, with data opera-
tions accepting all operand sizes. Address operations are limited to legal address size operands (16
or 32 bits). Data, address, and memory compare operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands using word
multiply to produce a long word product, and a long word dividend with word divisor to produce a
word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
These instructions are: add extended {(ADDX), subtract extended (SUBX), sign extend (EXT), and
negate hinary with extend (NEGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare of the
operand with zero is also available. Test and set (TAS) is a synchronization instruction useful in
multiprocessor systems. Table 3-2 is a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size Operation
8, 16, 32 Dn + (EAl— Dn
|EA)+ Dn==(EA)
e (EA) + #xxx— (EA)
16, 32 An+(EA)— An
8, 16, 32 Dx+ Dy + X— Dx
ABDX 16, 32 — (Ax]+ — (Ay) + X— (Ax)
CLA 8, 16, 32 0—EA
g, 16, 32 Dn—(EAI
(EA) — #xxx
CMP (Ax)+ —{Ay)
16, 32 An— (EA)
DIVS 32-+16 Dn == {(EA)—Dn
DIVU 32+16 Dn = (EA)=—Dn
B— 16 {Dnlg==Dn1pg
EXT 16— 32 (Dnlyg— Dn3z2
MULS 16x 16=—+32 Dnx (EAl — Dn
MULU 16x 16— 32 Dnx (EA)—Dn
NEG 8, 16, 32 0- (EA)—=(EA)
NEGX 8, 186, 32 0-(EA) = X— (EA)
8,16, 32 Dn— (EA]— Dn
{EA) = Dn—= (EA)
s (EAI - #rox— (EA)
16, 32 An—(EAl— An
Dx— Dy - X==Dx
SUBX 8,16, 32 —(Ax) — — (Ay) — X —= (Ax)
TAS 8 [EA]—0Q, 1—EAI[7]
TST 8, 16, 32 (EAI-0
NOTES:
[ 1= bit number

—( ) =indirect with predecrement
( )+ = indirect with postdecrement
#=immediate data



3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data
operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provide these logical
operations with all sizes of immediate data. Table 3-3 is a summary of the logical operations.

Table 3-3. Logical Operations

Instruction Operand Size Operation
DnAIEA) = Dn
AND 8, 16, 32 I[EA)JADn— (EA)
(EA)A#xxx— (EA)
Dn v (EA)=Dn
OR 8, 16, 32 {EA) v Dn—=(EA)
IEA) v #xxx—(EA)
(EA] @ Dy —(EAI
i 8, 16, 32 (EA) ® fxxx— (EA]
NOT 8, 16, 32 ~(EA)— EA)
NOTES:
~ =invert V= logical OR
#=immediate data @ = logical exclusive OR
A = logical AND

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and ASL and
logical shift instructions LSR and LSL. The rotate instructions {with and without extend! available
are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all operand sizes and allow a shift count
specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.
Table 3-4 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

R -

ASL [8. 16,32 0
ASR |8, 16, 32 ‘
LSL |8, 16, 32 0
LSF |8, 16, 32 0
ROL (8. 16, 32

ROR (8, 16, 32
ROXR [8, 16, 32

%
@
| {
]



3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit
test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG). Table 3-5 is a sum-
mary of the bit manipulation operations. (Z is bit 2 of the status register.)

Table 3-5. Bit Manipulation Operations

Instruction Operand Size Operation
BTST 8, 32 ~bit of (EAI=—Z
BSET 8, 32 ':’L“!]I:EO‘:”; £
BCLR 8, 32 'SL";I:EO?’E: -
BCHG 832 ~ blt‘-;“lg.LI‘E—"“bl_i.oZl EA

NOTE: ~ =invert

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD),
and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal
operations.

Table 3-6. Binary Coded Decimal Operations

= Operand .
Instruction Size Oparation
Dx1g+ Dyjg+ X— Dx
ARCD 8 = A1+ — LAy g+ x— (Ax)
Dxyp—Dyjg— X—Dx
88CD 8 — (Ax}p— — (Ay)0— X—= (Ax)
NBCD 8 0-(EA) 19— X—=(EAI
NOTE: -( }=indirect with predecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional
branch instructions and return instructions. These instructions are summarized in Tahle 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC — carry clear LS — low or same
CS — carry set LT — less than
EQ — equal Ml — minus

F — never true NE — not equal
GE — greater or equal PL — plus

GT — greater than T — always true
HlI — high VC — no overflow
LE — less or equal VS — overflow
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Table 3-7. Program Control Operations

Instruction Operation
Conditional
Bce Branch Conditionally (14 Conditions)
8- and 1B8-Bit Displacement
DBec Test Condition, Decrement, and Branch
16-Bit Displacement
Sce Set Byte Conditionally {16 Conditions)
Unconditional
BRRA Branch Always
8- and 16-Bit Displacement
BSR Branch to Subroutine
8- and 16-Bit Displacement
JMP Jump
JSR Jump 1o Subroutine
Returns
RTR Return and Restore Condition Codes
RTS Return from Subroutine

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in-
structions, and instructions that use or modify the status register. These instructions are summariz-
ed in Table 3-8.

Table 3-8. System Control Operations

Instruction Operation
Privileged
ANDI to SR Logical AND to Status Register
EORI! 10 SR Logical EOR e Status Register
MOVE EA 10 SR Load New Status Register
MOVE USP Move User Stack Pointer
ORI 1o SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Excepuon
STOP Stop Program Execution
Trap Generating
CHK Check Data Register Against Upper Bounds
TRAF Trap
TRAPV Trap on Overflow
Status Register
ANDI 1o CCR Logical AND to Condition Codes
EOQRI 1o CCR Logical EOR to Condition Codes
MOVE EA 10 CCR Load New Condition Codes
MOVE SR 1o EA Store Stalus Register
ORI to CCR Logical OR to Condition Codes
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SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion of bus opera-
tion during the various machine cycles and operations is also given.

NOTE
The terms assertion and negation will be used extensively. This is done to avoid confu-
sion when dealing with a mixture of “active-low’* and “active-high’* signals. The term
assert or assertion is used to indicate that a signal is active or true, independent of
whether that level is represented by a high or low voltage. The term negate or negation is
used to indicate that a signal is inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups shown in Figure 4-1. The
following paragraphs provide a brief description of the signals and a reference (if applicablel to
other paragraphs that contain more detail about the function being performed.

veeld) Addressy
———
GND(2) Bus >A1-A23
CLK
—_—
mms
| AS
- R/W
FCO E ‘ UDs Asynchronous
Processor FC1 § a D Bus ;
Status FC2 i £ DTACK Contro
=5 i
E = B
P:?i?)?'loe(:al _W BG Bus Arbitration
Control ___VPA I BGACK Control
BERR PLO
System,) _RESET FZ Interrupt
Control HALT PL2 Control

Figure 4-1. Input and Output Signals

4.1.1 Address Bus (A1 through A23)

This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of data. It provides
the address for bus operation during all cycles except interrupt cycles. During interrupt cycles, ad-
dress lines A1, A2, and A3 provide information about what level interrupt is being serviced while ad-
dress lines A4 through A23 are all set to a logic high.
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4.1.2 Data Bus (DO through D15)

This 16-bit, bidirectional, three-state bus is the general purpose data path. It can transfer and accept
data in either word or byte length. During an interrupt acknowledge cycle, the external device sup-
plies the vector number on data lines D0-D7.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: address strobe,
read/write, upper and lower data strobes, and data transfer acknowledge. These signals are ex-
plained in the following paragraphs.

4.1.3.1 ADDRESS STROBE (AS). This signal indicates that there is a valid address on the address
bus.

4.1.3.2 READ/WRITE (R/W). This signal defines the data bus transfer as a read or write cycle. The
R/W signal also works in conjunction with the data strobes as explained in the following paragraph.

4.1.3.3 UPPER AND LOWER DATA STROBE (UDS, LDS). These signals control the flow of data
on the data bus, as shown in Table 4-1. When the R/W line is high, the processor will read from the
data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

Table 4-1. Data Strobe Control of Data Bus

UDs | L0S | RVW D8-D15 DO-D7
High | High = No Valid Data No Valid Data
Lo Low | High Vahd él-l‘latsa Bits Valid B.E;-la Bits
Hign Low High No Valid Data Velid Dfata Bits
Low High High Va“dé)_?éa Bitg No Valid Data

Valid Data Bits Valid Data Bits
Low Low Low 8-15 a7

Valid Data Bits Valid Data Bils
High Low Low 07% 07

Valid Data Bis Valid Data Bits
Low High Low 8.15 8.15%

* These conditions are a result of current implementation and may
not appear on future devices

4.1.3.4 DATA TRANSFER ACKNOWLEDGE (DTACK). This input indicates that the data transfer is
completed. When the processor recognizes DTACK during a read cycle, data is latched and the bus
cycle terminated. When DTACK is recognized during a write cycle, the bus cycle is terminated.
(Refer to 4.4 ASYNCHRONOUR VERSUS SYNCHRONQUS OPERATION).

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus arbitration circuit
to determine which device will be the bus master device.



4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be bus
masters. This input indicates to the processor that some other device desires to become the bus
master.

4.1.4.2 BUS GRANT (BG). This output indicates to all other potential bus master devicas that the
processor will release bus control at the end of the current bus cycle,

4.1.4.3 BUS GRANT ACKNOWLEDGE (BGACK). This input indicates that some other device has
become the bus master. This signal should not be asserted until the following four conditions are
met:

1. a bus grant has been received,

2. address strobe is inactive which indicates that the MICroprocessor is not using the bus,

3. data transfer acknowledge is inactive which indicates that neither memary nor peripherals are
using the bus, and

4. bus grant acknowledge is inactive which indicates that no other device is still claiming bus
mastership.

4.1.5 Interrupt Control (IPLO, IPL1, IPL2)

These input pins indicate the encoded priority level of the device requesting an interrupt. Level
seven is the highest priority while level zero indicates that no interrupts are requested. Level seven
cannot be masked. The least significant bit is given in TPLO and the most significant bit is contained
in IPL2. These lines must remain stable until the processor signals interrupt acknowledge (FCO-FC2
are all high) to insure that the interrupt is recognized.

4.1.6 System Control

The system control inputs are used to either reset or halt the processor and 1o indicate to the pro-
cessor that bus errars have occurred. The three system control inputs are explained in the following
paragraphs.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cycle
currently being executed. Problems may be a result of:

1. nonresponding devices,

2. interrupt vector number acquisition failure,

3. illegal access request as determined by a memory management unit, or
4. other application dependent errors.

The bus error signal interacts with the halt signal to determine if the current bus cycle should be re-
executed or if exception processing should be performed.

Refer to 4.2.4 Bus Error and Halt Operation for additional information about the interaction of the
bus error and halt signals.

4.1.6.2 RESET (RESET). This bidirectional signal line acts to reset (start a system initialization se-
quence} the processor in response to an external reset signal. An internally generated reset (result
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of a RESET instruction) causes all external devices to be reset and the internal state of the processor
is not affected. A total system reset (processor and external devices) is the result of external HALT
and RESET signals applied at the same time. Refer to 4.2.5 Reset Operation for further information.

4.1.6.3 HALT (HALT). When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the processor has been halted
using this input, all control signals are inactive and all three-state lines are put in their high-
impedance state {refer to Table 4-3). Refer to 4.2.4 Bus Error and Halt Operation for additional infor-
mation about the interaction between the HALT and bus error signals.

When the processor has stopped executing instructions, such as in a double bus fault condition
(refer to 4.2.4.4 DOUBLE BUS FAULTS), the HALT line is driven by the processor to indicate 1o ex-
ternal devices that the processor has stopped.

4.1.7 M6800 Peripheral Control

These control signals are used to allow the interfacing of synchronous MB800 peripheral devices
with the asynchronous MCB8000. These signals are explained in the following paragraphs.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all MB800 type peripheral
devices. The period for this output is ten MCB8000 clock periods (six clocks low, four clocks high).
Enable is generated by an internal ring counter which may come up in any state (i.e., at power on, it
is impossible to guarantee phase relationship of E to CLK). E is a free-running clock and runs
regardless of the state of the bus on the MPU.

4.1.7.2 VALID PERIPHERAL ADDRESS (VPA). This input indicates that the device or region ad-
dressed is an MB800 Family device and that data transfer should be synchronized with the enable (E)
signal. This input also indicates that the processor should use automatic vectoring for an interrupt.
Refer to SECTION 6 INTERFACE WITH M6800 PERIPHERALS.

4.1.7.3 VALID MEMORY ADDRESS (VMA). This output is used to indicate to M6800 peripheral
devices that there is a valid address on the address bus and the processor is synchronized to enable.
This signal only responds to a valid peripheral address (VPA) input which indicates that the
peripheral is an MB800 Family device.

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the cycle type currently be-
ing executed, as shown in Tib[e 4-2. The information indicated by the function code outputs is valid
whenever address strobe (AS) is active.

Table 4-2. Function Code Outputs

Function Code Qutput Function Code Output

Fcz | Fc1 | FCO Sy Fcz | FC1 | FCO Gyoatiyie

Low Low Low (Undefined, Reserved) High Low Low (Undefined, Reserved)
Low | Low | High User Data High | Low | High Supervisor Data
Low | High | Low User Program High | High Low Supervisor Program
Low | High | High (Undefined, Reserved) High | High | High Interrupt Acknowledge




4.1.9 Clock (CLK)

The clock input is a TTL-compatible signal that is internally buffered for development of the internal
clocks needed by the processor. The clock input should not be gated off at any time and the clock

signal must conform to minimum and maximum pulse width times.

4.1.10 Signal Summary

Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table 4-3. Signal Summary

Signal Name Mnemonic Input/Qutput Active State On HALT e On BGACK
Address Bus A1-A23 Output High Yes Yes
Data Bus D0-D15 Input/ Output High Yas Yes
Address Strobe AS Output Low No Yes
Read/Write RIW Output afr?‘(;?'c?:{ No Yes
Upper and Lower Data Stobes U035, D3 Output Low No Yes
Data Transfer Acknowledge DTACK Input Low No No
Bus Request BR Input Low No No
Bus Grant BG Output Low No No
Bus Grant Acknowledge BGACK Input Low No No
Interrupt Priority Level PLO, IPL1, PL2 Input Low No No
Bus Error BER Input Low No No
Reset RESET Input/ Quiput Low No! Nol
Hait HALT Input/ Output Low No! Nol
Enable E Qutput High No No
Valid Memory Address VMA Qutput Low No Yes
Valid Peripheral Address VPA Input Low No No
Function Code Output FCO, FC1, FC2 Qutput High No2 Yes
Clock CLK Input High No No
Power Input Vee Input - - -
Ground GND Input - - -
NOTES:
1. Open drain

2. Function codes are placed in high-impedance state during HALT for RIM, TBE, and BF4 mask sets

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations,
bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:
1. address bus A1 through A23,
2. data bus DO through D15, and

3. control signals.

The address and data buses are separate parallel buses used to transfer data using an asynchronous
bus structure. In all cycles, the bus master assumes responsibility for deskewing all signals it issues
at both the start and end of a cycle. In addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.
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The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible
read-modify-write cycle is the method used by the MCB8000 for interlocked multiprocessor com-
munications.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word
{or double word) operation, the processor reads both upper and lower bytes simultaneously by
asserting both upper and lower data strobes. When the instruction specifies byte operation, the
processor uses an internal AQ bit to determine which byte to read and then issues the data strobe re-
quired for that byte. For byte operations, when the AD bit equals zero, the upper data strobe is
issued. When the AQ bit equals one, the lower data strobe is issued. When the data is received, the
processor correctly positions it internally.

A word read cycle flowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.
Read cycle timing is given in Figure 4-4. Figure 4-6 details word and byte read cycle operations.

BUS MASTER SLAVE
Address the Device

1) Set R/W to Read

2) Place Function Code on FCO-FC2
3) Place Address on A1-A23

4) Assert Address Strobe (AS)

6) Assert Upper Data Strobe (UDS) and
Lower Data Strobe (LDS)

P input the Data

1) Decode Address
2) Place Data on DO-D15
3) Assert Data Transfer Acknowledge

(DTACK)
Acquire the Data -

1) Latch Data

2) Negate UDS and LDS

3) Negate A5

> Terminate the Cycle
1) Remove Data from DO-D15
2) Negate DTACK
[ Start Next Cycle }-%

Figure 4-2. Word Read Cycle Flowchart

4-6



BUS MASTER SLAVE
Address the Device

1) Set R/W to Read

2) Place Function Code on FCO-FC2

3} Place Address on A1-A23

4) Assert Address Strobe (AS)

5) Assert Upper Data Strobe (UDS) or
Lower Data Strobe ILDS)
(based on AQ) 3= Input the Data

1) Deccde Address
2) Place Data on DO-D7 or D8-D15 (based on

UDS or LDS)
31 Assert Data Transfer Acknowledge
{DTACK)
Acquire the Data -t
1) Latch Data_
2) Negate UDS or LOS
3) Negate AS
Terminate the Cycle
1) Remove Data from DO-D7 or DB-D15
2) Negate DTACK
Start Next Cycle }4

Figure 4-3. Byte Read Cycle Flowchart

S0 S1 S2 83 854 S5 S6 S7 50 S1 S2 S3 S4 S5 S6 S7 SO S1 52 83 S4 w w w w S5 S8 §7
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Feorc2 ¥ X X

LYYY

}Q—Read % Wirite :!: Slow Read

Figure 4-4. Read and Write Cycle Timing Diagram



4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a
peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte operation, the
processor uses an internal AQ bit to determine which byte to write and then issues the data strobe
required for that byte. For byte operations, when the A0 bit equals zero, the upper data strobe is
issued. When the AD bit equals one, the lower data strobe is issued. A word write flowchart is given
in Figure 4-6. A byte write cycle flowchart is given in Figure 4-7. Write cycle timing is given in Figure

S0 S1 52 S3 S4 sb S6 S7 S0 S1 S2 S3 S4 55 S6 S7 SO S1 52 S3 S4 S5 S6 S7

Feo-Fc2 —_ X Ve b N—

*Internal Signal Only

“'——Wc’d Head—b‘<— Odd Byte Hﬂﬂd—h'*—Even Byte F!ead—h|

Figure 4-5. Word and Byte Read Cycle Timing Diagram

4-4. Figure 4-8 details word and byte write cycle operation.

BUS MASTER SLAVE

Address the Davice

1
2)
3)
4)
5l
6l

Place Function Code on FCO-FC2
Place Address on A1-A23

Assert Address Strobe (AS)

Set R/W 1o Write

Place Data on D0O-D15

Assert Upper Data Strobe (UDS) and
Lower Data Strobe (LDS)

Input the Data

Y

1) Decode Address
2) Store Data on DO-D15

31 Assert Data Transfer Acknowledge [DTACK)

A

Terminate Output Transfer

1
2)
3
4)

Negate ELJ-S and LDS
Negate AS
Remove Data from DO-D15

Set R/W to Read

Terminate the Cycle

Start Next Cycle }nzv 1} Negate DTACK

Figure 4-6. Word Write Cycle Flowchart
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BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO-FC2

2) Place Address on A1-A23

3) Assert Address Strobe (AS)

4) Set R/W 1o Write

5} Place Data on DO-D7 or D8-D15
laccording to AQ)

6] Assert Upper Data Strobe {UDS) or
Lower Data Strobe (LDS)

Y

Input the Data

(based on AQ) 1} Decode Address

2) Store Data on D0-D7 if LDS is Asserted
Store Data on DB-D15 if UDS is Asserted
3) Assert Data Transfer Acknowledge

(DTACK)
Terminate Output Transfer f—
1) Negate UDS and LDS
2) Negate AS
3) Remove Data from D0-D7 or D8-D15
4) Set R/W to Read
2= Terminate the Cycle

1) Negate DTACK

Start Next Cycle |

L

Figure 4-7. Byte Write Cycle Flowchart

SO S1 52 S3 5455 56 S7 SO S1 S253 S4 S5 56 S7 SO S S2 S3 S4 S5 S6 S7

ar-azz B s d =< )
Ao* | 1
Y e N e N

(=
w

N/ e
e I e S S
%/ P8 7% 7

DB-D15 Do

00-07 —C P o i e s S

Feo-Fe2 X X X )

*Internal Signal Only

I‘-—-— Word Write _)+<'_ Odd Byte Write -—-{"—— Even Byte erta—q
Figure 4-8. Word and Byte Write Cycle Timing Diagram
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4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies the
data in the arithmetic-logic unit, and writes the data back to the same address. In the MCB8000, this
cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set
(TAS) instruction uses this cycle to provide meaningful communication between processors in a
multiple processor environment. This instruction is the only instruction that uses the read-modify-
write cycles and since the test and set instruction only operates on bytes, all read-modify-write
cycles are byte operations. A read-modify-write flowchart is given in Figure 4-9 and a timing
diagram is given in Figure 4-10.

BUS MASTER SLAVE
Address the Device

1) Set R/W to Read

2) Place Function Code on FCO-FC2

31 Place Address on A1-AZ3

41 Assert Address Strobe (AS)

5] Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS) > Input the Data

1) Decode Address
2) Place Data on DO-D7 or DB-D15
3) Assent Data Transfer Acknowledge

Acquire the Data < (DTACK)
1) Lawch Data
2) Negate UDS or LDS
31 Start Data Modification 3 Terminate the Cycle
1) Remove Data from DO-D7 or D8-D15
2) Negate DTACK
Start Output Transfer -t

11 Set R/W to Wnite

2| Place Data on DO-D7 or DB-D15

31 Assert Upper Data Strobe (UDS) or Lower
Data Strobe (LDS)

Y

Input the Data

1) Store Data on DO-D7 or DB-D15
2) Assert Data Transfer Acknowledge

Terminate Output Transfar <% IDTACK)
1) Negate UDS or LDS
2) Negate AS
31 Remove Data from DO-D7 or D8-D15
4) Set R/W to Read i Terminate the Cycle
1) Negate DTACK
Start Next Cycle B

Figure 4-9. Read-Modify-Write Cycle Flowchart
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[L$ Indvisible Cycle =I

Figure 4-10. Read-Modify-Write Cycle Timing Diagram

4.2.2 Bus Arbitration

Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request,
2. receiving a grant that the bus is available at the end of the current cycle, and
3. acknowledging that mastership has been assumed.
Figure 4-11 is a flowchart showing the detail involved in a request from a single device. Figure 4-12

is a timing diagram for the same operation. This technigue allows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is
asserted. This type of operation would be true for a system consisting of the processor and one
device capable of bus mastership. In systems having a number of devices capable of bus master-
ship, the bus request line from each device is wire ORed to the processor. In this system, it is easy
to see that there could be more than one bus request being made. The timing diagram shows that
the bus grant signal is negated a few clock cycles after the transition of the acknowledge (BGACK)
signal.

However, if the bus requests are still pending, the processar will assert another bus grant within a
few clock cycles after it was negated. This additional assertion of bus grant allows external arbitra-
tion circuitry to select the next bus master before the current bus master has completed its re-
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.
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PROCESSOR

Grant Bus Arbitration

REQUESTING DEVICE

Request the Bus

1) Assert Bus Grant (BG)

1) Assert Bus Request (BR)

Terminate Arbitration

Acknowledge Bus Mastership

2

3

[}

1) Negate BG (and Wait for BGACK 10 be
Negated)

4

External Arbitration Determines Next Bus
Master

Next Bus Master Waits for Current Cycle 10
Complete

Next Bus Master Asserts Bus Grant
Acknowledge (BGACK) to Become New
Master S

Bus Master Negates BR

Re-Arbitrate or Resume
Processor Operation

Y

Operate as Bus Master

Perform Data Transfers (Read and Write
Cycles) According to the Same Rules the
Processor Uses

A

Release Bus Mastership

1) Negate BGACK

Figure 4-11. Bus Arbitration Cycle Flowchart




LDS/U05
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DO-D15 =
Feo-rc2 7X _— Joo—et X S o T X

Processor—f€—DMA Dewce—b!-i-—Processor"———*——'-DMA Device
Figure 4-12. Bus Arbitration Cycle Timing Diagram

4.2.2.1 REQUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (BR) signal. This is a wire-ORed signal {although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority level than the
external device and will relinquish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request signal goes inactive, the processor will
continue processing when it detects that the bus request is inactive. This allows ordinary process-
ing to continue if the arbitration circuitry responded to noise inadvertently.

4.2.2.2 RECEIVING THE BUS GRANT. The pracessor asserts bus grant (BG) as soon as possible.
Normally this is immediately after internal synchronization. The only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into the cycle to have asserted the address strobe (AS) signal. In this case, bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a specific priority-
encoded network. The processor is nat affected by the external method of arbitration as long as the
protocol is obeyed.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
device waits until address strobe, data transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the address strobe indicates that the
previous master has completed its cycle; the negation of bus grant acknowledge indicates that the
previous master has released the bus. (While address strobe is asserted, no device is allowed to
“break into” a cycle.) The negation of data transfer acknowledge indicates the previous slave has
terminated its connection to the previous master. Note that in Some applications data transfer
acknowledge might not enter into this function. General purpose devices would then be connected
such that they were only dependent on address strobe. When bus grant acknowledge is issued, the
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device is a bus master until it negates bus grant acknowledge. Bus grant acknowledge should not
be negated until after the bus cycle(s! is (are) completed. Bus mastership is terminated at the nega-
tion of bus grant acknowledge.

The bus request from the granted device should be dropped after bus grant acknowledge is
asserted. If a bus request is still pending, another bus grant will be asserted within a few clocks of
the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control. Note that the processor does
not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the MCB8000 is implemented with a finite state machine. A state
diagram of this machine is shown in Figure 4-13. All asynchronous signals to the MC68000 are syn-
chronized before being used internally. This synchronization is accomplished in a maximum of one
cycle of the system clock, assuming that the asynchronous input setup time (#47) has been met
(see Figure 4-14). The input signal is sampled on the falling edge of the clock and is valid internally
after the next falling edge.

As shown in Figure 4-13, input signals labeled R and A are internally synchronized on the bus re-
quest and bus grant acknowledge pins respectively. The bus grant output is labeled G and the inter-
nal three-state control signal T. If T is true, the address, data, and control buses are placed in a
high-impedance state when AS is negated. All signals are shown in positive logic (active high)
regardless of their true active voltage level. State changes (valid outputs) occur on the next rising
edge after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-15. The bus arbitration sequence while the bus is inactive (i.e., executing internal operations such
as a multiply instruction) is show in Figure 4-16.

If a bus request is made at a time when the MPU has already begun a bus cycle but AS has not been
_asserted (bus state S0), BG will not be asserted on the next rising edge. Instead, BG will be delayed
until the second rising edge following its internal assertion. This sequence is shown in Figure 4-17.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that
the handshake might not occur. Since different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be used to determine the duration be-
tween address strobe and data transfer acknowledge before issuing a bus error signal. When a bus
error signal is received, the processor has two options: initiate a bus error exception sequence or try
running the bus cycle again.
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State Diagram for R9M, TEE, BF4, CC1, RA
and DL6 Mask Sets

State Diagram for GN7 and Later Mask Sets RA

RA NOTE:

R = Bus Reqgest Internal 1. State machine will not change if the bus

A= Bus Grant Acknowledge Internal RA is SO or S1. Refer to 4.2.3 Bus

G =Bus Grant Arbitration Contol.

T = Three-State Control 10 2. The address bus will be placed in the high-
Bus Control Lc)gu:\2 impedance state if T is asserted and AS

X=Don't Care is negated.

Figure 4-13. MC68000 Bus Arbitration Unit State Diagram
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Bus Released from Three State and Processor Starts Mext Bus Cycle
BGACK Negated
BG Asserted and Bus Three Stated
BR Valid Internal
BR Sampled
BR Asserted

S0 S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 sS4

ws —  / ks SRR
Feo-Fc2 X ) KetsSonr e
wa \ f/

B Pracessm-———b*‘-—'ﬂus Inactlve—-)'{"—"" Alternate Bus Master ——PH- Processor =3

Figure 4-16. Bus Arbitration Timing Diagram — Bus Inactive

Bus Three Stated
BG Asserted.
BA Valid Internal
BR Sample
BR Asserted

Bus Released from Three State and

Processor Starts Next Bus Cycle
BGACK Negated Internal
BGACK Sampled

BGACK Negener;!,j l

S0 82 5S4 56 S0 S2 54 S6 S0

—

g

FCO-FC2 X } \ 5 A
RIW __S \ N

TR/ \ / e

DO-D15 —{ r— —
~¢———— Processor ;:: Alternate Bus Master —-—-)-I-q—- Processor ——————3p=

Figure 4-17. Bus Arbitration Timing Diagram — Special Case
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4.2.4.1 BUS ERROR OPERATION. When the bus error signal is asserted, the current bus cycle is
terminated. |f BERR is asserted before the falling edge of $2, AS will be negated in S7 in either a
read or write cycle. As long as BERR remains asserted, the data and address buses will be in the
high-impedence state. When BERR is negated, the processor will begin stacking for exception pro-
cessing. Figure 4-18 is a timing diagram for the exception sequence. The sequence is composed of
the following elements:

1. stacking the program counter and status register,

2. stacking the error information,

3. reading the bus error vector table entry, and

4. executing the bus error handler routine.
The stacking of the program counter and the status register is the same as if an interrupt had occur-
red. Several additional items are stacked when a bus error occurs. These items are used to deter-
mine the nature of the error and correct it, if possible. The bus error vector is vector number two
located at address $000008. The processor loads the new program counter from this location. A
software bus error handler routine is then executed by the processor. Refer to 5.2 EXCEPTION
PROCESSING for additional information.

S0 52 Sdec W W R g e TR 58

A1-A23 —

|

i .
bS/U0S — \ i \
R/W N \
DTACK s L
00016 — ), NG T
Feo-Fc2 X N
Lot \ R
HALT \

Initiate & Eail Eirai O ¥ | Initiate Bus
]-4———-»|<—- —>|-A——— on ot -
Foad esponse Failure Bus Error Detecti o Staching

Figure 4-18. Bus Error Timing Diagram

4.2.4.2 RE-RUN OPERATION. When, during a bus cycle, the processor receives a bus error signal
and the halt pin is being driven by an external device, the processor enters the re-run sequence.
Figure 4-19 is a timing diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address and data output lines in the high-
impedence state. The processor remains ‘'halted’’, and will not run another bus cycle until the halt
signal is removed by external logic. Then the processor will re-run the previous cycle using the same
function codes, the same data (for a write operation}, and the same controls. The bus error signal
should be removed at least one clock cycle before the halt signal is removed.

NOTE

The processor will not re-run a read-modify-write cycle. This restriction is made to
guarantee that the entire cycle runs correctly and that the write operation of a test-and-
set operation is performed without ever releasing AS. If BERR and HALT are asserted
during a read-modify-write bus cycle, a bus error operation results.
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Figure 4-19. Re-Run Bus Cycle Timing Diagram

4.2.4.3 HALT OPERATION. The halt input signal to the MCB8000 performs a halt/run/single-step
function in a similar fashion to the M6800 halt function. The halt and run modes are somewhat self
explanatory in that when the halt signal is constantly active the processor "halts’ (does nothing)
and when the halt signal is constantly inactive the processor ‘runs’’ {does something).

This single-step mode is derived from correctly timed transitions on the halt signal input. It forces
the processor to execute a single bus cycle by entering the run mode until the processor starts a bus
cycle then changing to the halt mode. Thus, the single-step mode allows the user to proceed
through (and therefore debug) processor operations one bus cycle at a time.

Figure 4-20 details the timing required for correct single-step operations. Some care must be exer-
cised to avoid harmful interactions between the bus error signal and the hait pin when using the
single-cycle mode as a debugging tool. This is also true of interactions between the halt and reset
lines since these can reset the machine.

S0 S2 54 56 S0 52 54 56

Al-A23D—( D { }_C

TGEIOEES o, SN uor s B S L e ST
R/W
BTRER e, o e i i Njgisoiiin o)
FeoFcz X RN
AALT \ /
F—Reac ’;%—: Halt ‘-f‘ Read ——-b{

Figure 4-20. Halt Processor Timing Diagram
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When the processor completes a bus cycle after recognizing that the halt signal is active, most
three-state signals are put in the high-impedence state, these include:

1. address lines, and

2. data lines.
This is required for correct performance of the re-run bus cycle operation.

While the processor is honoring the halt request, bus arbitration performs as usual. That is, halting
has no effect on bus arbitration. It is the bus arbitration function that removes the control signals
from the bus. .

The halt function and the hardware trace capability allow the hardware debugger to trace single bus
cycles or single instructions at a time. These processor capabilities, along with a software debugg-
ing package, give total debugging flexibility.

4.,2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor will attempt to
stack several words containing information about the state of the machine. If a bus error exception
occurs during the stacking operation, there have been two bus errors in a row. This is commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt. Once a
bus error exception has occurred, any bus error exception occurring before the execution of the
next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and does not con-
tribute to a doweble bus fault. Note also that this means that as long as the external hardware re-
quests it, the processor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor operation after the processor receives an external
reset input. The processor reads the vector table after a reset to determine the address to start pro-
gram execution. If a bus error occurs while reading the vector table (or at any time before the first
instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only
an external reset will start a halted processor.

4.2.5 Reset Operation

]

The reset signal is a bidirectional signal that allows either the processor or an external signal to reset’
the system. Figure 4-21 is a timing diagram for the reset operation. Both the halt and reset lines
must be asserted to ensure total reset of the processor.

When the reset and halt lines are driven by an external device, it is recognized as an entire system
reset, including the processor. The processor responds by reading the reset vector table entry (vec-
tor number zero, address $000000) and loads it into the supervisor stack pointer (SSP). Vector table
entry number one at address $000004 is read next and loaded into the program counter. The pro-
cessor initializes the status register to an interrupt level of seven. No other registers are affected by
the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock periods. In this
case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the
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internal state of the processor. All of the processor's internal registers and the status register are
unaffected by the execution of a reset instruction. All external devices connected to the reset line
will be reset at the completion of the reset instruction.

Asserting the reset and halt lines for ten clock cycles will cause a processor reset, except when V¢

is initially applied to the processor. In this case, an external reset must be applied for at least 100
milliseconds.

Plus 5 Voits :7

A
ce e t- > 100 Milliseconds —|
RESET
Tl | —f=
Je——3 1<4 Clocks [
Bus Croes. XXKXXXXKKXKIO00 S x @
2 3 4 5 6

NOTES
1) Internal start-up ume 41 PC High read in here Bus State Unknuwn:W

2) SSP High read in here 51 PC Low read in here

All
3) SSP Low read in here 61 First instruction fetched here Control. Signals: |nactive

Data Bus In Read Mode:

Figure 4-21. Reset Operation Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error condition, DTACK,
BERR, and HALT should be asserted and negated on the rising edge of the MCB8000 clock. This
will assure that when two signals are asserted simultaneously, the required setup time ( #47) for
both of them will be met during the same bus state.

This, or some equivalent precaution, should be designed external to the MCB8000. Parameter #48
is intended to ensure this operation in a totally asynchronous system, and may be ignored if the
above conditions are met.

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table
4-4);

Normal Termination: DTACK occurs first (case 1).
Halt Termination: HALT is asserted at the same time or before DTACK and BERR remains

negated (cases 2 and 3).

Bus Error Termination: BERR is asserted in lieu of, at the same time, or before DTACK (case
4); BERR is negated at the same time or after DTACK.

Re-Run Termination:  HALT and BERR are asserted in lieu of, at the same time, or before
DTACK (cases 6 and 7); HALT must be held at least one cycle after
BERR. Case b5 indicates BERR may precede HALT on all except RIM,
T6E, and BF4 early mask sets which allows fully asynchronous asser-
tion.
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Table 4-4 details the resulting bus cycle termination under various combinations of control signal se-
quences. The negation of these same control signals under several conditions is shown in Table 4-5
(DTACK is assumed to be negated normally in all cases; for best results, both DTACK and BERR
should be negated when address strobe is negated).

Table 4-4. DTACK, BERR, and HALT Assertion Results

Asserted on Rising
Cose Cr‘.'mml Edge of State Result
No. | Signal 7] N7
DTACK A S Normal cycle terminate and continue
1 BERR NA X
HALT NA X
DTACK A S Normal cycle terminate and halt Continue when HALT removed.
2 BERR NA X
HALT A S
DTACK NA A Normal cycle terminate and halt. Continue when HALT removed
3 BERR NA NA
HAL A S
DTACK X X Terminale and take bus error trap
4 8ERF A S
HAL NA NA
DTACK NA X RIM, TBE, BF4: Unprediclable resulls, no re-run, no efror trap,
5 BERR A 5 usually traps to vactor number 0
HALT NA A All others: terminate and re-run
DTACK X X Terminate and re-run when HALT removed
6 BERR A S
HALT A S
DTACK NA X Terminate and re-run when HALT removec
7 BERR NA A
HALT A S
Legend

N — the number of the current aven bus slate le g . 54, S8, elc )
A — signal 1s asserted in this bus siate

NA — signal is not asserted in this state

X — don't care

S — signal was asserted in previous state and remains asserted in this state

Table 4-5. BERR and HALT Negation Results

Conditions of Carrol Negated on Rising
Termination in Si n:; Edge of State Results — Next Cycle
Table 4-4 b N N+2
Bus Err BERR ® or ® |Takes bus error trap
M5B HALT e o e
R = BERR @ of ® [llegal sequence, usually traps 1o
g:04 HALT [ veclor number 0
P BERR ° Re-runs the bus cycle,
8,141} HALT ®
BERR ] May lengthen next cycle.
Normal HALT e o ®
ool BERAR @ |If next cycle is started it will
HALT e or none|be terminated as 8 bus error.

@ = Signal is negated in this bus state.
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EXAMPLE A:
A system uses a watch-dog timer to terminate accesses to unpopulated address space. The
timer asserts DTACK and BERR simultaneously after time out (case 4).

EXAMPLE B:
A system uses.error detection on RAM contents. Designer may (a} delay DTACK until
data verified and return BERR and HALT simultaneously to re-run error cycle (case 6), or if
valid, return DTACK (case 1); (b) delay DTACK until data verified and return BERR at same
time as DTACK if data in error (case 4).

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the MCE8000 can be used in an asyn-
chronous manner. This entails using only the bus handshake lines (AS, UDS, TDS, DTACK, BERR,
HALT, and VPA) to control the data transfer. Using this method, AS signals the start of a bus cycle
and the data strobes are used as a condition for valid data on a write cycle. The slave device
{memory or peripheral) then responds by placing the requested data on the data bus for a read cycle
or latching data on a write cycle and asserting the data transfer acknowlege signal {DTACK) to ter-
minate the bus cycle. If no slave responds ar the access is invalid, external control logic asserts the
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a slave device is valid on a read
cycle. The length of time that DTACK may precede data is given as parameter #31 and it must be
met in any asynchronous system to insure that valid data is latched into the processor. Notice that
there is no maximum time specified from the assertion of AS to the assertion of DTACK. This is
because the MPU will insert wait cycles of one clock period each until DTACK is recognized.

The BERR signal is allowed to be asserted after the DTACK signal is asserted. BERR must be
asserted within the time given as parameter #48 after DTACK is asserted in any asynchronous
system to insure proper operation. If this maximum delay time is violated, the processor may exhibit
erratic behavior.

4.4,2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK and other
asynchronous inputs, the asynchronous input setup time is given as parameter #47. If this setup is
met on an input, such as DTACK, the processor is guaranteed to recognize that signal on the next
falling edge of the system clock. However, the converse is not true — if the input signal does not
meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this, parameter #31
may be ignored. Note that if DTACK is asserted, with the required setup time, before the falling
edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four
clock periods.
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In order to assure proper operation in a synchronous system when BERR is asserted after DTACK,
BERR must meet the setup time parameter #27A prior to the falling edge of the clock one clock
cycle after DTACK was recognized. This setup time is critical to proper operation, and the MCB8000
may exhibit erratic behavior if it is violated.

NOTE

During an active bus cycle, VPA and BERR are sampled on every falling edge of the clock
starting with S0. DTACK is sampled on every falling edge of the clock starting with S4
and data is latched on the falling edge of S6 during a read. The bus cycle will then be ter-
minated in S7 except when BERR is asserted in the absence of DTACK, in which case it

will terminate one clock cycle later in S9.
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SECTION 5
PROCESSING STATES

This section describes the actions of the MC68000 which are outside the normal processing
associated with the execution of instructions. The functions of the bits in the supervisor portion of
the status register are covered: the supervisor/user bit, the trace enable bit, and the processor inter-
rupt priority mask. Finally, the sequence of memory references and actions taken by the processor
on exception conditions are detailed.

The MC6B8000 is always in one of three processing states: normal, exception, or halted. The normal
processing state is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to store results. A special case of the normal state is the stopped
state which the processor enters when a stop instruction is executed. In this state, no further
references are made.

The exception processing state is associated with interrupts, trap instructions, tracing, and other
exceptional conditions. The exception may be internally generated by an instruction or by an
unusual condition arising during the execution of an instruction. Externally, exception processing
can be forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to pro-
vide an efficient context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For example, if during
the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and halts. Only an external reset can restart a halted processor. Note that a pro-
cessor in the stopped state is not in the halted state, nor vice versa.

5.1 PRIVILEGE STATES

The bEOCGSSG}“*'bpera'tés i one of two states of privilegé:ithe '‘supervisor” state or the “useri State s ading .« .

The privilege state determines which operations are legal, are used to choose between the super-
visor stack pointer and the user stack pointer in instruction references, and may by used by an ex-
ternal memory management device to control and translate accesses.

The privilege state is a mechanism for providing security in a computer system. Programs should
access only their own code and data areas, and ought to be restricted from accessing information
which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state. In
this state, the accesses are controlled, and the effects on other parts of the system are limited. The
operating system executes in the supervisor state, has access to all resources, and performs the
overhead tasks for the user state programs.
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5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the supervisor state is
determined by the S bit of the status register; if the S bit is asserted (highl, the processor is in the
supervisor state. All instructions can be executed in the supervisor state. The bus cycles generated
by instructions executed in the supervisor state are classified as supervisor references. While the
processor is in the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the setting of the S bit. The
bus cycles generated during exception processing are classified as supervisor references. All stack-
ing operations during exception processing use the supervisor stack pointer.

5.1.2 User State

The user state is the lower state of privilege. For instruction execution, the user state is determined
by the S bit of the status register; if the S bit is negated (low), the processor is executing instruc-
tions in the user state.

Most instructions execute the same in user state as in the supervisor state. However, some instruc-
tions which have important system effects are made privileged. User programs are not permitted to
execute the stop instruction or the reset instruction. To ensure that a user program cannot enter the
supervisor state except in a controlled manner, the instructions which modify the whole state
register are privileged. To aid in debugging programs which are to be used as operating systems,
the move to user stack pointer (MOVE to USP) and move from user stack pointer (MOVE from
USP) instructions are also privileged.

The bus cycles generated by an instruction executed in the user state are classified as user state
references. This allows an external memory management device to translate the address and to
control access to protected portions of the address space. While the processor is in the user
privilege state, those instructions which use either the system stack pointer implicitly or address
register seven explicitly, access the user stack pointer,

5.1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception processing can
change the privilege state. During exception processing, the current setting of the S bit of the
status register is saved and the S bit is asserted, putting the processor in the supervisor state.
Therefore, when instruction execution resumes at the address specified to process the exception,
the processor is in the supervisor privilege state.

5.1.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made, using the en-
coding on the three function code output lines. This allows external translation of addresses, con-
trol of access, and differentiation of special processor state, such as interrupt acknowledge. Table
5-1 lists the classification of references.
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Table 5-1. Bus Cycle Classification

Function Code Qutput Function Code Output
FC2 1 FCo Reference Class FC2 Tl FCO Reference Class

o] 0 0 (Unassigned! 1 0 0 (Unassigned)

0 0 1 User Data 1 0 1 Supervisor Data

0 1 0 User Program 1 1 0 Supervisor Program
o] 1 1 (Unassigned! 1 1 1 Interrupt Acknowledge

5.2 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif-
ferent exception causes. During the first step, a temporary copy of the status register is made and
the status register is set for exception processing. In the second step the exception vector is deter-
mined and the third step is the saving of the current processor context. In the fourth step a new
context is obtained and the processor switches to instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine
which will handle that exception. All exception vectors are two words in length (Figure 5-1), except
for the reset vector which is four words. All exception vectors lie in the supervisor data space, ex-
cept for the reset vector which is in the supervisor program space. A vector number is an 8-bit
number which, when muitiplied by four, gives the address of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. In the case of inter-
rupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number
(Figure 5-2) to the processor on data bus lines DO through D7. The processor translates the vector
number into a full 24-bit address, shown in Figure 5-3. The memary layout for exception vectors is
given in Table 5-2.

Word 0 New Program Counter {(High} AD=0, A1=0

Word 1 New Program Counter (Low!} AD=0, A1=1

Figure 5-1. Format of Vector Table Entries

D15 D8 D7 DO

Ignored vI | vB v | vd | v3| v2|v1 | vD

Where:
v7 is the MSB of the Vector Number
v0 is the LSB of the Vector Number

Figure 5-2, Vector Number Format

A23 A10 AQ

All Zeroes VI B | vE | va| V3| v2 | vi| VOl O] O

Figure 5-3. Exception Vector Address Calculation
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As shown in Table 5-2, the memory layout is 512 words long {1024 bytes). It starts at address O and
proceeds through address 1023. This provides 255 unique vectors; some of these are reserved for
TRAPS and other system functions. Of the 255, there are 192 reserved for user interrupt vectors.
‘However, there is no protection on the first 64 entries, so user interrupt vectors may overlap at the
discretion of the systems designer.

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep-
tions are the interrupts and the bus error and reset requests. The interrupts are requests from

Table 5-2. Exception Vector Table

Vector Address Assizament
Number(s) | Dec Hex |Space
0 0 000 SP Reset: Initial SSP
- 4 004 SP Reset: Innial PC
2 8 008 sSD Bus Error
3 12 00C SD Address Error
4 16 010 sD llegal Instruction
5 20 014 SD Zero Divide
6 24 018 sD CHK Instruction
7 28 01C SD THAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulater
1 44 02C SD Line 1111 Emulator
12% 48 030 SD (Unassigned, Reserved)
13* 52 034 SD |Unassigned, Reserved)
14 56 038 SD |Unassigned, Reserved)
15 60 03C 5D Uninihialized Interrupt Vector
16-23* 64 04C s5D (Unassigned, Reserved)
95 06F =
24 96 060 sD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 12 070 SD Level 4 Interrupt Autovector
29 16 074 sSD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
32-47 128 080 SD TRAP Instruction Veclors
19 0BF =
48-63* 192 | 0CO SD (Unassigned, Reserved)
256 OFF -
64-255 256 100 SD User Interrupt Vectors
1023 | 3FF -

*Vector numbers 12, 13, 14, 16 through 23, and 48 through 63 are re-
served for future enhancements by Motorola, No user peripheral devices
should be assigned these numbers.
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peripheral devices for processor action while the bus error and reset inputs are used for access con-
trol and processor restart. The internally generated exceptions come from instructions, or from ad-
dress errors or tracing. The trap (TRAP), trap on overflow (TRAPV), check data register against up-
per bounds (CHK), and divide (DIV) instructions all can generate exceptions as part of their instruc-
tion execution. In addition, illegal instructions, word fetches from odd addresses, and privilege
violations cause exceptions. Tracing behaves like a very high-priority internally-generated interrupt
after each instruction execution,

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit is asserted, putting the processor into the
supervisor privilege state. Also, the T bit is negated which will allow the exception handler to ex-
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is
also updated.

In the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fetch and classified as an interrupt acknowledge. For all other ex-
ceptions, internal logic provides the vector number. This vectar number is then used to generate the
address of the exception vector.

The third step is to save the current processor status, except for the reset exception. The current
program counter value and the saved copy of the status register are stacked using the supervisor
stack pointer as shown in Figure 5-4. The program counter value stacked usually points to the next
unexecuted instruction; however, for bus error and address error, the value stacked for the program
counter is unpredictable, and may be incremented from the address of the instruction which caused
the error. Additional information defining the current context is stacked for the bus error and ad-
dress error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the ex-
ception vector. The processor then resumes instruction execution. The instruction at the address
given in the exception vector is fetched, and normal instruction decoding and execution is started.

SSP —» Status Register

5 Higher
H
‘e d Addresses
= Program Counter =— =— — = — — — — — —f

Figure 5-4. Exception Stack Order (Groups 1 and 2)

5.2.4 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped according to their occurrence and priority. The group 0
exceptions are reset, bus error, and address error. These exceptions cause the instruction currently
being executed to be aborted and the exception processing to commence within two clock cycles.
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The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc-
tions. These exceptions allow the current instruction to execute to completion, but pre-empt the ex-
ecution of the next instruction by forcing exception processing to occur (privilege violations and il-
legal instructions are detected when they are the next instruction to be executed). The group 2 ex-
ceptions occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero
divide exceptions are in this group. For these exceptions, the normal execution of an instruction
may lead to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have lowest priority. Within
group 0, reset has highest priority, followed by bus error and then address error. Within group 1,
trace has priority over external interrupts, which in turn takes priority over illegal instruction and
privilege violation. Since only one instruction can be executed at a time, there is no priority relation
within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if the condi-
tions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP instruction, the
bus error takes precedence, and the TRAP instruction processing is aborted. In another example, if
an interrupt request occurs during the execution of an instruction while the T bit is asserted, the
trace exception has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and priarity is given in Table 5-3.

Table 5-3. Exception Grouping and Priority

Group Exception Processing
Resat Exception processing begins
0 Address Error RUCHIRIO 9 beg
within two clock cycles
Bus Error
Trace
1 Interrupt Exceplion processing begins before
llegal the naxt instruction
Privilege
2 TRAPC'J:APV' Exception processing 1s started by
! normal instruction execution
Zero Divide

5.3 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is peculiar to it. The
following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Resst

The reset input provides the highest exception level. The processing of the reset signal is designed
for system initiation and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state
and the trace state is forced off. The processor interrupt priority mask is set at level seven. The vec-
tor number is internally generated to reference the reset exception vector at location 0 in the super-
visor program space. Because no assumptions can be made about the validity of register contents,
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in particular the supervisor stack pointer, neither the program counter nor the status register is sav-
ed. The address contained in the first two words of the reset exception vector is fetched as the ini-
tial supervisor stack pointer, and the address in the last two words of the reset exception vector is
fetched as the initial program counter. Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be pointed to by the initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to
reset external devices. This allows the software to reset the system to a known state and then con-
tinue processing with the next instruction.

5.3.2 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral devices to interrupt the processor. Inter-
rupt priority levels are numbered from one to seven, with level seven being the highest priority. The
status register contains a 3-bit mask which indicates the current processor priority, and interrupts
are inhibited for all priority levels less than or equal to the current processor priority.

An interrupt request is made to the processor by encoding the interrupt request level on the inter-
rupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts are
detected between instruction executions. If the priority of the pending interrupt is lower than or
equal to the current processor priority, execution continues with the next instruction and the inter-
rupt exception processing is postponed. (The recognition of level seven is slightly different, as ex-
plained in the following paragraph.)

If the priority of the pending interrupt is greater than the current processor priority, the exception
processing sequence is started. A copy of the status register is saved, the privilege state is sent to
the supervisor stack, tracing is suppressed, and the processor priority level is set to the level of the
interrupt acknowledged. The processor fetches the vector number from the interrupting device,
classifying the reference as an interrupt acknowledge and displaying the level number of the inter-
rupt being acknowledged on the address bus. If external logic requests an automatic vectoring, the
processor internally generates a vector number which is determined by the interrupt level number. If
external logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the usual ex-
ception processing, saving the program counter and status register on the supervisor stack. The
saved value of the program counter is the address of the instruction which would have been ex-
ecuted had the interrupt not been present. The content of the interrupt vector whose vector
number was previously obtained is fetched and loaded into the program counter, and normal in-
struction execution commences in the interrupt handling routine. A flowchart for the interrupt
acknowledge sequence is given in Figure 5-5, a timing diagram is given in Figure 5-6, and the inter-
rupt processing sequence is shown in Figure 5-7.

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt
priority mask, thus providing a *'non-maskable interrupt’’ capability. An interrupt is generated each
time the interrupt request level changes from some lower level to level seven. Note that a level seven
interrupt may still be caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.
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PROCESSOR INTERRUPTING DEVICE

Grant the Interrupt (—-{ Request the Interrupt ]

Compare Interrupt Level in Status Register
and Wait for Current Instruction to Complete
2} Assert Address Strobe (AS)

31 Place Interrupt Level on A1, A2, A3

41 Set Function Code to Interrupt Acknowledge > Provida tha Vector Number
5) Assert Address Strobe {AS)
6) Assert Data Strobes (UDS* and LDS) 1) Place Vector Number on DO-D7

2) Assert Data Transfer Acknowledge (DTACK)

Acquire the Vector Number <

1} Latch Vector Number
2] Negate U_Q§ and LDS
31 Negate AS !

[ Start Interrupt Processing I(——

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for axception processing. The
processor does not recognize anything on data lines D8 through D15 at this time

Release

1) Negate DTACK

Figure 5-5. Vector Acquisition Flowchart

A1-A3 H ‘).._ —_ )—L

|
EE

DTACR \ / \ / \
Feo-Fc2_ X 7 X

IPLO-IPL2 X
Last Bus Cycle of Instruction Stack IACK Cycle Stack and

(Read or Write) PCL | _(Vector Number Acquisition} |  Vector Fetch _ |
« »1< (ssp) P S Do i

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The pro-
cessor does not recognize anything on data lines DB through D15 at this time.

Figure 5-6. Interrupt Acknowledge Cycle Timing Diagram
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Last Bus Cycle
of Instruction Stack 'CAVEIZ Stack Stack
(Dunng Which F PCL —3= (Vector Number Status —3=1 PCH =
Interrupt Was fat SSP - 2) Acquisition] {at SSP - B) (at SSP - 4)
Recegmzed)

Read Read Fetch First Two

{ = Vector = Veclor Instruction Words
High o Low o of Interrupt
IA16-A31) 1AD-A15) Routine

NOTE: SSP refers to the value of the supervisor stack pointer before the interrupt occurs,

Figure 5-7. Interrupt Processing Sequence

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA or provides an interrupt during an interrupt acknowledge cycle
to the MCBB000. If the vector register has not been initialized, the responding M68000 Family
peripheral will provide vector 15, the uninitialized interrupt vector. This provides a uniform way to
recover from a programming error.

5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTACK or VPA, the bus
error line should be asserted to terminate the vector acquisition. The processor separates the pro-
cessing of this error from bus error by fetching the spurious interrupt vector instead of the bus error
vector. The processor then proceeds with the usual exception processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor-
mal conditions during instruction execution, or from use of instructions whose normal behavior is
trapping.

Some instructions are used specifically to generate traps. The TRAP instruction always forces an
exception and is useful for implementing system calls for user programs. The TRAPV and CHK in-
structions force an exception if the user program detects a runtime error, which may be an
arithemetic overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned {DIVU) instructions will force an exception if a division
operation is attempted with a divisor of zero.

5.3.6 lllegal and Unimplemented Instructions

“lllegal instruction' is the term used to refer to any of the word bit patterns which are not the bit
pattern of the first word of a legal instruction. During instruction execution, if such an instruction is



fetched, an illegal instruction exception occurs. Motorola reserves the right to define instructions
whose opcodes may be any of the illegal instructions. Three bit patterns will always force an illegal
instruction trap on all ME8000 Family compatible microprocessors. They are: $4AFA, $4AFB, and
$4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for Motorola system products. The
third pattern, $4AFC, is reserved for customer use.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as unimplemented in-
structions and separate exception vectors are given to these patterns to permit efficient emulation.
This facility allows the operating system to detect program errors, or to emulate unimplemented in-
structions in software.

5.3.7 Privilege Violations

In order to provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user state will cause an exception. The privileged instruc-
tions are:

STOP AND Immediate to SR
RESET EOR Immediate to SR
RTE OR Immediate to SR
MOVE to SR MOVE USP

5.3.8 Tracing

To aid in program development, the MCBE8000 includes a facility to allow instruction-by-instruction
tracing. In the trace state, after each instruction is executed an exception is forced, allowing a
debugging program to monitor the execution of the program under test,

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit is negated
{off), tracing is disabled, and instruction execution proceeds from instruction to instruction as nor-
mal. If the T bit is asserted (on) at the beginning of the execution of an instruction, a trace exception
will be generated after the execution of that instruction is completed. If the instruction is not ex-
ecuted, either because an interrupt is taken, or the instruction is illegal or privileged, the trace ex-
ception does not occur. The trace exception also does not occur if the instruction is aborted by a
reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is
pending on completion, the trace exception is processed before the interrupt exception. If, during
the execution of the instruction an exception is forced by that instruction, the forced exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu-
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the
trace exception, and finally the interrupt exception. Instruction execution resumes in the interrupt
handler routine.

5.3.9 Bus Error

Bus error exceptions occur when the external logic requests that a bus error be processed by an ex-
ception. The current bus cycle which the processor is making is then aborted. Whether the pro-
cessor was doing instruction or exception processing, that processing is terminated, and the pro-
cessor immediately begins exception processing.

5-10



Exception processing for the bus error follows the usual sequence of steps. The status register is
copied, the supervisor state is entered, and the trace state is turned off. The vector number is
generated to refer to the bus error vector. Since the processor was not between instructions when
the bus error exception request was made, the context of the processor is more detailed. To save
more of this context, additional information is saved on the supervisor stack. The program counter
and the copy of the status register are of course saved. The value saved for the program counter is
advanced by some amount, one to five words beyond the address of the first word of the instruc-
tion which made the reference causing the bus error. If the bus error occurred during the fetch of
the next instruction, the saved program counter has a value in the vicinity of the current instruction,
even if the current instruction is a branch, a jump, or a return instruction. Besides the usual informa-
tion, the processor saves its internal copy of the first word of the instruction being processed and
the address which was being accessed by the aborted bus cycle. Specific information about the ac-
cess is also saved: whether it was a read or a write, whether or not the processor was processing an
instruction, and the classification displayed on the function code outputs when the bus error occur-
red. The processor is processing an instruction if it is in the normal state or processing a group 2 ex-
ception; the processor is not processing an instruction if it is processing a group O or a group 1 ex-
ception. Figure 5-8 illustrates how this information is organized on the supervisor stack. Although
this information is not sufficient in general to effect full recovery from the bus error, it does allow
software diagnosis. Finally, the processor commences instruction processing at the address con-
tained in vector number two. It is the responsibility of the error handler routine to clean up the stack
and determine where to continue execution.

15 14 13 12 11 10 k) 8 7z 6 5 4 3 ¥4 1 0

SSP—»] R/W| /N | Function Code

Higher
Addresses

Instruction Register

Status Register

High

[— = Progrem Counter = — — = =— — — e e e ]
Low

R/W (read/write): write=0, read=1. I/N linstruction/not): instruction =0, not= 1

Figure 5-8. Exception Stack Order (Group 0)

If a bus error occurs during the exception processing for a bus error, address error, or reset, the pro-
cessor is halted and all processing ceases. This simplifies the detection of catastrophic system
failure, since the processor removes itself from the system rather than destroy any memory con-
tents. Only the RESET pin can restart a halted processor.

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a word or a long word
operand or an instruction at an odd address. The effect is much like an internally generated bus



error, so that the bus cycle is aborted and the processor ceases whatever processing it is currently
doing and begins exception processing. After the exception processing commences, the sequence
is the same as that for bus error including the information that is stacked, except that the vector
number refers to the address error vector instead. Likewise, if an address error occurs during the ex-
ception processing for a bus error, address error, or reset, the processor is halted. As shown in
Figure 5-9, an address error will execute a short bus cycle followed by exception processing.

On mask sets R9M, BF4, T6E, DL6, CC1, and GN7, UDS and LDS, as well as AS, are asserted.
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+{UDS and LDS are asserted on mask sets R9M, BF4, T6E, DL6, CC1, and GN7.

Figure 5-9. Address Error Timing Diagram
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SECTION 6
INTERFACE WITH M6800 PERIPHERALS

Motorola's extensive line of MB800 peripherals are directly compatible with the MCB88000. Some of
these devices that are particularly useful are:

MC6821 Peripheral Interface Adapter

MCEB840 Programmable Timer Module

MC6843 Floppy Disk Controller

MC6845 CRT Controller

MCB850 Asynchronous Communications Interface Adapter

MCB852 Synchronous Serial Data Adapter

MC6854 Advanced Data Link Controller

MCB8488 General Purpose Interface Adapter
To interface the synchronous ME800 peripherals with the asynchronous MC68000, the processor
modifies its bus cycle to meet the MB800 cycle requirements whenever an MBB00 device address is
detected. This is possible since both processors use memory mapped |/ 0. Figure 6-1 is a flowchart
of the interface operation between the processor and M6800 devices.

PROCESSOR SLAVE
Initiate the Cycle
1) The Processor Starts a Normal Read or
Write Cycle 2 Define MBB0O Cycle
1) External Hardware Asserts Valid Peripheral
Synchronize with Enable —}1 Address (VPA)

The Processor Monitars Enable (E) Until it is
Low [Phase 1)

The Processor Asserts Valid Memory
Address (VMA) > Transfer the Data

11 The Peripheral Waits Until E is Active
and then Transfers the Data

2

Terminate the Cycle <

1) The Processor Waits Until E Goes Low
{On a Read Cycle the Data is Latched
as E Goes Low Internally)
2) The Processor Negates VA
3} The Processor Negates AS, UDS, and LDS

X
L Start Next Cycle —I

Figure 6-1. MB68B00 Interfacing Flowchart
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6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 interface. They are: enable (E), valid memory ad-
dress (VMA), and valid peripheral address (VPA). Enable corresponds to the E or phase 2 signal in
existing M6B800 systems. The bus frequency is one tenth of the incoming MC68000 clock frequency.
The timing of E allows 1 megahertz peripherals to be used with 8 megahertz MCB80C0s. Enable has
a 60/40 duty cycle; thatis, itis low for six input clocks and high for four input clocks. This duty cy-
cle allows the processor to do successive VPA accesses on successive E pulses.

MB800 cycle timing is given in Figures 6-2, 6-3, 8-7, and 8-8. At state zero (S0} in the cycle, the ad-
dress bus is in the high-impedence state. A function code is asserted on the function code output
lines. One-half clock later, in state 1, the address bus is released from the high-impedence state.

S0 §2 sS4 w w w w W w S6 S0 82

NP | ) g
A_S -t \ J
DTACK
Data Out =y —
Dataln :)——
Foo-Fc2 X o
E\ ! e,
wa \ L A
TWIA \ v A—

Figure 6-2. MC68000 to M6800 Peripheral Timing — Best Case

SOS2S4w w wwwwwwwwwwww w 5650
CLK

araz _H
ABar \
DTACK
Data Out =y

Data In

FCO-FC2 l
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Figure 6-3. MC68000 to M6800 Peripheral Timing — Worst Case



During state 2, the address strobe (AS) is asserted to indicate that there is a valid address on the ad-
dress bus. If the bus cycle is a read cycle, the upper and/or lower data strobes are also asserted in
state 2. If the bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write) dur-
ing state 2. One-half clock later, in state 3, the write data is placed on the data bus, and in state 4
the data strobes are issued to indicate valid data on the data bus. The processor now inserts wait
states until it recognizes the assertion of VPA.

The VPA input signals the processor that the address on the bus is the address of an M8800 device
{or an area reserved for MB800 devices) and that the bus should conform to the phase 2 transfer
characteristics of the MB800 bus. Valid peripheral address is derived by decoding the address bus,
conditioned by the address strobe. Chip select for the MB800 peripherals should be derived by
decoding the address bus conditioned by VMA.

After recognition of VPA, the processor assures that the enable (E is low, by waiting if necessary,
and subsequently asserts VMA. Valid memory address is then used as part of the chip select equa-
tion of the peripheral. This ensures that the MB800 peripherals are selected and deselected at the
correct time. The peripheral now runs its cycle during the high portion of the E signal. Figures 6-2
and 6-3 depict the best and worst case M8800 cycle timing. This cycle length is dependent strictly
upon when VPA is asserted in relationship to the E clock.

I+ we assume that external circuitry asserts VPA as soon as possible after the assertion of AS, then
VPA will be recognized as being asserted on the falling edge of S4. In this case, no “extra” wait
cycles will be inserted prior to the recognition of VPA asserted and only the wait cycles inserted 1o
synchronize with the E clock will determine the total length of the cycle. In any case, the synchroni-
zation delay will be some integral number of clock cycles within the following two extremes:
1. Best Case — VPA is recognized as being asserted on the falling edge three clock cycles before
E rises lor three clock cycles after E falls).
2. Worst Case — VPA is recognized as being asserted on the falling edge two clock cycles before
E rises (or four clock cycles after E falls).

During a read cycle, the processor latches the peripheral data in state 6. For all cycles, the processor
negates the address and data strobes one-half clock cycle later in state 7 and the enable signal goes
low at this time. Anaother half clock later, the address bus is put in the high-impedence state. During
a write cycle, the data bus is put in the high-impedence state and the read/write signal is switched
high. The peripheral logic must remove VPA within one clock after the address strobe is negated.

DTACK should not be asserted while VPA is asserted. Notice that the MCB8000 VMA is active low,
contrasted with the active high MBB00 VMA.. This allows the processor to put its buses in the high-
impedence state on DMA requests without inadvertently selecting the peripherals.

6.2 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, the VPA is
asserted, the MCB8000 will assert VIMA and complete a normal ME800 read cycle as shown in Figure
-4, The processor will then use an internally generated vector that is a function of the interrupt be-
ing serviced. This process is known as autovectoring. The seven autovectors are vector numbers 25
through 31 (decimal),
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Autovectoring operates in the same fashion (but is not restricted to) the MB800 interrupt sequence.
The basic difference is that there are six normal interrupt vectors and one NM| type vector. As with
both the ME800 and the MCBB000's normal vectored interrupt, the interrupt service routine can be
located anywhere in the address space. This is due to the fact that while the vector numbers are
fixed, the contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, the MB800 peripheral address decoding should pre-
vent unintended accesses.

SO S2 5S4 S6 SO S2 S4 w w w w w w w w w SB SO S2
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D0-07 { )
Feorcz X Y \
L0 L: — ——
= %
ViA \ /S

]-(..whk—l\umvector Operation -—-—-—)-I
Cycle

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The
processor does not recognize anything on data lines DB through D15 at this time.

Figure 6-4. Autovector Operation Timing Diagram

6-4



SECTION 7
INSTRUCTION SET AND EXECUTION TIMES

7.1 INSTRUCTION SET

The following paragraphs provide information about the addressing categories and instruction set
of the MCB8000.

7.1.1 Addressing Categories

Effective address modes may be categorized by the ways in which they may be used. The following
classifications will be used in the instruction definitions.
Data If an effective address mode may be used to refer to data operands, it is considered a
data addressing effective address mode.
Memory If an effective address mode may be used to refer to memory operands, it is con-
sidered a memory addressing effective address mode.
Alterable  If an effective address mode may be used to refer to alterable (writeable) operands,
it is considered an alterable addressing effective address mode.
Control |f an effective address mode may be used to refer to memory operands without an
associated size, it is considered a control addressing effective address mode.
These categories may be combined, so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such classifications as alterable memory or
data alterable. The former refers to those addressing modes which are both alterable and memory
addresses, and the latter refers to addressing modes which are both data and alterable.

Table 7-1 shows the various categories to which each of the effective address modes belong. Table
7-2 is the instruction set summary.

Table 7-1. Effective Addressing Mode Categories

Effective . .
Address Addressing Categories
Modes Mode Register Data | Memory Control Alterable
Dn 000 Register Number X - - X
An 001 Register Number | — - - X
1An) 010 Register Number X X X X
(An) + an Register Number X X — X
—(Anl 100 Register Number X X - X
diAn) 1m Register Number X X X X
dlAn, ix) 110 Register Number X+ X X X
xxx.W m 000 X X X X
xxx. L m 001 X X X X
d(PC) m 010 X X X -
dIPC, ix) m on X X X -
Fxxx m X X X - -
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Table 7-2. Instruction Set (Sheet 1 of 2)

7-2

Condition
Mnemonic Description Operation Codes
NlZ|Vv|C

ABCD Add Decimal with Extend (Bestination) jg + (Sourcel 10 + X — Destination | 01 ] V)
ADD Add Binary (Destination) + (Source) — Destination b el e i
ADDA Add Address {Destination) + {Sourcel — Destination el B Bl Bl B
ADDI Add Immediate (Destination} + immediate Data — Destination ol e
ADDQ Add Quick |Destination) + Immediate Data— Destination L el IRl
ADDX Add Extended {Destination) + (Source! + X — Destination Ll Bl el Bl i
AND AND Logical (Destination] A |Sourcel = Destination —-[*]*]ojo
ANDI AND Immediate (Destination) A Immediate Data — Destination —|*[{*|o]o
ANDI to CCR  |AND Immediate to Condition Codes (Source) A CCR— CCR b (L R B R
ANDI to SR AND Immediate to Status Register (Source) A SAR— SR L L I B
ASL, ASR Arithmetic Shift [Destinaticn) Shifted by < count> — Destination ik (e (o] [
Bce Branch Conditionally If ¢cc then PC+ d—PC =|=1-]1-1-

~ < tit number>) OF Destination—Z
BCHG Test a Bit and Change ~{<bit number>) OF Destination— —=1*|-1-

<bit number> OF Destination
BCLR Test a Bit and Clear (;_‘f(b't"i:“r‘l‘:"rii';; Efgg“gg;‘l:’;;z S I~ | [
BRA Branch Always BC+d—PC e Bl el I
BSET Test a Bit and Ser i B R et < =l -
BSRH Branch to Subroutine PC— —(SPl; PC+d—PC = R el el
BTST Test a Bit ~ (< bit number>) OF Destination—=Z o o e e
CHK Check Register Against Bounds 11 Dn <0 or Dn> (<ea>) then TRAP -[{*|uju]u
CLR Clear and Operand 0-— Dastination —|0J1]0]0O
CMP Compare {Destination) — (Sourcel -1*1*|**
CMPA Compare Address (Destination) — (Source) =|*|*]|=]*
CMPI Compare Immediate [Destination] — Immediate Data e ] [ | il
CMPM Compare Memory (Destination} — (Sourcel —1*1*| "
DBce Test Condition, Decrement and Branch |If ~cc then Dn—1—Dn; if Dn# — 1 then PC+d—PC | — | = [ =] = —
DIVS Signed Divide [Destination}/{Source) = Dastination = [**™ 0
DIVU Unsigned Divida (Destination)/ {Saurce) — Dastination ~|*|*|*|o
EOR Exclusive OR Logical {Destination! @ {Source) — Destination -|[*[*]ojo
EORI Exclusive OR Immediate {Destination! @ Immediate Data — Destination —|*[*|ofo
EORI to CCR E"f;“g';ﬁdﬁ:u”f:‘ggi:“" [Sourcel ® CCR— CCR olefe]a]e
EORI 10 SR E*f{'}“g't"a":ugﬂﬁzg“ggzﬁ"a‘ﬂ {Source) @ SR— SR JHREE
EXG Exchange Register Rx++Ry o el R )
EXT Sign Extend (Destinationl Sign-Extended — Destination —{*|* | 6|0
JMP Jump Destination — PC -1—=|-1-1|-
JSR Jump to Subroutine PC— —(SP); Destination— PC i e el el
LEA Load Effective Address <ea>—An - ==
LINK Link and Allocate An— —[5P); SP—+ An; SP + Displacement — SP = [=]=|-
LSL, LSR Logical Shift (Destination} Shifted by < count> — Destination ) ] e 2 i
MOVE Move Data from Source 1o Destination |{Sourcel — Destination -1*|*lao]o
MOVE 10 CCR |Move to Condition Code {Source) — CCR Ll A i i
MOVE to SR Move to the Staws Register (Source} — SR Ll e R

A logical AND * affected

V logical OR — unaffected

@ logical exclusive OR 0 cleared

~ logical complement 1 setl

U undehned




Table 7-2. Instruction Set (Sheet 2 of 2)

Condition
Mnemonic Description Operation Codes
X|[N|Z|V]|C
MOVE trom SR |Mave trom the Status Register SR — Destination - —| -
MOVE USP Move User Stack Fointer USP—=An, An—USP (] ==
MOVEA Move Address (Source) — Dastination = -
MOVEM Move Muttiple Registers Registers— Destination . :
= |Sourcel = Regisiers
MOVEP Move Peripheral Data {Sourcel — Desunation =l=[=
MOVEQ Move Quick Immediate Data — Destination -[*]*]o]o
MULS Signed Multiply (Destination) XI1Sourcel — Destination —|[*1*lofo
MULU Unsigned Mult:ply Destination) X(Sourcel — Destination —|*[{*]ofo
NBCD Negate Decimal with Extend 0~ {Destination) 1 - X — Destination ful*{ul*
NEG Negate 0- (Destination} — Desunation i il N
NEGX Negate with Extend 0~ (Destinaton) - X — Destination il e e
NOP No Operation —|-1- -
NOT Logical Complement ~ (Destination) — Destination —|1*1*lojo
OR Inclusive OR Logical (Destination] v iSourcel — Destination —|*1"] 0]«
ORI Inclusive OR Immecdiate IDestination! v Immediate Data— Destination —|*]*lo]o
ORI 10 CCR "‘fg‘f:“;g:o":“&?{::w ISourcel v CCR— CCR = x] e
ORI 1o SR lnfgj?l’:n?jg;g?;?;mm (Source) v SE— SR L8 Rl Gl I B
PEA Push Effective Address <ea>— - (5P —|=1=]-1-
RESET Reset External Device - e e
ROL, ROR Rotate (Without Extend) (Destination) Rotated by <count> — Destination —[*[*]o]*
ROXL, ROXR |Rotate with Extend (Destination) Rotated by < coum> — Destination ol o] - g
RTE Return from Exception ISPl + —5R; [SP)+ —P( ol sl S I
RTR Return and Restore Condition Codes  |(SP)+ — CC; (SP) 4 — PC L e B I R
RTS Return from Subroutine (SPI+ —PC - - |-
SBCD Subtract Decimal with Extend |Cestination) - {Sourcel 1g— X — Destination “lu[*|ul*
Sce Set According to Condition It c¢ then 1's— Destination else 0's — Destinalion - =1- -
STOP Load Status Register and Stop Immediate Data = SR: STOP o ES S R
su8 Subtract Binary {Destination! - (Source) — Destination s Il I
SUBA Subtract Address (Destination) - (Sourcel — Destination —|=]-| -
SuBl Subtract Immediate {Destination] - Immediate Data — Destination ! Sl Bl B I
SUBQ Subtract Quick {Destination) - Immediate Data— Destinauon i Bl Ll B
SUBX Subtract with Extend (Destination) - ( Sourcel — X — Destinalion NN
SWAP Swap Register Halves Register [31:16] == Register [15:0] —|*[*f{o]o0
TAS Test and Set an Operand {Destination} Tested — CC; 1— (7] OF Destination -|*|{*|0fo
TRAP Trap PC— —(SSP); SR— - [SSP); (Vectort —PC -1=1-1-1-
TRAPV Trap on Overflow If V¥ then TRAP ) -
TS8T Test and Operand Destination) Tested — CC -I*1*lo]o
UNLK unlink An—5F; 5P+ — An —|-1-
| 1= bit number * atfected
A logical AND — unaitected
V logical OR 0 cleared
@logical exclusive OR 1 set

~ logical complement
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7.1.2 Instruction Prefetch

The MC68000 uses a two-word tightly-coupled instruction prefetch mechanism to enhance perfor-
mance. This mechanism is described in terms of the microcode operations involved. If the execu-
tion of an instruction is defined to begin when the microroutine for that instruction is entered, some
features of the prefetch mechanism can be described.

1. When execution of an instruction begins, the operation word and the word following have
already been fetched. The operation word is in the instruction decoder.

2. In the case of multi-word instructions, as each additional word of the instruction is used
internally, a fetch is made to the instruction stream to replace it.

3. The last fetch for an instruction from the instruction stream is made when the operation word
is discarded and decoding is started on the next instruction.

4. If the instruction is a single-word instruction causing a branch, the second word is not used.
But because this word is fetched by the preceding instruction, it is impossible to avoid this
superfluous fetch.

5. In the case of an interrupt or trace exception, both words are not used.

6. The program counter usually points to the last word fetched from the instruction stream.

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms of external
clock (CLK) periods. In this timing data, it is assumed that both memory read and write cycle times
are four clock periods. Any wait states caused by a longer memory cycle must be added to the total
instruction time. The number of bus read and write cycles for each instruction is also included with
the timing data. This timing data is enclosed in parenthesis following the execution periods and is
shown as (r/w} where r is the number of read cycles and w is the number of write cycles.

NOTE

The number of periods includes instruction fetch and all applicable operand fetches and
stores.

7.2.1 Effective Address Operand Calculation Timing

Table 7-3 lists the number of clack periods required to compute an instruction’s effective address. It
includes fetching of any extension waords, the address computation, and fetching of the memory
operand. The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are
no write cycles involved in processing the effective address.

7.2.2 Move Instruction Execution Times

Tables 7-4 and 7-5 indicate the number of clock periods for the move instruction. This data includes
instruction fetch, operand reads, and operand writes. The number of bus read and write cycles is
shown in parenthesis as (r/w).
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Table 7-3. Effective Address Calculation Times

Addressing Mode Byte, Word Long
Register
Dn Data Register Direct 0(0/0) 000/0)
An Address Register Direct 0(0/0) 010/0}
Memory
[An) Address Register Indirect 401/00 8(2/0)
(An} + Address Register Indirect with Pastincrement 4(1/0) B(2/0)
—(An) Address Register Indirect with Predecrement 6(1/0) 1012/0)
dlAn) Address Register Indirect with Displacement 8(2/0) 12(3/0)
dlAn, ix)* Address Register Indirect with Index 10(2/0) 14(3/0)
xxx. W Absolute Short 8(2/0) 1213/00
xxx. L Absoclute Long 12{3/01 1614/0
d(PC) Program Counter with Displacement a(2/01 12(3/0)
dIPC, ix}* Program Counter with Index 102/0) 14(3/0)
# xxx Immediate 4011/0) 812/0)
* The size of the index register (ix) does not afect execution time
Table 7-4. Move Byte and Word Instruction Execution Times
Dastination
Source Dn An (An) (An) + —(An) dlAn) [dlAn, iX)*[ oW xxx. L
Dn 401/0) 401/0) Bi1/1) 8(1/1) B11/1) 1202/ 1412/7) 1212/1 1613/1)
An 40/00 411/0) 8(1/1) 801/11 801/1) 12(2/1) 1412/1) 12(2/1) 1613/1)
1An) 8(2/0 8(2/0) 12(2/1) 122/ 12(2/1) 1613/1) 18(3/1) 1613/1) 2014/1)
{An) + 8(2/0) 8(2/0) 12271 12(2/1) 120271} 1613/1) 18(3/7] 16(3/1) 2014/1)
—(An) 10(2/0) 10(2/0) 14(2/1) 14(2/1) 14(2/1) 18(3/1) 2003/ 18(3/1) 22(4/1)
diAn) 12(3/0) 12(3/0) 1613/1) 16i3/1) 16(3/1) | 20(4/1) 22(4/1) 20(4/1) 2415/1)
dlAn, ix)* 14(3/01 14(3/0) 18(3/1) 1813/1) 1813/1) 221a/1) 24(4/1) 2214/1) 26(5/1)
X, W 12(3/01 12(3/01 16(3/1) 16(3/1) 1613/1) 2014/1) 22(4/1) 2014/1) 24(5/1)
xxx. L 16(4/0) 16(4/01 20(4/1) 2014/1) 2014/1) 24(5/1) 26(56/1) 2415/1) 28(6/1)
diPC) 12(3/0) 12(3/0) 1613/1) 16(3/1) 16(3/1) | 20(4/1) 22(4/1) 2014/1) | 24(5/1)
diPC, ix)* 1413/0} 1413/0) 1813/11 18(3/11 18(3/1) | 24/1) 24(4/1) 22(4/1) | 26(5/1)
#xxx 8(2/0 B12/0) 1212/1) 1212/1) 12(2/1) | 1613/1) 18(3/1) 1613/1) 20(4/1)
* The size of the index register (ix) does not affect execution time
Table 7-5. Move Long Instruction Execution Times
So Destination
e Dn An (An) (An)+ | —1An) diAn) [d(An, i) ¥] oW xoux, L
Dn 4(1/0) 401/0) 12001/2) 12(1/2) 12(1/2) 16(2/2) 1812/2) 16(2/2) 2013/2)
An 401/0) 4(1/0) 12(1/21 1201/2) 1201/2) 1612/2) 18(2/2) 16(2/2) 2013/2)
1An) 12(3/01 12(3/0) 20(3/2) 2003/2) | 2003/2) 24(4/2 2614/2 24(4/2) 28(5/2)
[An) + 12(3/0) 1213/00 2003/2) 2003/2) 2013/2) 2444/2) 2614/2) 24(4/2) 2815/2}
= 1An) 144370} 14(3/0) 22(3/2) 22(3/2) 22(3/2) 26(4/2) 2814/2) 2614/2) 3015/2}
dlAn) 16(4/0) 18(4/0) 24(4/2) 2414/2) 24(4/2) 28(5/2) 30(5/2) 2815/2) 3216/2)
diAn, ix1* 184/01 | 18(4/01 | 264/2) | 26(4/2) | 264/2) | 3015/2) | 3215/2) | 3005/2) | 3416/2)
xxx. W 16(4/0) 1614/01 24(4/2) 24(4/2) | 24(4/2) 28(5/2) 3015/2 28(5/2) | 3216/2)
xxx. L 20(6/0) 20(5/0) 28(5/2) 28(5/2) | 28(5/2) 32(6/2) 341672 32(6/2) | 36(7/2)
d(PC) 16(4/0) 16(4/0) 2414/2) | 24(4/2) 2414/2) | 2B(5/2) 30(5/2) 28(5/2) | 32(5/2)
diPC, ix)* 18(4/01 18(4/0) 2614/2) | 26(4/2) | 2614/2) | 30(5/2) 32(5/2) 3015/2) | 3416/2)
#xxx 1213/0) 1213/0) 2013/2) | 20(3/2) | 2013/2) 2414/2) 2614/2) 24(4/2}) | 2B(5/2)

*The size of the index register (ix) does not atfect execution time.
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7.2.3 Standard Instruction Execution Times

The number of clock periods shown in Table 7-6 indicates the time required to perform the opera-
tions, store the results, and read the next instruction. The number of bus read and write cycles is
shown in parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where indicated.

In Table 7-6 the headings have the following meanings: An= address register operand, Dn= data
register operand, ea= an operand specified by an effective address, and M = memory effective ad-

dress operand.

Table 7-6. Standard Instruction Execution Times

Instruction Size op<ea>, Ant op<ea>, Dn op Dn, <M>
ADD Byte, Word 801/01+ 401/01+ 8{1/1)+
Long a01/01+** 6(1/01+ % * 1201/2) +
AND Byte, Word - 401/0) + Bt1/1)+
Long - 6(1/0)+ %+ 1201/21 +
CMP Byte, Word 601/0} + 401/0) + -
Long Bl1/0) + Bi1/0) + -
DIVS - - 16811/0) + * -
Divu - — 14001/0) + * -
EOR Byte, Word - 4(1/0)% = 8(1/1)+
Long - 8(1/0p* % * 1201/2) +
MULS - - 7001701+ * -
MULU - - 70(1/0) + * -
OR Byte, Word = 40170+ 8(1/1) +
Long — 601/0)+** 12(1/2) +
SUB Byte, Word B11/0)+ 401/01 + 8l1/1)+
Long BI1/0)+** B(1/0)+ ** 1201/2) +
NOTES:

- +

add effective address calculation time

*

R

word or long only

indicates maximum value

The base time of six clock periods is increased to eight if the effective address mode is
register direct or immediate (effective address time should also be added].

Only available effective address mode is data register direct

DIVS, DIVU — The divide algorithm used by the MCB8000 provides less than 10% difference

MULS,

between the best and worst case timings.
MULU — The multiply algorithm requires 38+ 2n clocks where n i1s defined as:
MULU: n=the number of ones in the <ea>
MULU: n=concatanate the <ea> with a zero as the LSB; nis the resultant number of
10 or 01 patterns in the 17-bit source; i.e., worst case happens when the
source is $5656.

7.2.4 Immediate Instruction Execution Times

The number of clock periods shown in Table 7-7 includes the time to fetch immediate operands,
perform the operations, store the results, and read the next operation. The number of bus read and
write cycles is shown in parenthesis as (r/w). The number of clock periods and the number of read
and write cycles must be added respectively to those of the effective address calculation where in-

dicated.

In Table 7-7, the headings have the following meanings: # = immediate operand, Dn= data register
operand, An= address register operand, M =memory operand, and SR = status register.
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Table 7-7. Immediate Instruction Execution Times

Instruction Size op #, Dn op #, An op#, M
ADDI Byte, Word 8(2/0 - 1202/ +
Long 16(3/0) - 20(3/2) +
ADDQ Byte, Word 4(1/0) 801/0)* 8(1/1)+
Long 8(1/0 8(1/0) 1201/2) +
ANDI Byte, Word 8(2/0 - 1202/ 11+
Long 16(3/01 - 2003711 +
CMPI Byte, Word Bl2/0) - 812/0) +
Long 14(3/0} - 12{3/01 +
EORI Byte, Word 8(2/0) - 1202/1) +
Long 16(3/0) - 2003/2) +

MOVEQ Long 4(1/0) - -
ORI Byte, Word 8(2/0) - 12(2/1) +
Long 16(3/0) - 20(3/2) +
- ( ?
SUBI Byte, Word 802,01 12024104
Long 16(3/0) - 20(3/2) +

1/ * /
SUBQ Byte, Word 401/00 8(1/0) 8(1/1} +
Long BI1/0) 8(1/0) 12(1/2) +

+ add effective address calculation time
*waord only

7.2.5 Single Operand Instruction Execution Times

Table 7-8 indicates the number of clock periods for the single operand instructions. The number of
bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective address
calculation where indicated.

Table 7-8. Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR Byte, Word 4(1/0) Bl1/ 1+
Long 6(1/0) 12(1/2) +

NBCD Byle 601/01 8(1/1)+
NEG Byte, Word 401/01 8(1/1) +
Long 6(1/0) 1201/2) +

NEGX Byte, Word 4(1/0) 81/} +
Long 6(1/0) 1201/2)+

NOT Byte, Word 4(1/0) 801/1)+
Long 6(1/0) 1201/2) +

Byte, False 41/0) 801/ +

Sce Byte, True 81700 B/ 1T+
TAS Byte 4(1/0) 1001/ +
TST Byte, Word 4(1/01 4(1/01+
Long ’ 4(1/01 4(1/0) +

+ add effective address calculation time
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7.2.6 Shift/ Rotate Instruction Execution Times

Table 7-9 indicates the number of clock periods for the shift and rotate instructions. The number of
bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective address
calculation where indicated.

Table 7-9. Shift/Rotate Instruction Execution Times

Instruction Size Register Memory
[ (1/
ASR, ASL Bvte, Word 6 + 2n(1/0) CRTALE
Long 8 + 2n{1/0) -
- =
LSR, LSL Byte, Word 6 + 2n(1/0) TRIEIE
Long 8 + 2n(1/0) =
Byte, Word 6 + 2nl1/0) (1/1] +
ROR, ROL Id L n 8(1/11
Long 8 + 2nl1/0) =
(1/0)
ROXR, ROXL Byte, Word 6 + 2n(1/0 B/ +
Long 8 + 2n(1/0) =

+ add effective address calculation time
n is the shift or rotate count

7.2.7 Bit Manipulation Instruction Execution Times

Table 7-10 indicates the number of clock periods required for the bit manipulation instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where indicated.

Table 7-10. Bit Manipulation Instruction Execution Times

: . Dynamic Static
Instruction Size - =
Register Memory Register Memory
BOHG Byte - Bi1/1)+ - 120211 +
Long an/o* - 1212/0)* -
- (1/1) -
BCLR Byte 8 + 12(2/1) +
Long 10(1/00* - 14(2/01* -
- 1/ — i
BSET Byte 81/ + 12(2/1) +
Long 8{1/0)* - 12(2/01* =
BTST Byte - 401/01 + - BI2/0) +
Long 6(1/0) - 10(2/0 -

+ add effective address calculation time
* indicates maximum value

7.2.8 Conditional Instruction Execution Times

Table 7-11 indicates the number of clock periods required for the conditional instructions. The
number of bus read and write cycles is indicated in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec-
tive address calculation where indicated.
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Table 7-11. Conditional Instruction Execution Times

. . Branch Branch
Instruction Displacement Taken Not Taken
8 Byte 1012/0) 8I1/0)
£e Word 1002/0) 1212/0)
BRA Byle 1012/0) -
Word 10(2/0) —
BSR Byte 18(2/2) -
Word 18(2/2) —
CC true — 1212/0)
DBce
CC false 10(2/0) 14(3/0)

+ add effective address calculation time
*indicates maximum value

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Table 7-12 indicates the number of clock periods required for the jump, jump-to-subroutine, load ef-
fective address, push effective address, and move multiple registers instructions. The number of
bus read and write cycles is shown in parenthesis as (r/w).

Table 7-12. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An] (An) + —(An) dlAn) [d(An, ix)+] oW xxx.L diPC) | dIPC, ix)*
JMP - 8(2/0) - - 1012/0) 14(3/0) 10(2/0) 1213/0) 10(2/0) 1413/0)
JSR - 16(2/2) - - 1B(2/2) 22(2/2) 18(2/2) 20(3/2) 18(2/2) 22(2/2)
LEA - 4(1/01 - - B(2/0) 12(2/0) 8(2/0) 12(3/0) 8(2/01 12(2/0)
PEA - 1201/2) - = 16(2/2) 2002/2) 1612/2) 2013/2) 1612/2) 2002/2)
Word 12+4n 12+4n - 16+4n 18+4n 16+4n 20+4n 16+4n 18+4n
MOVEM 13+ n/0) (3+n/0) 4+n/0) | (44+n/0) | (44+n/0}| (B5+n/0) | 4+n/0) | (4+n/0
M=R Long 12+8n 12+8n - 16+8n 18+8n 16+8n 20+8n 16+8n 18 +8n
{3+ 2n/0) {3+ 2n/0) 4+2n/0) [14+2n/0) {4+ 2n/0) | 15+ 2n/0) | (4+2n/0) [ 14+ 20/0)
Word 8+4n - 8+4n 12+4n 14 +4n 12 +4n 16+4n - -
MOVEM (2/n) (2/n) (3/n) (3/nl (3/n) (4/n) - -
R—M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - -
{2/2n) - 12/2n) (3/2n) (3/2n) 13/2n) 14/2n) - -

n is the number of registers to move
*is the size of the index register [ix) does not affect the instruction’s execution time

7.2.10 Multi-Precision Instruction Execution Times

Table 7-13 indicates the number of clock periods for the multi-precision instructions. The number of
clock periods includes the time to fetch both operands, perform the operations, store the results,
and read the next instructions. The number of read and write cycles is shown in parenthesis as
(r/wi.

In Table 7-13, the headings have the following meanings: Dn=data register operand and
M= memory operand.
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Table 7-13. Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn opM, M

\ (1/ i)

ADDX Byte, Word 401/01 18{3/1)
Long 801/0 30(5/2)

CMPM Byte, Word - 72(3.'.[))
Long 20(5/0)

it ? 1/00 {3/

SUBX Byte, Word 4 184.3.’.1}
Long 801701 30(5/2)

ABCD Byte 601/01 18(3/1)
SBCD Byte 611/01 18(3/1)

7.2.11 Miscellaneous Instruction Execution Times

Tables 7-14 and 7-15 indicate the number of clock periods for the following miscellaneous instruc-
tions. The number of bus read and write cycles is shown in parenthesis as (r/wl. The number of
clock periods plus the number of read and write cycles must be added to those of the effective ad-
dress calculation where indicated.

Table 7-14. Miscellaneous Instruction Execution Times

Instruction Size Register Memory
ANDI to CCR Byle 20{3/0} =
ANDI to SR Word 20(3/0) -
CHK - 1001/0} + -
EORI to CCR Byle 20(3/01 =
EORI to SR Word 20(3/01 —
ORI to CCR Byte 20(3/0) —
ORI to SR Word 20(3/0) —
MOVE from SR - 6(1/0) 801/1) +
MOVE 10 CCR - 12(2/01 12(2/01 +
MOVE to SR - 12(2/01 12(2/00 +
EXG - 6(1/00 -

Word 4(1/01 —
Sl Long 4(1/0) -
LINK - 16(2/2) -
MOVE from USP - 4(1/0) —
MOVE to USP — 401/0) -
NOP - 4(1/01 -
RESET - 132(1/01 -
RTE - 20(5/0) —~
RTR - 20(5/0) ~
RTS — 16(4/0) —
STOP — 4(0/0) -
SWAP - 401/0) =
TRAPV — 4(1/01 -
UNLK - 12(3/01 —

+ add effective address calculation time

Table 7-15. Move Peripheral Instruction Execution Times

Instruction Size Register — Memory Memory — Register
Ward 16(2/2) 16(4/0)
i
SEOVER Long 24(2/4) 24(6/0)

7-10




L/t

'SHBIS uoinoaxa LlOI]QﬂJlSU!
usaym o1 pejebau se pajdwes 15y ate | Tyn
PUB |35y UBYM WOl BWi Ayl SALEAIU| , ,

spouad %002 Jnoy axe1 o)
pawnsse si ajoAo sbBpamouyae Jdnuajul 8yl ,
8WI UONEINDIED SSAIPPE BANDBYE PpE +

(E/VWE UoNoNASU|l AdyH |
(/FI8E UONONASU| gy |
[E/PIVE aces|
{o/oi0¢ »+ 13534
(E/VIVE uoneoip abajiaug
= E/G)Fy 1dnusiu;
(E/IVE uonannsu; [ebay
/STy 0187 AQ apiag
+b/Sivb uonoNASU| YHI
(L/v)05 10113 sng
1L/710G 104J3 ssaippy
Spouad uondeaxy

sawil] uonnoax3 Buissadolq uondsox3 -'gy-z sjge)

(M)
Se sisaylusied ul UMOYS SI $8[0AD 81UM pue peal SNQ 4O Jaquinu 8y | '8UINOI JBIPUBY BY) JO SPIOM
UORONIISUI OM 811§ BUYL JO YDIB) BY) PUE 'Yd18) 10308 au1 'Buryoess |je Joy awn eyy sepnjour sporiad
010 40 Jequinu 8y Buisseooid uondsoxa 104 spouad 0010 40 Jaquinu ayy seledipul 91—/ ajqe |

sawl| uonnoaxy Buissedold uondsaxg g1z /



SECTION 8
ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for the MC68000.

8.1 MAXIMUM RATINGS

Rating Symbal Value Unit
Supply Voltage Vee -031to +70 v
Input Voltage Vin -031t0 +7.0 v
Operating Temperature Range TetoTH -
MC68000 TA 01070 g
MCE8000C —40 to 85
Storage Temperature Tstg —-56 to 160 e
8.2 THERMAL CHARACTERISTICS
Characteristic Symbol Value Rating
Thermal Resistance
Ceramic 30
Plastic with Heat Spreader AV 30 °C/W
Type B Chip Carrier 50
Type C Chip Carrier 50

8.3 DC ELECTRICAL CHARACTERISTICS

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields; however, it is ad-
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum-rated voltages to this high-
impedance circuit. Reliability of operation 1s
enhanced if unused inputs are tied to an ap-
propriate logic voltage level (e.g., either Vgg
or Vee!

(Vcc=56.0Vde +5%; V§s=0 Vdc; TA=T| to TH; see Figures 8-1, 8-2, and 8-3)

Characteristic Symbol Min Max | Unit
Input High Voltage VIH 2.0 Vee | Vv
Input Low Voltage ViL Vgg=-03]| 08 | V
Input Leakage Current @ 5.25 V BERR, BGACK, BR, DTACK,
CLK, [PLO-IPL2, VPA lin - 25 | pA
HALT, RESET, - 20
Three-State (Off State) Input Current @ 2.4 V/0.4 V AS, A1-A23, DO-D15, | 20 A
Fco-Fc2, (DS, R/W, UDS, VMA| TSI = #
Output High Voltage (Igy = — 400 xA) _ EN Vee-0.75| -
E, AS, A1-A23, BG, DO-D15,| Vou 1%
FCO-FC2, (DS, A/W, UDS, VMA 2.4 -
Output Low Voltage
(lgL= 1.6 mA) HAT - 05
(lgL=3.2 mAl A1-A23, fiG, FCO-FC2 = 05
llgL=5.0mAl v RESE VoL - 05 A
llpL=5.3mA) £, AS, DO-D15, (DS, R/W - 05
UDS, VMA
Power Dissipation (See Section 9) Ppyti®:* - - w
Capacitance (Vin =0V, To=26°C; Frequency=1 MHz)* * Cin - 20.0 | pF

*With external pullup resistor of 1.1 k2.

* * Capacitance is periodically sampled rather than 100% tested.
** *During normal operation instantaneous Ve current requirements may be as high as 1.5 A.
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9100

130 pf

1

Figure 8-1. RESET Test Load

=R

R* =740 Q
MMDB150
ot Equivalent

Test
Point

MMDT000
or Equivalent

CL =130 pF
(Includes all Parasimics)
R =60 kI for
AS, A1-A23 BG. DO-DI15. E
FCO-FC2, LDS, R/W, UDS, VMA
*R=122 k0 for A1-A23, BG,

FCO-FC2

Figure 8-3. Test Loads

8.4 POWER CONSIDERATIONS
The average chip-junction temperature, T, in °C can be obtained from:

Ty=Ta+(Ppegja)
Where:
Ta=Ambient Temperature, °C

Figure 8-2.

29 k0

70 pF

"

HALT Test Load

# )4 = Package Thermal Resistance, Junction-to-Ambient, °C/W

PD=PINT+PI/O
PINT=Ilcc x Ve, Watts — Chip Internal Power

P|/0= Power Dissipation on Input and Output Pins —User Determined

For most applications P|;0<P|NT and can be neglected.

PD=K =T +273°C)

Solving equations 1 and 2 for K gives:

K=Tpe(TA+273°C) + 6 a°PD2

An approximate relationship between Pp and T (if P|/0 is neglected) is:

(1

(2)

(3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by
measuring Pp (at equilibrium) for a known Ta. Using this value of K the values of PD and TJ can be
obtained by solving equations (1) and (2) iteratively for any value of Ta.



Figure 8-1 illustrates the graphic solution to the equations, given above, for the specification power
dissipations of 1.50 and 1.75 watts over the ambient temperature range of —55°C to 125°C using an
average 6 of 40°C/watt to represent the various MC68000 packages. However, actual 6 A's in

the range of 30°C to 50°C/watt only change the curves slightly.

2.2
e
2.0
\\
2 18
= ~d
‘g" \ %
I
2 18 [, 75 P
g \%m \
& - w’;’i ~—
\
12
'---.
1.0
-55  —40 0 25 70 85 110

Ambient Temperature (Tp) — °C

126

Figure 8-4. MC68000 Power Dissipation (Pp) vs Ambient Temperature (TA)

8.5 AC ELECTRICAL SPECIFICATIONS — CLOCK TIMING (See Figure 8-5)

20V

0.8V

1Cr—] r—

— t— ICf

8-3

Figure 8-5. Clock Input Timing Diagram

L

. L= A 4 MHz 6 MHz 8 MHz 0MHz | 125 MHz [
e ym Min | Max | Min | Max | Min | Max | Min | Max | Min | Max
Frequency of Operation F 20140 | 20| 60| 20| 80| 2.0 |100| 40| 125 | MHz
Cycle Time toye 250 | 500 | 167 | 600 | 125 | 500 | 100 | 500 | 80 | 250 | ns
) L 15 | 250 | 75 | 250 | 55 | 250 | 456 | 250 | 35 | 125
Clock Pulss Width oH 195 | 250 | 75 | 250 | 55 | 250 | 45 [ 250 | 35 | 125 | ™S
. : Cr TV 0 = [ 10-o= |0 | =5
Rise and Fall Times 1of _ 10 = 10 F 10 o 10 5 ns
<& 1cyc—-—b
t—— 1CL le———— 1CH ——




8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

(Vee=5.0 Vde +5%; Vgg=0 Vdc; Ta=TL to TH; see Figures 8-6 and 8-7)

— 4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz -
it L San Min | Max | Min | Max | Min | Max | Min | Max | Min | Max ti
1 |Clock Period toye 260 | 500 | 167 | 500 | 125 | 500 | 100 | 600 | 80 | 250 ns
2 |Clock Width Low tcL | 116 | 250 | 75 | 250 | 55 | 250 | 45 | 250 | 3 | 125 ns
3 |Clock Width High tcH | 115 | 250 | 75 | 250 | 55 | 260 | 45 | 250 | 35 | 125 ns
4 |Clock Fall Time tef - 10 - 10 - 10 - 10 - 5 ns
5 |Clock Rise Time tcr - 10 - 10 - 10 - 10 - 5 ns
6 |Clock Low 10 Address tCLAY — 90 - B0 = 70 = 60 = 55 ns
6A  |Clock High to FC Valid tCHFCV | — 90 - BO - 70 - 60 - 55 ns
Clock High to Address Data
7 High Impedance (Maximum) tgHaze| — (120 | = [W00] = | B0 | = | 07| —~ | &0 L
Clock High to Address/FC
8 | invalid (Minimum) v I e Nl Il | el ] i A
Clock High to AS, DS Low
1 9 ' = = = = &
9 (Maximum) tCHSLx 80 70 60 55 55 ns
Clock High 10 AS, DS Low
10 IMinimum) tcHsLn| © - 0 - 0 - 0 - 0 - ns
5 |Address to AS, DS (Read) B B B _ _
1 Low/AZ Write tavsL | 55 35 30 20 0 ns
2.7|FC Valid to AS, DS (Read B _ _ _ _
1A Low/AS Write tFovsL | BO 70 60 50 40 ns
121 |Clock Low to AS, DS High tcesH | - (90 | - |8 [ - [ 70| - |85 | - |80 ns
132 Wigfdmgh to Address/FC Gzl B | = @ | = 20 ™ 0 B 10 = -
142.5 AEWEE Width Low (Read)/AS i || 6951] sealdip |sedgin, | = |88 | = [de0 | = o
14A2 |DS Width Low (Writel tpwew | 286 | — o | - |18 | — [9 | - [8 | — ns
15¢ |AS, DS Width High tgy | 286 | - |wo | - |10 [ - [105 |- [65 | — ns
Clock High 1o AS, DS High W
16 Impedance 1CHSZ - 120 - 100 - 80 - 70 60 ns
172 |AS, DS High to R/W High tsHp | 60 | — |60 | - |40 | - |20 [ - [0 ] - ns
Clock High to R/W High
1 9 g 2l = = - -
18 (Maximum tCHRHx 90 80 70 60 60 ns
Clock High to R/W High o . - =
19 (Minimurm) tCHRHR| © - 0 0 0 0 ns
201 |Clock High to R/W Low wcHAL | - |90 | - |8 [ - |70 [ - [60 | - | 60 ns
20A8 [AS Low to R/W Valid tasgv | - |20 [ - 2o [ -2 ] - [20]-1]2 ns
212" |Address Valid to R/W Low \wvAL | % | — | 25 | - |20 [ = 0 | = 0 ri= ns
21A2.7|FC Valid 10 R/W Low tecvRL | 80 | - | 70 60 | - |60 | = [ ]| = ns
222 |R/W Low to DS Low (Writel s, | 200 | - [0 [ - [ [ - |5 [- 3] - ns
23 [Clock Low to Data Qut Valid tcLbo. |..— 0 - 80 - 70 - 55 55 ns
Clock High 1o R/W, VMA
24 High Impedance tcHRz | — 120 — [100 | — 80 - 70 - 60 ns
252 |DS High 1o Data Out Invalid tshoo | 60 | - |40 [ - [0 [ - 20 |- 6] - ns
Data Out Valid to DS Low
262 (Writel tposL | b5 - 35 - 30 - 20 - 15 - ns
276 Da;?n::) to Clock Low (Setup ieL 20 _ 25 B 15 = 10 o 10 N o
282.5 AS, DS High to DTACK High tSHDAH| © 490 0 326 0 245 0 190 0 150 ns
DS High 10 Data Invalid
29 (Hold Time) 1SHDI 0 - 0 - 0 - 0 - 0 - ns
30 |AS, DS High to BERR High tgsHBeH| 0 | - [ 0 | - 0 - . 1= e l= ns
DTACK Low to Data In
2,6 = s . - -
3 {Setup Time) IDALDI 180 120 S0 65 50 ns
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8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (CONTINUED)

Num. Characteristic Symbol 4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz s
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max

32 H’a}';;nzi':gm Egmsa Input wurf| 0 |200] 0 | 200 o | 200| o |200| o | 200| s
33 | Clock High to BG Low 1CHGL - 920 - 80 - 70 - 60 - 50 ns
Clock High to BG High {CHGH | — 90 - 80 - 70 — 60 - 0 ns

35 | BR Low to BG Low tBRLGL| 1.5 | 35 | 15| 35 | 15| 35 | 1.6 | 35| 1.5 | 35 | Ck Per.

BR High to BG High '‘BRHGH| 1.5 ] 35| 1565 ] 35| 15| 35| 15| 36| 16| 35 | Clk. Per.

37 | BGACK Low 10 BG High 1GALGH| 15| 30 | 16| 30| 15| 30 [ 15| 30| 15| 30 |Ck Per.
A o F:i'eb‘::l [F?egii:{rlagt?on) IBGKBR | -0 | = ||| i @D} e [ 200 | | ) e g
T I e e e R e e A e D

39 | BG Width High IGH 16| - |15 -—118]| - |16 - | 16| - |Ck Per
40 | Clock Low to VMA Low icevme| - | 0| - |8 | - | 0| - 70 -1 7 ns
41 | Clock Low to E Transition tcLe e L 85 - 70 - 55 - 45 ns
42 | E Output Rise and Fall Time tEr, f - 25 - 25 - 25 - 25 - 25 ns
43 | VMA Low to E High WMLEH| 325 | — [ 240 | — 200 — J1s0[ - [ 90| - ns
44 | AS, DS High to VPA High tsHvpH]| 0 | 240 | o0 (10| 0 |120] 0 90| 0 | 70 ns
45 E II_::;"K; Address/VMA/FC P 55 _ 5 _ a0 L 10 Y = 10 - e

48 | BGACK Width gL |15 - 165 — |15 - [ 15| - [ 15[ — [Ck Per
475 | Asynchronous Input Setup Time | 1a5) 30 - 25 - 20 - 20 - 20 - ns
483 | BERR Low to DTACK Low 1BELDAL} 30 [ - 25 — 20 - 20 - 20 - ns
49 | E Low to AS, DS Invalid st | -8 - [-so| - [-s0] - |-80] - [-80] - ns
50 | E Width High tEH 900 | — |600| — |40 - | 30| - | 280 | - ns
51 | E Width Low 1EL 400 — (900 | — | 700 — [ B80 [ — | 440 | - ns
52 | E Extended Rise Time ICIEHX | — 80 - 80 - 80 - 80 - B0 ns
63 | Data Hold from Clock High tcHDO | © — 0 - 0 - 0 - 0 - ns
54 | Data Hold from E Low (Write) gLpoz | 60 - 40 - 30 - 20 - 15 - ns
55 R.’é’;.:;:ggala Bus Impedance a0 | 55 - 35 -- 20 — 20 B 10 B -

564 | HALT/RESET Pulse Width tHRPW | 10 | — 0| -|10| - ]10]| - 10 | — |Clk. Per.

Notes:

1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in these columns

2. Actual value depends on clock period.

3. |f #47 is satisifed for both DTACK and BERR, #48 may be 0 nanoseconds.

4. For power up, the MPU must be held in RESET state for 100 ms to all stabilization of on-chip circuitry. After the system is
powered up, #56 refers to the minimum puise width required 1o reset the system.

. #14, 114A, and #28 are one clock period less than the given number for T6E, BF4, and R9M mask sets.

6. If the asynchronous setup time [#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be
ignored. The data must only satisly the data-in clock-low setup time (#27] for the following cycle

. For T6E, BF4, and ROM mask set 11A timing equals 11, and 21A equals 21. 20A may be O for TBE, BF4, and RIM mask sets

8. When AS and R/W are equally loaded ( +20%], subtract 10 nanoseconds from the values given in these columns.

o

~

Timing diagrams (Figures 8-6 and 8-7) are located
on a fold-out page at the end of this document.
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8.7 AC ELECTRICAL SPECIFICATIONS — MC68000 TO M6800 PERIPHERAL

(Vcc=5b.0Vde +5%, Vgs=0 Vdc, TA=TL to TH, refer to Figures 8-8 and 8-9)

R 4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz .
i Charmciaristic Symbol ["in T Max | Min | Max | Min | Max | Min | Max] Min [ Max] ™
23 [Clock Low to Data Out Valid 1CLDO — 90 - 80 - 70 — 55 - 55 ns
Clock High 1o R/W,
24 High Impedance ICHRZ | — 120 | - 100 | — 80 - 70 - 60 rs
Data In to Clock Low . - §
27 ™ Setup Time) igigi js0 =12 = || =]1w0] - 16| = ns
40 |Clock Low to VMA Low teLvme | - 90 - 80 - 70 - 70 - 70 ns
41 | Clock Low to E Transition tcLe - 100 - a5 — 70 - 55 - 45 ns
42 | E Output Rise and Fall Time 1Er, f - 25 - 25 - 25 - 25 - 25 ns
43 |VMA Low to E High tMiEH]| 326 | - [2a0] - 200 - 150 | - 0 = ns
44 |AT, DS High to VPA High tsHvpH| O | 240 0 [0 0 [120 O Q0 0 70 ns
E Low to Address/VMA/FC
45 Invalid tELAl 55 - 35 - 30 - 10 - 10 - ns
47 | Asynchronous Input Setup Time | 1AS| 30 - 25 - 20 -~ 20 — 20 - ns
49 |E Low 10 A, DS Invalid teis) (-8 — [-80f - [-80|] - |-BO] - | -80| — ns
50 |E Width High tg | 90| — [600 | — |450 350 | — | 280 | — ns
51 |E Width Low tg. [1400] — [00 | —= [700 | = [650| = | 440 | — ns
52 |E Extended Rise Time ICIEHX | — 80 - B0 - 80 - a0 - 80 ns
54 |Data Held from E Low (Writel 1ELDOZ - | 40 - 30 - 20 - 15 - ns
SO S1 82 83 S84 w w w w w w w w 9w w w S5 S6 57 SO
e =g \_{_\_/
- ! -
Z\'S -
A @ = E OHH®
E 3 2 = R
- @ ;
o \ =
A1-A23 — |
i ®
Data ™ e ) e
Qut = -
) > [«—(23) @OHe> <29 B
Dalaln ===——= b -

NOTE: This timing chagram is included lor those who wish 1o design their own circuil to generate VMA 11 shows the best case possibl'
attainable

Figure 8-8. MC68000 to M68B00 Peripheral Timing Diagram — Best Case
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8.8 AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION
(Vce=5.0 Vde +£5%; Vss=0 Vdc; TA=TL to TH; see Figure 8-10)

4 MHz 6 MHz B MHz 10 MHz 12.5 MHz

P Crisracteriatio Bjmeel Min | Max | Min | Max | Min | Max | Min | Max [ Min | Max e
33 | Clock High to BG Low 1ICHGL | — 90 - B0 - 70 - 60 - 50 ns
34 | Clock High to BG High ICHGH | — 90 - B0 - 70 - 60 - 50 ns
35 |BR Low to BG Low tgrigL] 15[ 36 |16 |35 |16 ][35]|15]|35]| 15| 35 | Cik. Per.
36 |BR High to BG High '\8RHGH| 15 [ 356 |15 [ 35| 15|35 | 15 [35] 15[ 3.5 |Cik Per.
37 |BGACK Low to BG High tgalgH] 15 [ 30|15 [30[15]|30] 16 |30] 15[ 3.0 |Clk Per

BGACK Low to BR High

874 | " {10 Prevent Rearbitration) tgekeR| 20 | i~ | B | — | W= | 20| = W | - ns
BG Low to Bus High Impedance

38 twith AS High) gLz - 120 | - 100 | - 80 - 70 - 60 ns

39 | BG Width High tgy | 18] - |16 ) — J 46l — [15] — | 15| — [Ck Per

45 [ BGACK Width 1BGL 1.5 - 1:8 - 1.5 - 15 - 15 | - |Cik. Per

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

Strobes_ F \
and R/W

CLK

NOTES:

falling edge of the clock.
2. Waveform measurements for all inputs and outputs are specified at: logic high= 2.0 volts, logic low =0.8 volts.

Figure 8-10. Bus Arbitration Timing Diagram
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SECTION 9
ORDERING INFORMATION

This section contains detailed information to be used as a guide when ordering the MC68000.

9.1 STANDARD MC68000 ORDERING INFORMATION

Frequency Maximum Pp

Package Type (MHz) Temperature Order Number (Watts)
Ceramic 4.0 0°C to 70°C MCE68000L4 1.50
L Suffix 4.0 —40°C to 85°C MC68000CL4 1.65
4.0 —B5°C to 126°C  MCEB000AL4 1.75
6.0 0°C to 70°C MCB8000LE 1.50
6.0 —40°C to 85°C MCB8000CL6 1.65
6.0 —B6°C to 126°C  MCB8000ALE 1.76
8.0 0°C to 70°C MCB8000L8 1.50
8.0 —40°C to 85°C MC68000CL8 1.65
8.0 —B56°C to 126°C  MCB8000ALS8 1.756
10.0 0°C to 70°C MC68000L10 1.50
10.0 —40°C to 85°C MCB8000CL10 1.65
12.5 0°C to 70°C MCB8000L12 1.75
Plastic with 4.0 0°C to 70°C MCB8000G4 1.50
Heat Spreader 4.0 —40°C to 86°C MCB8000CG4 1.65
G Suffix 6.0 0°C to 70°C M CB8000GE 1.50
6.0 —40°C to 85°C MCB8000CGH 1.65
8.0 0°C to 70°C MCB8000G8 1.80
8.0 —40°C to 85°C MCB8000CGS8 1.65
10.0 0°C to 70°C MCEB8000G10 1.60
10.0 —40°C to 85°C MCBB8000CG10 1.65
12.5 0°C to 70°C MCEB000G12 1.75
Type B Leadless 4.0 0°C to 70°C MC68000ZB4 1.60
Chip Carrier* 6.0 0°C to 70°C MCB8000ZB6 1.50
ZB Suffix 8.0 0°C to 70°C MC68000ZB8 1.50
10.0 0°C to 70°C MCB8000ZB 10 1.50
12.5 0°C to 70°C MC68000ZB12 1.75
Pin Grid Array 6.0 0°C to 70°C MCB8000R6 1.80
R Suffix 8.0 0°C to 70°C MCB8000R8 1.50
10.0 0°C to 70°C MCB8000R10 1.50
12.5 0°C to 70°C MCB8000R12 1.50

*Contact factory for availability of the Type C Leadless Chip Carrier (ZC Suffix).
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9.2 “BETTER"” PROCESSING — STANDARD PRODUCT PLUS

Level | (Suffix X)
@ 100% temperature cycling per MIL-STD-883A. Method 1010, ten cycles from —25°C to

+180°C.
@ 100% high temperature functional test at T4 max.

Level Il (Suffix D)
@ 100% burn-in to MIL-STD-883A test conditions equivalent to 168 hours at + 126°C.

@® 100% post burn-in dc parametric test at 25°C.

Level Il (Suffix DS)
@ Combination of Levels | and Il above.

When ordering the "BETTER" processing, identify the level desired by adding the appropriate suffix
(indicated above in parenthesis) to the end of the part number.

MC68000CL8DS

MCB8000
Family Designation

Temperature Range
Blank=0°C to 70°C
C= —40°C to 85°C
A= -55°C to 125°C

Package Type
L Ceramic
G Plastic with Heat Spreader
ZB Type B Leadless Chip Carrier
ZC Type C Leadless Chip Carrier
R Pin Grid Array

9-2



9.3 HI-REL MIL-STD-883B MC68000 ORDERING INFORMATION
CLASS B, GOLD LEADS ONLY

Frequency Maximum Pp

Package Type {MHz) Temperature Order Number (Watts)
Ceramic 4 —56°C to 126°C MCB8000BYCA4 176
Side-Brazed 4 —55°C to 110°C MCB8000BYCB4  1.75
Y Suffix 6 —565°C t0 126°C MCBBO00OBYCAB  1.75
Gold Leads 6 —65°C to 110°C  MCBB000BYCB6  1.75
6 —40°C to 85°C MC6B000BY CEB 1.66
8 —-b65° to 126°C MCB8000BYCA8 1.75
8 —-566°C to 110°C MCB8000BYCB8 1.75
8 —40°C to 85°C MC68000BY CEB 1.65
10 —40°C to 85°C MCB8000BYCEA  1.65
Type C Leadless 4 -56°C to 126°C MCEB000BZCA4  1.75
Chip Carrier 4 —55°C to 110°C  MC68000BZCB4  1.75
Z Suffix 6 —55°C to 126°C MC68000BZCA6  1.75
Gold Leads 6 —-565°C to 110°C  MCB8000BZCB6  1.75
6 —40°C to 85°C MCB8000BZCES 1.65
8 —556°C to 126°C MC6B000BZCA8  1.75
8 —40°C to 85°C MCB8000BZCES8 1.656
10 —40°C to 85°C MCB8000BZCEA  1.65
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SECTION 10
MECHANICAL DATA

This section contains the pin assignments and package dimensions for the 64-pin dual-in-line and
chip carrier versions of the MCB68000.

10.1 PIN ASSIGNMENTS

64-Pin Dual-in-Line Package 68-Terminal Chip Carrier
R
paC @ 64{305
D32 63[3D6
D203 62[0D7
D14 61308
Do 5 601 D9
ASC]6 59{JD10
ups? 58D
LDS8 57[AD12
A/WLC]9 56[JD13
DTACK CJ10 551014
BGO1 543015
BGACK 12 53 IGND
BRCJ13 520 A23
VecE 51 A22
cLks 50(3 A21
GNDLCJ16 4900 Ve
HALT 7 481 A20
RESETJ18 471A19
VMA e 46 [ A18
ECJ20 45 A7
VPAL]21 441 A16
BERR[J22 43[ A5
TPl ]2 42[1A4
TPLTCJ24 a1Ja13
PLOC]25 403 A12
FCc2]26 39[3AN
Fe1g27 38AI0
Fcof28 37 [DA9
A9 36[1A8
A2 )30 35[A7
A3 347146
Ad 32 B3[3As
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68-Terminal Pin Grid Array

Pin Number Function
Al Do Not Connect
A2 AS
A3 D1
A4 D2
Ab D4
AB D5
A7 D7
A8 D8
A9 D10
A10 D12
B1 DTACK
B2 LDS
B3 UDbs
B4 Do
B5 D3
B6 D6
B7 D9
B8 (B2}

B9 D13
B10 D15
C1 BGACK
c2 BG
c3 R/W
c8 D13
c9 AZ23
c10 A22
D1 BR
D2 Vee
D9 Vss
D10 A1
E1 CLK
E2 Vss
E9 Vce
E10 A20

10-2
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L

PEREEEOCEE

PORREEREFEEEE

@eE @O

@ @@

@ @ Bottom @ @

@ @ View @ @

@E @@

@O OXOLO)]

PREEREEEEE

PROEEEEEEE

[ 2 3 4 5 ] ] 8 10

Pin Number Function

F1 HALT

F2 RESET

F9 Al18

F10 A19

Gl VMA

G2 VPA

G9 A15

G10 A7

H1 E

H2 IPL2

H3 IPL1

H8 A13

H9 A12

H10 A16

J1 BERR

J2 iPlo

J3 FC1

J4 Do Not Connect

J5 A2

J6 AB

J7 AB

Ja A0

Jg Al

J10 Al4

K1 Do Not Connect

K2 FC2

K3 FCO

K4 Al

K5 A3

K6 A4

K7 AB

K8 A7

K9 A9

K10 Do Not Connect




10.2 PACKAGE DIMENSIONS

L SUFFIX
CERAMIC PACKAGE
CASE 746-01

NOTES:
1. DIMENSION ZAZIS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

(@] 025 0.010@[T [A @]

3. [T IS SEATING PLANE.

4. DIMENSION “L"TO CENTER OF LEADS
WHEN FORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5,1973.

MILLIMETERS INCHES

D —’G I-i_K_r-—lFJ

——

G SUFFIX
PLASTIC PACKAGE
CASE 754-01

oo B o o s
64

" |

MIN | MAX [ MIN | MAX

80.52 | B2.04
22.25 | 22.96
3.05( 432
038 | 0.53
0.76 | 140
2.54 BSC
0.20 | 033
254 | 419
2261 | 23.11
1qo
1.52

3.170 | 3.230
0.876 | 0.804
0.120 ] 0.170
0.015| 0.021
0.030 | 0.055
0.100 BSC
0.008 | 0.013
0.100 | D.165
0.830 | 0.910
100
0.060

_ﬂL"

(=]
zgl-xl—ﬁ'ﬂcﬂmbg

1.02 0.040

NOTES:
1. DIMENSIONS A AND B ARE DATUMS.

2 IS SEATING PLANE.

3. POSITIONAL TOLERANCE FOR LEADS
(DIMENSION D):
[#] 7 0.25 (0.010) @[ T[A @[B @)

4. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.

5. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.

6. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5, 1973,

MILLIMETERS INCHES

=
=

MIN | MAX | MIN | MAX

10-3

3.195 | 3.225
0.790 | 0.810
0.190 | 0.230
0.013 | 0.021
0.050 | 0.070
0.100 BSC
0.008 | 0.015
0.120 | 0.140
0.900 BSC
150
0.040

81.16 | B1.91
20.17 | 20.57
4.83 | 5.84
033 | 053
1.27 | 1.7
2,54 BSC
0.20 [ 0.38
3.06 | 3.55
22.86 BSC
go ] 150
051 | 1.01

22 r|=||cn|o|e|ea|x

0.020




10.2 PACKAGE DIMENSIONS

28 SUFFIX NOTES:
TYPE B LEADLESS 1. DIMENSION A IS DATUM (2 PLACES).
CHIP CARRIER
2[T]Is GAUGE PLANE.
s 3. POSITIONAL TOLERANCE FOR
TERMINALS(D): 68 PLACES

(#0125 0010 @] TAGRE)]
D __{F 4 DIMENSIONING AND TOLERANCING
o PER ANSI Y14.5, 1973.
T 5. DIMENSION H PROVIDES THE SIZE FOR
: BOTH THE PAD LENGTH AND THE
THREE CORNER NOTCHES.

A MILLIMETERS INCHES
i | DIM| MIN | MAX | MIN | MAX
R il A [23.83 | 2443 [0.938 | 0.962
B H B [15.24 | 1549 |0.600 | 0.610
R —C |— C| 173 [ 3.05 |0.068 |0.120
D | 084 0.99 |0.033 | 0.039
F| 190 ] 241 |0.075 |0.095

G 1.27 BSC 0.050 BSC
H | 1.02 1.52 [0.040 | 0.060
N| 1.14 2.24 | D.045 | 0.088
R |2383 (2443 | 0.938 | 0.962

2C SUFFIX NOTES:
TYPE C LEADLESS 1. DIMENSION A 1S DATUM (2 PLACES).
CHIP CARRIER 2. [T 1S GAUGE PLANE.

CASE 760-01
3. POSITIONAL TOLERANCE FOR

TERMINALS(D}: 68 PLACES
(#0000 @[ TAS[RE ]
4. DIMENSIONING AND TOLERANCING

PER ANSI Y14.5, 1973,

MILLIMETERS INCHES
MIN | MAX | MIN [ MAX
23.83 |24.43 (0.938 |0.962

|
=

15.24 1549 |0.600 [0.610
203 | 3.06 |0.080 |0.120

056 | 0.71 |0.022 [0.028

1.90 41 10.075 |0.095

1.27 BSC 0.050 BSC

1.02 | 1.52 |0.040 {0.060

1.78 [ 2.29 [0.070 |0.090

2| || n| oo s>

23.83 12443 |0.938 [0.962
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These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

e—(D—> 5o s1 52 53 S4 S5 S6 s7
G| |«—>HD
ak / \ / J : h /N
@ [ 3 [« <G hal /]
—3 1—@
A% AZ3 b 4 . y—
— | =0 )
x| Al e p—=e oy
(D> ® —"C <1®
05/T05 /) B—) S
19
(i8)
R/IW (1) )
FCO-FC2 _)]
<@ e
Asynchronous
ey A
‘
HALT/RESET =
<@ — [+
1-——@—-’
_ *@7_
BERR/BR \
(Note 2)
<)
O | S I
DTACK
Dataln == == == = = = = e = = = = = = = = = = - - _i

NOTES .
1. Setup time for the asynchronous inputs BGACK, TPLO-Z, and VPA guarantees their recognition at the next falling edge of the clock.
2. BR need fall at this time only in order to insure being recognized at the end of this bus cycle.

3. Timing measurements are referenced to and from a low voltage of 0.8 valts and a high voltage of 2.0 volts, unless otherwise noted.

Figure 8-6. Read Cycle Timing Diagram
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These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

ax A e A
(8) [t *@)'—\'9

Data Out

Tl e
¢
:

FCO-FC2 X

Asynchronous x
Inputs

BERR/BR 2 _\ <@_j‘_
@

NOTES:

1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

2. Because of loading variations, A/W may be valid after AS even though both are initiated by the rising edge of S2 (Specification
20A].

Read and Write Cycle
Timing Diagrams
{Timing tables located on
pages 8-4 and 8-5.)

Figure 8-7. Write Cycle Timing Diagram
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This information has been carelully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Molorola reserves
the righl to make changes 1o any producls herein to improve refiability, functicn or design. Motorola does nol assume any liability arising out of the application
or use of any product or circuit described herein. No license is conveyed under patent rights in any farm. When this document contains information en a new
product, specifications herein are subject to change without notice,
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