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Advances in semiconductor technology have provided the capa-
bility to place on a single silicon chip a microprocessor at least an
order of magnitude higher in performance and circuit complexity than
has been previously available. The R6B0O0O0 is the first of a family of
such VLSI microprocessors from Rockwell. It combines state-of-the-
art technology and advanced circuit design techniques with com-
puler sciences o achieve an architecturally advanced 16-bit
microprocessor. C SUFFIX
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A 23-bit address bus provides a memory addressing range
of greater than 16 megabytes. This large range of addressing
capability, coupled with a memory management unit, allows
large, modular programs to be developed and operated
without resorting to cumbersome and time consuming soft-
ware bookkeeping and paging techniques.

The status register contains the interrupt mask (eight
levels available) as well as the condition codes; extend (X),
negative (N), zero (Z), overflow {V), and carry (C). Addi-
tional status bits indicate that the processor is in a trace (T)
mode and/or in a supervisor (S} state.

STATUS REGISTER

System Byte - User Byte
A5 13 08" 4/\ o
IFF\\‘iSh\WzIHI'o lx\\\\‘{f [N[Z]v]]

Trace Mode Extend
Supervisor Negative
State Interrupt Zero
Mask Overflow

Carry

Five basic data types are supported. These data types are:
® Bits
® BCD Digits (4-bits)
® Bytes (8-bits) .
@ Words (16-bits)
@ Long Words (32-bits)
In addition, operations on other data types such as memory

addresses, status word data, etc., are provided for in the in-
struction set.

The 14 addressing modes, shown in Table 1, include six
basic types:

@ Register Direct

@ Register Indirect

@® Absolute

@ Immediate

® Program Counter Relative

@ Implied
Included in the register indirect addressing modes is the
capability to do postincrementing, predecrementing, offset-
ting and indexing. Program counter relative mode can also
be modified via indexing and offsetting.

TABLE 1 — DATA ADDRESSING MODES

Mode

Generation

Register Direct Addressing
Data Register Direct
Address Register Direct

EA=Dn
EA=An

Absolute Data Addressing
Absolute Short
Absolute Long

EA = (Next Word)
EA = (Next Two Words)

Relative with Offset

Program Counter Relative Addressing

Relative with Index and Offset

EA=(PCl+dig
EA=(PC)+{Xn)+dg

Register Indirect Addressing
Register Indirect

Register Indirect with Offset

Postincrement Register Indirect
Predecrement Register Indirect

Indexed Register Indirect with Offset

EA = AnN)

EA=(An), An*=An+N
An<+—An-N, EA=(An)
EA=(Anl+d1g

EA = (An)+ (Xn) + dg

Immediate Data Addressing
Immediate
Quick Immediate

DATA = Next Word(s)
Inherent Data

Implied Addressing
Implied Register

EA=SR, USP, SP, PC

NOTES:

EA = Effective Address
An= Address Register
Dn= Data Register

Xn= Address or Data Register used

as Index Register
SR = Status Register
PC = Program Counter
()= Contents of

dg = Eight-bit Offset
(displacement)

d1g= Sixteen-bit Offset
(displacement)

N=1 for Byte, 2 for
Words and 4 for Long
Words

<— = Replaces
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The 68000 instruction set is shown in Table 2. Some ad- long words and maost instructions can use any of the 14 ad-
ditional instructions are variations, or subsets, of these and dressing modes. Combining instruction types, data types,
they appear in Table 3. Special emphasis has been given and addressing modes, over 1000 useful instructions are
to the instruction set's support of structured high-level lan- provided. These instructions include signed and unsigned
guages to facilitate ease of programming. Each instruc- multiply and divide, “quick” arithmetic operations, BCD
tion, with few exceptions, operates on bytes, words, and arithmetic and expanded operations (through traps).

TABLE 2 — INSTRUCTION SET

Mnemonic Description Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend EOR Exclusive Or PEA Push Effective Address
ADD Add EXG Exchange: Registars RESET Reset External Devices
AND Logical And EXT Sign Extend ROL Rotate Left without Extend
ASL Arithmetic Shift Left JMP Jump ROR Rotate Right without Extend
ASR Arithmetic Shift Right JSR Jump to Subroutine ROXL Rotate Left with Extend
Bee Branch Conditionally LEA Load Effective Address ROXR Rotate Right with Extend
BCHG Bit Test and Change LINK Link Stack RTE Return from Exception
BCLR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore
BRA Branch Always LSR Logical Shift Right RTS Return from Subroutine
BSET Bit Test and Set MOVE Move SBCD Subtract Decimal with Extend
BSR Branch to Subroutine MOVEM Move Multiple Registers Sce Set Conditional
BTST Bit Test MOVEP Move Peripheral Data STOP Stop
CHK Check Register Against Bounds MULS Signed Multiply SuUB Subtract
CLR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves
CMP Compare NBCD Negate Decimal with Extend TAS Test and Set Operand
DBce Test Condition, Decrement and NEG Negate TRAP Trap

Branch NOP No Operation TRAPV Trap on Overflow
DIVS Signed Divide NOT One's Complement TST Test
Divu Unsigned Divide OR Logical Or UNLK Unlink

TABLE 3 — VARIATIONS OF INSTRUCTION TYPES

Ins¥:pc:mn Variation Description ]ns.trr:::o" Variation Description
ADD ADD Add MOVE MOVE Maove
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEQ Move Quick
ADDI Add Immediate MOVE from SR| Move from Status Register
ADDX Add with Extend MOVE to SR | Move to Status Register
AND AND Logical And MOVE to CCR | Move to Condition Codes
ANDI And Immediate MOVE USP Move User Stack Pointer
CMP CMP Compare NEG NEG Negate
CMPA Compare Address NEGX Negate with Extend
CMPM Compare Memory OR OR Logical Or
CMPI Compare Immediate ORI Or Immediate
EOR EOR Exclusive Or |suB suB Subtract
EORI Exclusive Or Immediate SUBA Subtract Address
SUBI Subtract Immediate
suBQ Subtract Quick
SUBX Subtract with Extend
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The following paragraphs describe the data organization
and addressing capabilities of the 68000.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits,
a word equals 16 bits, and a long word equals 32 bits. The
operand size for each instruction is either explicitly encoded
in the instruction or implicitly defined by the instruction
operation. All explicit instructions support byte, word or long
word operands. Implicit instructions support some subset of
all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16,
or 32 bits. The seven address registers together with the ac-
tive stack pointer support address operands of 32 bits.

DATA REGISTERS. Each data register is 32 bits wide.
Byte operands occupy the low order 8 bits, word operands
the low order 16 bits, and long word operands the entire 32
bits. The least significant bit is addressed as bit zero; the
most significant bit is addressed as bit 31.

When a data register is used as either a source or destina-
tion operand, only the appropriate low-order portion is
changed; the remaining high-order portion is neither used
nor changed.

ADDRESS REGISTERS. Each address register and the
stack pointer is 32 bits wide and holds a full 32 bit address.
Address registers do not support byte sized operands.
Therefore, when an address register is used as a source
operand, either the low order word or the entire long word
operand is used depending upon the operation size. When
an address register is used as the destination operand, the

DATA ORGANIZATION AND ADDRESSING CAPABILITIES

entire register is affected regardless of the operation size. If
the operation size is word, any other operands are sign ex-
tended to 32 bits before the operation is performed.

DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte
having an even address the same as the word, as shown in
Figure 1. The low order byte has an odd address that is one
count higher than the word address. Instructions and
multibyte data are accessed only on word (even bytel boun-
daries. If a long word datum is located at address n (n even),
then the second word of that datum is located at address
n+2.

The data types supported by the 68000 are bit data, in-
teger data of 8, 16, or 32 bits, 32-bit addresses and binary
coded decimal data. Each of these data types is put in
memory, as shown in Figure 2.

ADDRESSING

Instructions for the 68000 contain two kinds of informa-
tion: the type of function to be performed, and the location
of the operand(s) on which to perform that function. The
methods used to locate (address) the operand(s) are ex-
plained in the following paragraphs.

Instructions specify an operand location in one of three
ways:

Register Specification — the number cf the register is
given in the register field of the instruction.

Effective Address — use of the different effective
address modes.
Implicit Reference — the definition of certain instruc-

tions implies the use of specific registers.

FIGURE 1 — WORD ORGANIZATION IN MEMORY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 000000
Byte 000000 | Byte 000001
Word 000002
Byte 000002 Byte 000003

I\

Word FFFFFE
Byte FFFFFE |

Byte FFFFFF




FIGURE 2 — DATA ORGANIZATION IN MEMQRY

Bit Data
1 Byte=B8 Bits
7 6 ] 4 3 2 1 0
Integer Data
1 Byte =8 Bits
15 14 13 12 n 10 9 8 7 6 5 4 3 1 0
MSB Byte 0 LSB Byte 1
Byte 2 Byte 3
1 Word =16 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
MSB Wore LS8
Word 1
Word 2
1 Long Word = 32 Bits
15 14 13 12 1 10 9 3 7 6 5 4 1 0
MSB ;
High Order
— —LongWoid — — — — — — = = — e e e e e o e e e e
Low Order LSB
— —longWord T— = = = == i e i e e e e G e
= =—longWord:2=— mu= == syl e oo e i e i e i e e =
Addresses
1 Address= 32 Bits
15 14 13 12 1 10 9 8 7 [ 5 4 1 0
MSB )
High Order
— — AHEEEE0 = = e e e R R R = e e e T = o e e e
Low Order LSB
— — Addess 1 — = — — = = = — = e R = i i e e e e
== Address 2 —— i e e e e e e e e e e e e e (e e e
MSB = Most Significant Bit
LSB = Least Significant Bit
Decimal Data
2 Binary Coded Decimal Digits=1 Byte
15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
MSD
BCD O BCD 1 LSD BCD 2 BCD 3
BCD 4 8CD 5 BCD 6 8CD 7

MSD = Most Significant Digit
LSD = Least Significant Digit




INSTRUCTION FORMAT

Instructions are from one to five words in length, as
shown in Figure 3. The length of the instruction and the
operation to be performed is specified by the first word of
the instruction which is called the operation word. The re-
maining words further specify the operands. These words
are either immediate operands or extensions to the effective
address mode specified in the operation word.

PROGRAM/DATA REFERENCES

The 68000 separates memory references into two
classes: program references, and data references. Pro-
gram references, as the name implies, are references to
that section of memary that contains the program being
executed. Data references refer to that section of memory
that contains data. Generally, operand reads are from the
data space. All operand writes are to the data space.

REGISTER SPECIFICATION

The register field within an instruction specifies the
register to be used. Other fields within the instruction specify
whether the register selected is an address or data register
and how the register is to be used.

EFFECTIVE ADDRESS

Most instructions specify the location of an operand by us-
ing the effective address field in the operation word. For ex-
ample, Figure 4 shows the general format of the single effec-
tive address instruction operation word. The effective ad-
dress is composed of two 3-bit fields: the mode field, and the
register field. The value in the mode field selects the different
address modes. The register field contains the number of a
register.

The effective address field may require additional informa-
tion to fully specify the operand. This additional information,
called the effective address extension, is contained in the
following word or words and is considered part of the in-
struction, as shown in Figure 3. The effective address modes
are grouped into three categories: register direct, memory
addressing, and special.

REGISTER DIRECT MODES. These effective addressing
modes specify that the operand is in one of the 16 multifunc-
tion registers.

Data Register Direct. The operand is in the data register
specified by the effective address register field.

Address Register Direct. The operand is in the address
register specified by the effective address register field.

MEMORY ADDRESS MODES. These efrective address-
ing modes specify that the operand is in memory and provide
the specific address of the operand.

Address Register Indirect. The address of the operand isin
the address register specified by the register field. The
reference is classified as a data reference with the exception
of the jump and jump to subroutine instructions.

Address Register Indirect With Postincrement. The ©
dress of the operand is in the address register specified hy
the register field. After the operand address is used, it is in-
cremented by one, two, or four depending upon whether the
size of the operand is byte, word, or long word. If the ad-
dress register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to
keep the stack pointer on a word boundary. The reference is
classified as a data reference.

Address Register Indirect With Predecrement. The ad-
dress of the operand is in the address register specified by
the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether
the operand size is byte, word, or long word. If the address
register is the stack pointer and the operand size is byte, the
address is decremented by two rather than one to keep the
stack pointer on a word boundary. The reference is classified
as a data reference.

Address Register Indirect With Displacement. This ad-
dress mode requires one word of extension. The address of
the operand is the sum of the address in the address register
and the sign-extended 16-bit displacement integer in the ex-
tension word. The reference is classified as a data reference
with the exception of the jump and jump to subroutine in-
structions.

Address Register Indirect With Index. This address mode
requires one word of extension. The address of the operand

FIGURE 3 — INSTRUCTION FORMAT

15 14 13 12 11 10 9

8

7

6 5 4 3 2 1 0

Operation Word
(First Word Specifies Operation and Mades)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
{If Any, One or Two Words)

Destination Effective Address Extension
IIf Any, One or Two Words)

FIGURE 4 — SINGLE-EFFECTIVE-ADDRESS
INSTRUCTION OPERATION WORD GENERAL FORMAT
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is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of
the extension word, and the contents of the index register.
The reference is classified as a data reference with the excep-
tion of the jump and jump to subroutine instructions.

SPECIAL ADDRESS MODES. The special address modes
use the effective address register field to specify the special
addressing mode instead of a register number.

Absolute Short Address. This address mode requires one
word of extension. The address of the operand is the exten-
sion word. The 16-bit address is sign extended before it is
used. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

Absolute Long Address. This address mode requires two
words of extension. The address of the operand is
developed by the concatenation of the extension words. The
high-order part of the address is the first extension word; the
low-order part of the address is the second extension word.
The reference is classified as a data reference with the ex-
ception of the jump and jump to subroutine instructions.

Program Counter With Displacement. This address mode
requires one word of extension. The address of the operand
is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension
word. The value in the program counter is the address of the
extension word. The reference is classified as a program
reference.

Program Counter With Index. This address mode requires
one word of extension. The address is the sum of the ad-
dress in the program counter, the sign-extended displace-
ment integer in the lower eight bits of the extension word,
and the contents of the index register. The value in the pro-
gram counter is the address of the extension word. This
reference is classified as a program reference.

Immediate Data. This address mode requires either one or
two words of extension depending on the size of the opera-
tion.

Byte operation — operand is low order byte of exten-
sion word

Word operation — operand is extension word

Long word operation — operand is in the two extension
words, high-order 16 bits are in the first extension
word, low-order 16 bits are in the second extension
word.

Condition Codes or Status Register. A selected set of in-
structions may reference the status register by means of the
effective address field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR
EORI to SR
ORI to CCR
ORI to SR

EFFECTIVE ADDRESS ENCODING SUMMARY

Table 4 is a summary of the effective addressing modes
discussed in the previous paragraphs.

IMPLICIT REFERENCE"

Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor

stack pointer (SSP), the user stack pointer {(USP), or the
status register (SR). Table 5 provides a list of these instruc-
tions and the registers implied.

SYSTEM STACK. The system stack is used implicitly by
many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address
register seven (A7) is the system stack pointer (SP). The
system stack pointer is either the supervisor stack pointer
(SSP) or the user stack pointer (USP), depending on the
state of the S-bit in the status register. If the S-bit indicates
supervisor state, SSP is the active system stack pointer, and
the USP cannot be referenced as an address register. If the
S-bit indicates user state, the USP is the active system stack
pointer, and the SSP cannot be referenced. Each system
stack fills from high memory to low memory.

TABLE 4 — EFFECTIVE ADDRESS ENCODING SUMMARY

Addressing Mode Mode Register
Data Register Direct 000 register number
Address Register Direct 001 register number
Address Register Indirect 010 register number
Addreqs Register Indirect with 011 G bt
Postincrement
Address Register Indirect with 100 O T—————
Predecrement
Addvress Register Indirect with 101 P e
Displacement
Address Register Indirect with 10 T ——
Index
Absolute Shart m 000
Absolute Long m 001
Program Counter with n 010
Displacement
Program Counter with Index 11 on
Immediate or Status Register 1 100

TABLE 5 — IMPLICIT INSTRUCTION REFERENCE SUMMARY

< Implied

Instruction Regi:ter(s)
Branch Conditional (Bce), Branch Always (BRA) PC
Branch to Subroutine (BSR) PC, SP
Check Register against Bounds (CHK) SSP, SR
Test Condition, Decrement and Branch (DBcc) PC
Signed Divide (DIVS) SSP, SR
Unsigned Divide (DIVU) SSP, SR
Jump (JMP) PC
Jump to Subroutine (JSR) PC, SP
Link and Allocate {LINK) SP
Move Condition Codes (MOVE CCRI SR
Move Status Register (MOVE SR) SR
Move User Stack Pointer (MOVE USP) usp
Push Effective Address (PEA) SP
Return from Exception (RTE) PC, SP, SR
Return and Restore Condition Codes (RTR) PC, SP, SR
Return from Subroutine (RTS) PC, SP
Trap (TRAP) SSP, SR
Trap on Overflow (TRAPV) SSP, SR
Unlink (UNLK) SP
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The following paragraphs contain an overview of the
form and structure of the 68000 instruction set. The instruc-
tions form a set of tools that include all the machine func-
tions to perform the following operations:

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined
with the flexible addressing modes described previously pro-
vide a very flexible base for program development.

DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and
storage) is provided by the move (MOVE) instruction. The
move instruction and the effective addressing modes allow
both address and data manipulation. Data move instructions
allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to
memory, and register to register. Address move instructions
allow word and long word operand transfers and ensure that
only legal address manipulations are executed. In addition to
the general move instruction there are several special data

INSTRUCTION SET SUMMARY

INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic opera-
tions of add (ADD), subtract (SUB), multiply (MUL), and
divide (DIV) as well as arithmetic compare (CMP), clear
(CLR), and negate (NEG). The add and subtract instructions
are available for both address and data operations, with data
operations accepting all operand sizes. Address operations
are limited to legal address size operands (16 or 32 bits).
Data, address, and memory compare operations are also
available. The clear and negate instructions may be used on
all sizes of data operands.

The multiply and divide operations are available for signed
and unsigned operands using word multiply to produce a
long word product, and a long word dividend with word
divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be ac-
complished using a set of extended instructions. These in-
structions are: add extended (ADDX), subtract extended
(SUBX), sign extend (EXT), and negate binary with extend
(NEGX).

A test operand (TST) instruction that will set the condition
codes as a result of a compare of the operand with zero is
also available. Test and set (TAS) is a synchronization in-
struction useful in multiprocessor systems. Table 7 is a sum-
mary of the integer arithmetic operations.

TABLE 7 — INTEGER ARITHMETIC OPERATIONS

@ + = indirect with postdecrement

movement instructions: move multiple registers (MOVEM), Instruction Operand Size Operation
move peripheral data (MOVEP), exchange registers (EXG), 8, 16, 32 Dn + (EA)— Dn
load effective address (LEA), push effective address (PEA), (EA) + Dn—EA
link stack (LINK), unlink stack (UNLK), and move quick ADD (EA) + #xxx— EA
(MOVEQ). Table 6 is a summary of the data movement 16, 32 An+(EA)— An
operations. ADDX 8, 16, 32 Dx + Dy + X — Dx
TABLE 6 — DATA MOVEMENT OPERATIONS 16,82 | Axa@= + Ay@- + X >AB
CLR 8, 16, 32 0—EA
Instruction Operand Size Operation 8, 16, 32 Dn—(EA)
EXG ) 32 Rx +* Ry CMP (EA) — #xxx
— Ax@ + — Ay@ +
fis g " = spg : 16, 32 An— (EA)
n=* -
LINK _ S DIVS 32+16 Dn/(EA)— Dn
SP+d—SP DIVU 32+16 Dn/(EA)— Dn
MOVE B, 16, 32 (EAls— EAd EXT 8—16 (Dnig= Dn1g
16— 32 (Dnlyg— Dn32
MOVEM 16 [EA)— An, Dn
.32 At D= EA MULS 16°16— 32 Dn*(EAl—Dn
MULU 16°16— 32 Dn*(EA)— Dn
(EA)=Dn
MOVER 15,82 Dn— EA NEG 8, 16, 32 0—(EA)—EA
MOVEQ 8 #xxx— Dn NEGX 8, 16, 32 0—(EA) = X—EA
PEA 32 EA— SP@ - 8, 16, 32 Dn—(EA)—Dn
SWAP 32 Dn[31:16] == Dn(15:0) (EA) - Dn—EA
=3 a8 (EA) — #xxx— EA
UNLK - SPe+ = An 16, 32 An— (EAl— An
! Dx— Dy~ X— Dx
NOTES: SUBX 8, 16, 32 S g
s=source Ax@ — —Av@ — — X Ax@
d = destination TAS 8 (EA) -0, 1— EAI7]
[ 1=bit numbers TST B, 16, 32 [EA)-0
@ ~ = indirect with predecrement

NOTE: [ ]=Dbit number
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LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT
are available for all sizes of integer data operands. A similar
set of immediate instructions {ANDI, ORI, and EORI) provide
these logical operations with all sizes of immediate data.
Table 8 is a summary of the logical operations.

TABLE 8 — LOGICAL OPERATIONS

BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the
following instructions: bit test (BTST), bit test and set
(BSET), bit test and clear (BCLR), and bit test and change
{(BCHG)}. Table 10 is a summary of the bit manipulation
operations. (Bit 2 of the status register is Z.)

TABLE 10 — BIT MANIPULATION OPERATIONS

Instruction Operand Size Operation
BTST 8, 32 ~bit of {(EA)— 2
BSET 8, 32 el
san | sw | g
BEAS 8,32 M, b g M

instruction Operand Size Operation
DnA(EA)I— Dn
AND 8, 16, 32 [EA)JADn—EA
(EA)A#xxx— EA
Dn v (EA)— Dn
OR 8, 16, 32 (EA) v Dn—EA
(EA) v #xxx— EA
[EA)® Dy — EA
Bk 5. 16, 22 (EA)® fx:x—' EA
NOT 8, 16, 32 ~({EA)— EA
NOTE: ~ =invert

SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the
arithmetic instructions ASR and ASL and logical shift in-
structions LSR and LSL. The rotate instructions (with and
without extend) available are ROXR, ROXL, ROR, and ROL.
All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all
operand sizes and allow a shift count specified in the instruc-
tion of one to eight bits, or 0 to 63 specified in a data register.

Memory shifts and rotates are for word operands enly and
allow only single-bit shifts or rotates.

Table 9 is a summary of the shift and rotate operations.

TABLE 9 — SHIFT AND ROTATE OPERATIONS

BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded
decimal numbers are accomplished using the following in-
structions: add decimal with extend (ABCD), subtract
decimal with extend (SBCD), and negate decimal with ex-
tend (NBCD). Table 11 is a summary of the binary coded
decimal operations.

TABLE 11 — BINARY CODED DECIMAL OPERATIONS

. Operand .
Instruction Size Operation

Dx10+ Dyyg+ X — Dx
ekl 8 AX@ — 10+ Ay@ — 10+ X— Ax@

Ox10-Dy190— X—Dx
SBCD 8

AX@ -~ 10~ AY@ — 10— X~ Ax@

NBCD 8 0-(EAlp—-X—EA

Instruc-Operand Operation

tion Size

ASL I8, 16, 32| [x/C g 0

ASR |8, 16, 32 I—i,—h- F{x/c]
LSL 8,16, 32| [x/Cle— €———— |0

LSR |8, 16, 32 03 ———— > [>{x/c|
ROL |8, 16, 32 [‘EP-I-%*———-———ﬁ*J

ROR |8, 16, 32 LH—PJ'I"ICI
ROXL |8, 16, 32 <—_"l<_1 XI‘J
ROXR [8, 16, 32 —’—>]']"!i|

PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a
series of conditional and unconditional branch instructions
and return instructions. These instructions are summarized
in Table 12.

The conditional instructions provide setting and branching
for the following conditions:

CC — carry clear LS — low or same
CS — carry set LT —less than

EQ — equal Ml — minus

F — never true NE — not equal
GE — greater or equal PL —plus

GT — greater than T  — always true
Hl  — high VC — no overflow
LE —less or equal VS — overflow
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TABLE 12 — PROGRAM CONTROL OPERATIONS

Instruction Operation
Conditional
Bece Branch conditionally (14 conditions)
8- and 16-bit displacement
DBcc Test condition, decrement, and branch
16-bit displacement
Sce Set byte conditionally (16 conditions)
Unconditional
BRA Branch always
8- and 16-bit displacement
BSR Branch to subroutine
8- and 16-bit displacement
JMP Jump
JSR Jump to subroutine
Returns
RTR Return and restore condition codes
RTS Return from subroutine

SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using
privileged instructions, trap generating instructions, and in-
structions that use or modify the status register. These in-
structions are summarized in Table 13.

TABLE 13 — SYSTEM CONTROL OPERATIONS

Instruction Operation
Privileged

RESET Reset external devices

RTE Return from exception

STOP Stop program execution
ORI to SR Logical OR to status register
MOVE USP Move user stack pointer
ANDI to SR Logical AND to status register
EORI to SR Logical EOR to status register

MOVE EA to SR | Load new status register

Trap Generating

TRAP Trap
TRAPV Trap on overflow
CHK Check register against bounds
Status Register
ANDI to CCR | Logical AND to condition codes
EORI to CCR | Logical EOR to condition codes
MOVE EA to CCR| Load new condition codes
ORI to CCR Logical OR to condition codes
MOVE SR to EA | Store status register

SIGNAL AND BUS OPERATION DESCRIPTION

The following paragraphs contain a brief description of the
input and output signals. A discussion of bus operation dur-
ing the various machine cycles and operations is also given.

SIGNAL DESCRIPTION

The input and output signals can be functionally organized
into the groups shown in Figure 5. The following paragraphs
provide a brief description of the signals and also a reference
(if applicable) to other paragraphs that contain more detail
about the function being performed. _

AL MB

ADDRESS BUS (A1 THROUGH A23). This 23-bit,
unidirectional, three-state bus is capable of addressing 8
megawords of data. It provides the address for bus operation
during al' cycles except interrupt cycles. During interrupt

cycles, address lines A1, A2, and A3 provide information |

about what level interrupt is being serviced while address
lines A4 through A23 are all set to a logic high.

DATA BUS (DO THROUGH D15). This 16-bit, bidirec-
tional, three-state bus is the general purpose data path. It
can transfer and accept data in either word or byte length.

During an interrupt acknowledge cycle, the external device ||

supplies the vector number on data lines DO-D7.

ASYNCHRONOUS BUS CONTROL. Asynchronous data
transfers are handled using the following control signals: ad-
dress strobe, read/write, upper and lower data strobes, and
data transfer acknowledge. These signals are explained in
the following paragraphs.

i |

=
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FIGURE 5 — INPUT AND QUTPUT SIGNALS

Address|
Bus _ »A1-A23
00-01 5

Veel2)
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GND(2)
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CLK
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-
68000 | R/W e "
FCO Microprocessor _U_DJS___ synchronous
Processor FC1 LDS Bus
Siatus “Fc2 DTACK Control
-
M6B00D (et | L BR '
Peripheral < YMA | BG ___ \Bus Arbitration
Control VPA BGACK Control

Control

BERR
——i=
Svslem{ RESET

lf'li) Interrupt
S IPL1 nterrup
ontro HALT

Address Strobe (AS). This signal indicates that there is a
valid address on the address bus.

Read/Write (R/W}. This signal defines the data bus
transfer as a read or write cycle. The R/W signal also works
in conjunction with the upper and lower data strobes as ex-
plained in the following paragraph.

oM
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Upper And Lower Data Strobes (UDS, LDS). These
signals control the data on the data bus, as shown in Table
14. When the R/W line is high, the processor will read from
the data bus as indicated. When the R/W line is low, the
processor will write to the data bus as shown.

TABLE 14 — DATA STROBE CONTROL OF DATA BUS

UDS | DS | R/IW D8-D15 D0-D7
High | High - No valid data No valid data
g Valid data bits Valid data bits
Low | Low | High 8-15 0-7
High | Low | High | Novalid data | V2 Jatabits
Low | High | High Va"da‘f?? bits | Ng valid data
Valid data bits Valid data bits
Low Low Low B-15. 0-7
’ Valid data bits Valid data bits
High Low Low 07 0-7
: Valid data bits Valid data bits
Low High Low 8-15 .15

*These conditions are a result of current implementation and may
not appear on future devices.

Data Transfer Acknowledge (DTACK). This input in-
dicates that the data transfer is completed. When the pro-
cessor recognizes DTACK during a read cycle, data is
latched and the bus cycle terminated. When DTACK is
recognized during a write cycle, the bus cycle is terminated.

BUS ARBITRATION CONTROL. These three signals form
a bus arbitration circuit to determine which device will be the
bus master device. o L
_ S LCRQUEST Noadllim€
Bus Request (BR). This input is wire ORed with ‘all other
devices that could be bus masters. This input indicates to the
processor that some other device desires to become the bus
master.

Bus Grant (BG). This output indicates to all other potential ,

bus master devices that the processor will release bus con- “*" g

trol at the end of the current bus cycle.

Bus Grant Acknowledge (BGACK). This input indicates
that some other device has become the bus master. This
signal cannot be asserted until the following four conditions
are met:

1. a bus grant has been received
2. address strobe is inactive which indicates that the
microprocessor is not using the bus

everd

Yo
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3. data transfer acknowledge is inactive which indicates
that either memary or the peripherals are not using
the bus .

4. bus grant acknowledge is inactive which indicates
that no other device is still claiming bus mastership.

INTERRUPT CONTROL (IPLO, IPL1, TPL2). These input
pins indicate the encoded priority level of the device re-
questing an interrupt. Level seven is the highest priority
while level zero indicates that no interrupts are requested.
The least significant bit is given in IPLO and the maost signifi-
cant bit is contained in IPL2.

SYSTEM CONTROL. The system control inputs are used
to either reset or halt the processor and to indicate to the
processor that bus errors have occurred. The three system
control inputs are explained in the following paragraphs.

Bus Error (BERR). This input informs the processor that
there is a problem with the cycle currently being executed.
Problems may be a result of:

1. nonresponding devices
2. interrupt vector number acquisition failure

3. illegal access request as determined by a memory
management unit

4. other application dependent errors.

The bus error signal interacts with the halt signal to deter-
mine if exception processing should be performed or the cur-
rent bus cycle should be retried.

Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction of the bus er-
ror and halt signals.

Reset (RESET). This bidirectional signal line acts to reset
(initiate a system initialization sequence) the processor in
response to an external reset signal. An internally generated
reset (result of a RESET instruction} causes all external
devices to be reset and the internal state of the processor is
not affected. A total system reset (processor and external
devices) is the result of external halt and reset signals applied
at the same time. Refer to RESET OPERATION paragraph
for additional information about reset operation.

Halt (HALT). When this bidirectional line is driven by an
external device, it will cause the processor to stop at the
completion of the current bus cycle. When the processor has
been halted using this input, all control signals are inactive
and all three-state lines are put in their high-impedance state.
Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction between the
halt and bus error signals.

When the processor has stopped executing instructions,
such as in a double bus fault condition, the halt line is driven
by the processor to indicate to external devices that the pro-
cessor has stopped.

o -.:‘ﬁ
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R6500 PERIPHERAL CONTROL. These control signals
are used to allow the interfacing of synchronous R6500 pe-
ripheral devices with the asynchronous 68000. These sig-
nals are explained in the following paragraphs.

Enable (E). This is the standard enable signal commonly
called @2 in R6500 peripheral devices. The period for this
output is ten 68000 clock periods (six clocks low; four
clocks high). )

Valid Peripheral Address (VPA). This input indicates that
the device or region addressed is a R6500 family device
and that data transfer should be synchronized with the en-
able (E) signal. This input also indicates that the processor
should use automatic vectoring for an interrupt. Refer to
INTERFACE WITH R6500 PERIPHERALS.

Valid Memory Address (VMA). This output is used to in-
dicate to R6500 peripheral devices that there is a valid ad-
dress on the address bus and the processor is synchro-
nized to enable. This signal only responds to a valid
peripheral address (VPA) input which indicates that the
peripheral is a R6500 family device.

PROCESSOR STATUS (FCO, FC1, FC2). These function
code outputs indicate the state (user or supervisor) and the

cycle type currently being executed, as shown in Table 15.
The information indicated by the function code outputs is
valid whenever address strobe (AS) is active. W

Y a

TABLE 15 — FUNCTION CODE OUTPUTS

FC2 FC1 FCO Cycle Type

Low Low Low (Undefined, Reserved)

Low Low High User Data

Low | High Low User  Program

Low | High | High (Undefined, Reserved)

High Low Low (Undefined, Reserved)

High Low High Supervisor Data

High | High | Low Supervisor Program

High | High High Interrupt Acknowledge E

CLOCK (CLK). The clock input is a TTL compatible signal
that is internally buffered for development of the internal
clocks needed by the processor. The clock input shall be a
constant frequency.

SIGNAL SUMMARY. Table 16 is a summary of all the
signals discussed in the previous paragraphs.

TABLE 16 — SIGNAL SUMMARY

Signal Name Mnemonic Input/Output | Active State -2:::
Address Bus A1-A23 output high yes
Data Bus DO-D15 input/output high yes
Address Strobe AS output low yes
Read/Write R/W output ragkfuh yes
write-low

Upper and Lower Data Strobes uDs, IDS output low ves
Data Transfer Acknowledge DTACK input low no
Bus Request BR input low no
Bus Grant BG output low no
Bus Grant Acknowledge BGACK input low no
Interrupt Priority Level PLO, IPLT, TPC input low no
Bus Error BERR input low no
Reset RESET input/output low no*
Halt HALT input/output low no*
Enable E output high no
Valid Memory Address VMA output low yes
Valid Peripheral Address VPA input low no
Function Code Output FCO, FC1, FC2 output high yes
Clock CLK input high no
Power Input Vee input - =
Ground GND input - -
*open drain

12
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BUS OPERATION

The following paragraphs explain control signal and bus
operation during data transfer operations, bus arbitration,
bus error and halt conditions, and reset operation.

DATA TRANSFER OPERATIONS. Transfer of data be-
tween devices involves the following leads:

@ Address Bus A1l through A23
@ Data Bus DO through D15
@ Control Signals

The address and data buses are separate parallel buses used
to transfer data using an asynchronous bus structure. In all
cycles, the bus master assumes responsibility for deskewing
all signals it issues at both the start and end of a cycle. In ad-
dition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and
read-modify-write cycles. The indivisible read-modify-write
cycle is the method used by the 68000 for interlocked mul-
tiprocessor communications.

FIGURE 6 — WORD READ CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device
1) Set R/W to Read
2) Place Address on A1-A23
3) Place Function Code on FCO-FC2
4) Assert Address Strobe (AS)
5 Assert Upper Data Strobe (UDS) and Low-
er Data Strobe (LDS)

+

Input Data
1) Decode Address
2) Place Data on DO-D15
3) Assert Data Transfer Acknowledge
(DTACK)

Acquire Data
1) Latch Data
2) Negate UDS and LDS
3) Negate AS

/

Terminate Cycle

1} Remove Data from D0O-D15
2) Negate DTACK

Start Next Cycle

NOTE

The terms assertion and negation will be used extensively.
This is done to avoid confusion when dealing with a mixture
of “active-low" and "‘active-high” signals. The term assert or
assertion is used to indicate that a signal is active or true in-
dependent of whether that voltage is low or high. The term
negate or negation is used to indicate that a signal is inactive
or false.

Read Cycle. During a read cycle, the processor receives
data from memory or a peripheral device. The processor
reads bytes of data in all cases. If the instruction specifies a
word lor double word) operation, the processor reads both
bytes. When the instruction specifies byte operation, the
processor uses an internal AQ bit to determine which byte to
read and then issues the data strobe required for that byte.
For byte operations, when the AD bit equals zero, the upper
data strobe is issued. When the AQ bit equals one, the lower
data strobe is issued. When the data is received, the pro-
cessor carrectly positions it internally.

A word read cycle flow chart is given in Figure 6. A byte
read cycle flow chart is given in Figure 7. Read cycle timing is
given in Figure 8 and Figure 9 details word and byte read cy-
cle operation.

FIGURE 7 — BYTE READ CYCLE FLOW CHART

BUS MASTER SLAVE
Address Device
1) Set R/W to Read
2) Place Address on A1-A23
3) Place Function Code on FCO-FC2
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) or Lower
Data Strobe (LDS) (based on AQ)

|
Input Data

1} Decode Address
2} Place Data on DO-D7 or D8-D15 (based on

UDS or LDS)
3) Assert Data Transfer Acknowledge

(DTACK)

|

+

Acquire Data

1) Latch Data =
2) Negate UDS or LDS
3} Negate AS

—

'

Terminate Cycle
1} Remove Data from DO-D7 or D8-D15
2] Negate DTACK

Start Next Cycle

12
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FIGURE 8 — READ AND WRITE CYCLE TIMING DIAGRAM

NIV D o §
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*Internal Signal Only

Write Cycle. During a write cycle, the processor sends
data to memory or a peripheral device. The processor writes
bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the in-
struction specifies a byte operation, the processor uses an
internal AQ bit to determine which byte to write and then
issues the data strobe required for that byte. For byte opera-

11- — -Word Read- -—)-I-q— — 0Odd Byte Read— )-|<- —Even Byte Read — >|

tions, when the AQ bit equals zero, the upper data strobe is
issued. When the A0 bit equals one, the lower data strobe is
issued. A word write cycle flow chart is given in Figure 10. A
byte write cycle flow chart is given in Figure 11. Write cycle
timing is given in Figure B and Figure 12 details word and
byte write cycle operation.

14
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FIGURE 10 — WORD WRITE CYCLE FLOW CHART FIGURE 11 — BYTE WRITE CYCLE FLOW CHART
BUS MASTER SLAVE BUS MASTER SLAVE
Address Device
Address Device 1) Place Address on A1-A23

1) Place Address on A1-A23 2) Place Function Code on_FCO-FC2
2) Place Function Code on FCO-FC2 3) Assert Address Strobe (AS)
3) Assert Address Strobe (AS) 4) Set R/W to Write ‘
4) Set R/W to Write 5) Place Data on DO-D7 or D8-D16 (according
5) Place Data on DO-D15 to AO)
6) Assert Upper Data Strobe (UDS) and 6) Assert Upper Data Strobe (UDS) or Lower

Lower Data Strobe (LDS) Data Strobe (LDS) (based on AQ)

J

‘ Input Data J Input Data
S 1) Decode Address
Y Deeade addmes 2) Store Data on DO-D7 if LDS is asserted
2) Store Data on DO-D15 s D DS-D16 if UDS i g
3) Assert Data Transfer Acknowledge tore:Liata on Uo-URG | IS asserle
(DTACK) 3) Assert Data Transfer Acknowledge

Q
=
pog
@]
=

Terminate Output Transfer

1) Negate UDS and LDS Terminate Output Transfer
2) Negate AS 1) Negate UDS and LDS

3) Remove Data from DO-D15 2) Negate AS

4) Set R/W to Read 3) Remove Data from DO-D7 or D8-D15

4) Set R/W to Read

i

! |

Terminate Cycle Terminate Cycle
1) Negate DTACK [ 1) Negate DTACK

Start Next Cycle Start Next Cycle

1

FIGURE 12 — WORD AND BYTE WRITE CYCLE TIMING DIAGRAM

aa-a23 )—__ < — D
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Read-Modify-Write Cycle. The read-modify-write cycle sor environment. This instruction is the only instruction that
performs a read, modifies the data in the arithmetic-logic uses the read-modify-write cycles and since the test and
unit, and writes the data back*to the same address. In the set instruction only operates on bytes, all read-modify-write
68000 this cycle is indivisible in that the address strobe is cycles are byte operations. A read-modify-write cycle flow
asserted throughout the entire cycle. The test and set chart is given in Figure 13 and a timing diagram is given in
(TAS) instruction uses this cycle to provide meaningful Figure 14.

communication between processors in a multiple proces-
FIGURE 13 — READ-MODIFY-WRITE CYCLE FLOW CHART

BUS MASTER SLAVE
Address Device
1} Place Address on A1-A23
2} Set R/W to Read _
3) Assert Address Strobe (AS)
4) Assert Upper Data Strobe (UDS) or Lower
Data Strobe lLDS]L

Input Data
1) Decode Address
2) Place Data on DO-D7 or D8-D15
3) Assert Data Transfer Acknowledge
{DTACK)

|

Acquire Data
1) Latch Data
2) Negate UDS or LDS
3) Start Data Modification

Terminate Cycle

1) Remove Data from DO-D7 or D8-D15
2) Negate DTACK
|

Start OQutput Transfer
1) Set R/W to Write
2) Place Data on DO-D7 or D8-D15
3) Assert Upper Data Strobe (UDS} or Lower
Data Strobe (LDSL

Input Data

1) Store Data on DO-D7 or DB-D15
2) Assert Data Transfer Acknowledge
(DTACK)

]

Terminate Output Transfer

1) Negate UDS or LDS

2) Negate AS

3) Remove Data from DO-D7 or D8-D15
4) Set R/W to Readl_

Terminate Cycle
1) Negate DTACK

Start Next Cycle

16
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CLK

FIGURE 14 — READ-MODIFY-WRITE CYCLE TIMING DIAGRAM
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BUS ARBITRATION. Bus arbitration is a technique used
by master-type devices to request, be granted, and
acknowledge bus mastership. In its simplest form, it consists
of:

1. Asserting a bus mastership request.

2. Receiving a grant that the bus is available at the end
of the current cycle.

3. Acknowledging that mastership has been assumed.

Figure 15 is a flow chart showing the detail involved in a
request from a single device. Figure 16 is a timing diagram
for the same operations. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated
at the time that an acknowledge is asserted. This type of
operation would be true for a system consisting of the pro-
cessor and one device capable of bus mastership. In systems
having a number of devices capable of bus mastership, the
bus request line from each device is wire ORed to the pro-
cessor. In this system, it is easy to see that there could be
more than one bus request being made. The timing diagram
shows that the bus grant signal is negated a few clock cycles
after the transition of the acknowledge (BGACK) signal.

However, if the bus requests are still pending, the pro-
cessor will assert another bus grant within a few clock cycles
after it was negated. This additional assertion of bus grant
allows external arbitration circuitry to select the next bus
master before the current bus master has completed its re-
quirements. The following paragraphs provide additional in-
formation about the three steps in the arbitration process.

negated)

|(_ — — — — — Indivisible Cycle — —

PROCESSOR

FIGURE 16 — BUS ARBITRATION CYCLE FLOW-CHART

REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BR)
J

Grant Bus Arbitration

1) Assert Bus Grant (BG)

L

Acknowledge Bus Mastership
External arbitration determines next bus
master
Next bus master waits for current cycle to
complete
Next bus master asserts Bus Grant
Acknowledge {BGACK) to become new
master

Bus master negates BR
J

2)

3)

4)

Terminate Arbitration

1) Negate BG (and wait for BGACK to be

L

Operate as Bus Master
1) Perform Data Transfers (Read and Write
cycles) according to the same rules the pro-
Cessor uses.

Release Bus Mastership
1} Negate BGACK
1

Re-Arbitrate or Resume Processor

Operation
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FIGURE 16 — BUS ARBITRATION CYCLE TIMING DIAGRAM
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Requesting the Bus. External devices capable of becoming
bus masters request the bus by asserting the bus request
(BR) signal. This is a wire ORed signal (although it need not
be constructed from open collector devices) that indicates to
the processor that some external device requires control of
the external bus. The processor is effectively at a lower bus
priority level than the external device and will relinquish the
bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request
signal goes inactive, the processor will continue processing
when it detects that the bus request is inactive. This allows
ordinary processing to continue if the arbitration circuitry
responded 1o noise inadvertently.

_Receiving the Bus Grant. The processor asserts bus grant
(BG) as soon as possible. Normally this is immediately after
internal synchronization. The only exception to this occurs
when the processor has made an internal decision to execute
the next bus cycle but has not progressed far enough into
the cycle to have asserted the address strobe (AS) signal. In
this case, bus grant will not be asserted until one clock after
address strobe is asserted to indicate to external devices that
a bus cycle is being executed.

The bus grant signal may be routed through a daisy-
chained netwaork or through a specific priority-encoded net-
work. The processor is not affected by the external method
of arbitration as long as the protocol is ocbeyed.

Acknowledgement of Mastership. Upon receiving a bus
grant, the requesting device waits until address strobe, data
transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the
address strobe indicates that the previous master has com-

-Processor— —

X
e

-DMA Device: — —

pleted its cycle, the negation of bus grant acknowledge in-
dicates that the previous master has released the bus. (While
address strobe is asserted no device is allowed to "'break in-
to" a cycle.)] The negation of data transfer acknowledge in-
dicates the previous slave has terminated its connection to
the previous master. Note that in some applications data
transfer acknowledge might not enter into this function.
General purpose devices would then be connected such that
they were only dependent on address strobe. When bus
grant acknowledge is issued the device is bus master until it
negates bus grant acknowledge. Bus grant acknowledge
should not be negated until after the bus cyclels) is (arel
completed. Bus mastership is terminated at the negation of
bus grant acknowledge.

The bus request from the granted device should be drop-
ped when bus grant acknowledge is asserted. If bus request
is still asserted after bus grant acknowledge is negated, the
processor performs another arbitration sequence and issues
another bus grant. Note that the processor does not perform
any external bus cycles before it re-asserts bus grant.

BUS ERROR AND HALT OPERATION. In a bus architec-
ture that requires a handshake from an external device, the
possibility exists that the handshake might not occur. Since
different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be
used to determine the duration between address strobe and
data transfer acknowledge before issuing a bus error signal.
When a bus error signat is received, the processor has two
options: initiate a bus error exception sequence or try runn-
ing the bus cycle again.

18
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Exception Sequence. The bus error exception sequence is
entered when the processor receives a bus error signal and
the halt pin is inactive. Figure 17 is a timing diagram for the
exception sequence. The sequence is composed of the
following elements:

1. Stacking the program counter and status register
2. Stacking the error information

3. Reading the bus error vector table entry

4. Executing the bus error handler routine

The stacking of the program counter and the status
register is the same as if an interrupt had occurred. Several
additional items are stacked when a bus error occurs. These
iterns are used to determine the nature of the error and cor-
rect it, if possible. The bus error vector is vector number two
located at address $000008. The processor loads the new
program counter from this location. A software bus error

CLK

handler routine is then executed by the processor. Refer to
EXCEPTION PROCESSING for additional information.

Re-Running the Bus Cycle. When the processor receives a
bus error signal and the halt pin is being driven by an external
device, the processor enters the re-run sequence. Figure 18
is a timing diagram for re-running the bus cycle.

The processor completes the bus cycle, then puts the ad-
dress, data and function code output lines in the high-
impedance state. The processor remains “halted,” and will
not run another bus cycle until the halt signal is removed by
external logic. Then the processor will re-run the previous
bus cycle using the same address, the same function codes,
the same data (for a write operation), and the same controls.
The bus error signal should be removed before the halt signal
is removed.

FIGURE 17 — BUS ERROR TIMING DIAGRAM
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FIGURE 18 — RE-RUN BUS CYCLE TIMING INFORMATION
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NOTE

The processor will not re-run a read-modify-write cycle.
This restriction is made to guarantee that the entire cycle
runs correctly and that the write operation of a Test-and-Set
operation is performed without ever.releasing AS.

Halt Operation with No Bus Error. The halt input signal to
the 68000 performs a Halt/Run/Single-Step function in a
similar fashion to the MB800Q halt function. The halt and run
modes are somewhat self explanatory in that when the halt
signal is constantly active the processor “halts” (does
nothing) and when the halt signal is constantly inactive the
processor "runs” (does something).

The single-step mode is derived from correctly timed tran-
sitions on the halt signal input. It forces the processor to ex-
ecute a single bus cycle by entering the "‘run” mode until the
processor starts a bus cycle then changing to the “halt”
mode. Thus, the single-step mode allows the user to pro-
ceed through (and therefore debug) processor operations
one bus cycle at a time. ;

Figure 19 details the timing required for correct single-step
operations. Some care must be exercised to avoid harmful
interactions between the bus error signal and the halt pin
when using the single cycle mode as a debugging tool. This
is also true of interactions between the halt and reset lines
since these can reset the machine.

When the processor completes a bus cycle after recogniz-
ing that the halt signal is active, most three-state signals are
put in the high-impedance state. These include:

1. address lines
2. data lines
3. function code lines

This is required for correct performance of the re-run bus cy-
cle operation.

Note that when the processor honors a request to halt, the
function codes are put in the high-impedance state (their
buffer characteristics are the same as the address buffers).
While the processor is honoring the halt request, bus arbitra-
tion performs as usual. That is, halting has no effect on bus
arbitration. It is the bus arbitration function that removes the
control signals from the bus.

The halt function and the hardware trace capability allow
the hardware debugger to trace single bus cycles or single
instructions one at a time. These processor capabilities,
along with a software debugging package, give total de-
bugging flexibility.

Double Bus Faults. When a bus error exception occurs,
the processor will attempt to stack several words containing
information about the state of the machine. If a bus error ex-
ception occurs during the stacking operation, there have
been two bus errors in a row. This is commonly referred to as
a double bus fault. When a double bus fault occurs, the pro-
cessor will halt. Once a bus error exception has occurred,
any bus error exception occurring before the execution of
the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a
bus error exception, and does not contribute to a double bus
fault. Note also that this means that as long as the external
hardware requests it, the processor will continue to re-run
the same bus cycle.

The bus error pin also has an effect on processor operation
after the processor receives an external reset input. The pro-
cessor reads the vector table after a reset to determine the
address to start program execution. If a bus error occurs
while reading the vectar table {or at any time before the first
instruction is executed), the processor reacts as if a double
bus fault has occurred and it halts. Only an external reset will
start a halted processor.

FIGURE 19 — HALT SIGNAL TIMING CHARACTERISTICS
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RESET OPERATION. The reset signal is a bidirectional the status register to an interrupt level of seven. No other
signal that allows either the processor or an external signal to registers are affected by the reset sequence.
reset the system. Figure 20 is a timing diagram for reset When a RESET sequence is executed, the processor
operations. Both the halt and the reset lines must be applied drives the reset pin for 124 clock pulses. In this case, the pro-
to ensure total reset of the processor. cessor is trying to reset the rest of the system. Therefore,
When the reset and halt lines are driven by an external there is no effect on the internal state of the processor. All of
device, it is recognized as an entire system reset, including the processor's internal registers and the status register are
the processor. The processor responds by reading the reset unaffected by the execution of a RESET instruction. All ex-
vector table entry (vector number zero, address $000000) ternal devices connected to the reset line should be reset at
and loads it into the supervisor stack pointer (SSP). Vector the completion of the RESET instruction.
table entry number one at address $000004 is read next and When V is initially applied to the processor, an external
loaded into the program counter. The processor initializes reset must be applied to the reset pin for 100 milliseconds.

FIGURE 20 — RESET OPERATION TIMING DIAGRAM
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EXCEPTION PROCESSING

The following paragraphs describe the actions of the The halted processing state is an indication of catastrophic
68000 which are outside the normal processing associ- hardware failure. For example, if during the exception pro-
ated with the execution of instructions. The functions of the cessing of a bus error another bus error occurs, the pro-
bits in the supervisor portion of the status register are cov- cessor assumes that the system is unusable and halts. Only
ered: the supervisor/user bit, the trace enable bit, and the an external reset can restart a halted processor. Note that a
processor interrupt priority mask. Finally, the sequence of processar in the stopped state is not in the halted state, nor
memory references and actions taken by the processor on vice versa,

exception conditions is detailed.

PROCESSING STATES PRIVILEGE STATES

The 68000 is always one of three processing states: nor- The processor operates in one of two states of privilege:
mal, exception, or halted. The normal processing state is the “user' state or the "supervisor'’ state. The privilege state
that associated with instruction execution; the memory ref- determines which operations are legal, is used by the exter-
erences are to fetch instructions and operands, and to nal memory management device to control and translate ac-
store results. A special case of the normal stale is the cesses, and is used to choose between the supervisor stack
stopped state which the processor enters when a STOP in- pointer and the user stack pointer in instruction references.
struction is executed. In this state, no further memory ref- The privilege state is a mechanism for providing security in
erences are made. a computer system. Programs should access only their own

The exception processing state is associated with inter- code and data areas, and ought to be restricted from access-
rupts, trap instructions, tracing and other exceptional condi- ing information which they do not need and must not
tions. The exception may be internally generated by an in- modify.
struction or by an unusual condition arising during the ex- The privilege mechanism provides security by allowing
ecution of an instruction. Externally, exception processing most programs to execute in user state. In this state, the ac-
can be forced by an interrupt, by a bus error, or by a reset. cesses are controlled, and the effects on other parts of the
Exception processing is designed to provide an efficient con- system are limited. The operating system executes in the
text switch so that the processor may handle unusual condi- supervisor state, has access to all resources, and performs
tions. the overhead tasks for the user state programs.
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SUPERVISOR STATE. The supervisor state is the higher
state of privilege. For instruction execution, the supervisor
state is determined by the S-bit of the status register; if the
S-bit is asserted (high), the processor is in the supervisor
state. All instructions can be executed in the supervisor
state. The bus cycles generated by instructions executed in
the supervisor state are classified as supervisor references.
While the processor is in the supervisor privilege state, those
instructions which use either the system stack pointer im-
plicitly or address register seven explicitly access the super-
visor stack pointer.

All exception processing is done in the supervisor state,
regardless of the setting of the S-bit. The bus cycles
generated during exception processing are classified as

supervisor references. All stacking operations during excep- -

tion processing use the supervisor stack pointer.

USER STATE. The user state is the lower state of
privilege. For instruction execution, the user state is deter-
mined by the S-bit of the status register; if the S-bit is
negated (low), the processor is executing instructions in the
user state. ;

Most instructions execute the same in user state as in the
supervisor state. However, some instructions which have
important system effects are made privileged. User programs
are not permitted to execute the STOP instruction, or the
RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the
instructions which modify the whole status register are
privileged. To aid in debugging programs which are to be
used as operating systems, the move to user stack pointer
[IMOVE USP) and move from user stack pointer (MOVE from
USP) instructions are also privileged.

The bus cycles generated by an instruction executed in
user state are classified as user state references. This allows
an external memory management device to translate the ad-
dress and to control access to protected portions of the ad-
dress space. While the processor is in the user privilege
state, those instructions which use either the system stack
pointer implicitly, or address register seven explicitly, access
the user stack pointer.

PRIVILEGE STATE CHANGES. Once the processor is in
the user state and executing instructions, only exception
processing can change the privilege state. During exception

processing, the current setting of the S-bit of the status
register is saved and the S-bit is asserted, putting the pro-
cessing in the supervisor state. Therefore, when instruction
execution resumes at the address specified to process the
exception, the processor is in the supervisor privilege state.

REFERENCE CLASSIFICATION. When the processor
makes a reference, it classifies the kind of reference being
made, using the encoding on the three function code output
lines. This allows external translation of addresses, control of
access, and differentiation of special processor states, such
as interrupt acknowledge. Table 17 lists the classification *
references.

TABLE 17 — REFERENCE CLASSIFICATION

Function Code Output
Fe2 FC1 FCO Reference Class

0 (4] Q {Unassigned)

0 0 1 User Data

0 1 0 User Program

0 1 1 (Unassigned)

1 0 0 (Unassigned)

1 0 1 Supervisor Data

1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and trac-
ing, a general description of exception processing is in order.
The processing of an exception occurs in four steps, with
variations for different exception causes. During the first
step, a temporary copy of the status register is made, and
the status register is set for exception processing. In the sec-
ond step the exception vector is determined, and the third
step is the saving of the current processor context. In the
fourth step a new context is obtained, and the processor
switches to instruction processing.

EXCEPTION VECTORS. Exception vectors are memory
locations from which the processor fetches the address of a
routine which will handle that exception. All exception vec-
tors are two words in length (Figure 21}, except for the reset

FIGURE 21 — EXCEPTION VECTOR FORMAT

Word 0 New Program Counter (Highl A0=0, A1=0
Word 1 New Program Counter (Low] A0=0, A1=1
FIGURE 22 — PERIPHERAL VECTOR NUMBER FORMAT
D15 D8 D7 DO
Ilgnored vi | vB|[vE|vd | v3]v2|vl | VO
Where:

v7 is the MSB of the Vectar Number
v0 is the LSB of the Vector Number




vector, which is four words. All exception vectors lie in the
supervisor data space, except for the reset vector which is in
the supervisor program space. A vector number is an eight-
bit number which, when multiplied by four, gives the ad-
dress of an exception vector. Vector numbers are generated
internally or externally, depending on the cause of the excep-
tion. In the case of interrupts, during the interrupt
acknowledge bus cycle, a peripheral provides an 8-bit vector
number (Figure 22} to the processor on data bus lines DO
through D7. The processor translates the vector number into
a full 24-bit address, as shown in Figure 23. The memory
layout for exception vectors is given in Table 18.

As shown in Table 18, the memory layout is 512 words
long (1024 bytes). It starts at address 0 and proceeds

through address 1023. This provides 2565 unique vectors;
some of these are reserved for TRAPS and other System
functions. Of the 255, there are 192 reserved for user inter-
rupt vectors. However, there is no protection on the first 64
entries, so user interrupt vectors may overlap at the discre-
tion of the systems designer.

KINDS OF EXCEPTIONS. Exceptions can be generated by
either internal or external causes. The externally generated
exceptions are the interrupts and the bus error and reset re-
quests. The interrupts are requests from peripheral devices
for processor action while the bus error and reset inputs are
used for access control and processor restart. The internally
generated exceptions come from instructions, or from ad-

FIGURE 23 — ADDRESS TRANSLATED FROM 8-BIT
VECTOR NUMBER

A23

A10 A9 AB A7 A6 A5 A4

A3 A2 Al AD

All Zeroes

V7| vB | v | v4| v3|v2| vi|Vv0] O| O

TABLE 18 — EXCEPTION VECTOR ASSIGNMENT

Vector Address i
Assignment
Number(s) Dec Hex |Space
0 0 000 SP Reset: Initial SSP
- 4 004 SP Reset: Initial PC
2 8 008 sD Bus Error
3 12 0oC SD Address Error
4 16 010 SD lllegal Instruction
5 20 014 SD Zero Divide
6 24 018 sD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
1 44 02C SD Line 1111 Emulator
12° 48 030 SD (Unassigned, reserved)
13° 52 034 sD (Unassigned, reserved|
14* 56 038 SD {Unassigned, reserved)
15 60 03C SD Unitialized Interrupt Vector
16-23° 64 040 SD {Unassigned, reserved)
95 05F -
24 96 060 sSD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 12 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 Q078 SD Level 6 Interrupt Autovector
31 124 Q7C SD Level 7 Interrupt Autovector
32-47 128 080 SD TRAP Instruction Vectors
191 0BF -
48-63* 192 0Co SD (Unassigned, reserved)
255 OFF -
64-255 256 100 SD User Interrupt Vectors
1023 3FF -

*Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are re-
served for future enhancements. No user peripheral devices should be

assigned these numbers.
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dress errors or tracing. The trap (TRAP), trap on overflow
(TRAPV), check register against bounds (CHK) and divide
(DIV) instructions all can generate exceptions as part of their
instruction execution. In addition, illegal instructions, word
fetches from odd addresses and privilege violations cause ex-
ceptions. Tracing behaves like a very high priority, internally
generated interrupt after each instruction execution.

EXCEPTION PROCESSING SEQUENCE. Exception pro-
cessing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register. After the copy is
made, the S-bit is asserted, putting the processor into the
supervisor privilege state. Also, the T-bit is negated which
will allow the exception handler to execute unhindered by
tracing. For the reset and interrupt exceptions, the interrupt
priority mask is also updated.

In the second step, the vector number of the exception is
determined. For interrupts, the vector number is obtained by
a processor fetch, classified as an interrupt acknowledge.
For all other exceptions, internal logic provides the vector
number. This vector number is then used to generate the ad-
dress of the exception vector.

The third step is 1o save the current processor status, ex-
cept for the reset exception. The current program counter
value and the saved copy of the status register are stacked
using the supervisor stack pointer. The program counter
value stacked usually points to the next unexecuted instruc-
tion, however for bus error and address error, the value
stacked for the program counter is unpredictable, and may
be incremented from the address of the instruction which
caused the error. Additional information defining the current
context is stacked for the bus error and address error excep-
tions.

The last step is the same for all exceptions. The new pro-
gram counter value is fetched from the exception vector.
The processor then resumes instruction execution. The in-
struction at the address given in the exception vector is
fetched, and normal instruction decoding and execution is
started.

MULTIPLE EXCEPTIONS. These paragraphs describe the
processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped according to
their occurrence and priority. The Group O exceptions are
reset, bus error, and address error. These exceptions cause
the instruction currently being executed to be aborted, and
the exception processing to commence at the next minor cy-
cle of the processor. The Group 1 exceptions are trace and
interrupt, as well as the privilege violations and illegal in-
structions. These exceptions allow the current instruction to
execute to completion, but preempt the execution of the
next instruction by forcing exception processing to occur
(privilege violations and illegal instructions are detected
when they are the next instruction to be executed). The
Group 2 exceptions occur as part of the normal processing of
instructions. The TRAP, TRAPV, CHK, and zero divide ex-
ceptions are in this group. For these exceptions, the normal
execution of an instruction may lead to exception process-
ing.

Group 0 exceptions have highest priority, while Group 2
exceptions have lowest priority. Within Group 0, reset has
highest priority, followed by bus error and then address er-
ror. Within Group 1, trace has priority over external inter-
rupts, which in turn takes priority over illegal instruction and

privilege violation. Since only one instruction can be ex-
ecuted at a time, there is no priority relation within Group 2.

The priority relation between two exceptions determines
which is taken, or taken first, if the conditions far both arise
simultaneously. Therefore, if a bus error occurs during a
TRAP instruction, the bus error takes precedence, and the
TRAP instruction processing is aborted. In another example,
if an interrupt request occurs during the execution of an in-
struction while the T-bit is asserted, the trace exception has
priority, and is processed first. Before instruction processing
resumes, however, the interrupt exception is also processed,
and instruction processing commences finally in the inter-
rupt handler routine. A surmmary of exception grouping and
priority is given in Table 19.

TABLE 19 — EXCEPTION GROUPING AND PRIORITY

Group Exception Processing
Reset g ; .
o | susErar [Ecemien posessna beons
Address Error
Trace
1 Interrupt Exception processing begins before
lNegal the next instruction
Privilege
2 TRAPC'JSAPV' Exception processing is started by
normal instruction execution
Zero Divide

EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception
has processing which is peculiar to it. The following
paragraphs detail the sources of exceptions, how each
arises, and how each is processed.

RESET. The reset input provides the highest exception
level. The processing of the reset signal is designed for
system initiation, and recovery from catastrophic failure.
Any processing in progress at the time of the reset is aborted
and cannot be recovered. The processor is forced into the
supervisor state, and the trace state is forced off. The pro-
cessor interrupt priority mask is set at level seven. The vector
number is internally generated to reference the reset excep-
tion vector -at location O in the supervisor program space.
Because no assumptions can be made about the validity of
regisier contents, in particular the supervisor stack pointer,
neither the program counter nor the status register is saved.
The address contained in the first two words of the reset ex-
ception vector is fetched as the initial supervisor stack
pointer, and the address in the last two words of the reset
exception vector is fetched as the initial program counter.
Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be
pointed to by the initial program counter.

The RESET instruction does not cause loading of the reset
vector, but does assert the reset line to reset external
devices. This allows the software to reset the system to a
known state and then continue processing with the next in-
struction.

INTERRUPTS. Seven levels of interrupt priorities are pro-
vided. Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral
devices to interrupt the processor. Interrupt priority levels
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are numbered from one to seven, level seven being the
highest priority. The status register contains a three-bit mask
which indicates the current processor priority, and interrupts
are inhibited for all priority levels less than or equal to the
current processar priority.

An interrupt request is made to the processor by encoding
the interrupt request level on the interrupt request lines; a
zero indicates no interrupt request. Interrupt requests arriv-
ing at the processor do not force immediate exception pro-
cessing, but are made pending. Pending interrupts are
detected between instruction executions. If the priority of
the pending interrupt is lower than or equal to the current
processor priority, execution continues with the next instruc-
tion and the interrupt exception processing is postponed.
(The recognition of level seven is slightly different, as ex-
plained in a following paragraph.)

If the pricrity of the pending interrupt is greater than the
current processor priority, the exception processing se-
quence is started. First a copy of the status register is saved,
and the privilege state is set to supervisor, tracing is sup-
pressed, and the processor priority level is set to the level of
the interrupt being acknowledged. The processor fetches
the vector number from the interrupting device, classifying
the reference as an interrupt acknowledge and displaying the
level number of the interrupt being acknowledged on the ad-
dress bus. If external logic requests an automatic vectoring,
the processor internally generates a vector number which is
determined by the interrupt level number. If external logic in-
dicates a bus error, the interrupt is taken to be spurious, and
the generated vector number references the spurious inter-
rupt vector. The processor then proceeds with the usual ex-
ception processing, saving the program counter and status
register on the supervisor stack. The saved value of the pro-
gram counter is the address of the instruction which would
have been executed had the interrupt not been present. The
content of the interrupt vector whose vector number was
previously obtained is fetched and loaded into the program
counter, and normal instruction execution commences in the
interrupt handling routine. A flow chart for the interrupt
acknowledge sequence is given in Figure 24; a timing
diagram is given in Figure 25.

FIGURE 24 — INTERRUPT ACKNOWLEDGE SEQUENCE
FLOW CHART

PROCESSOR INTERRUPTING DEVICE

Request Intarrupt

Grant Interrupt

1) Compare interrupt level in status register

and wait for current instruction to complete
2) Place interrupt level on A1, A2, A3
3) Set R/W to read
4) Set function code to interrupt acknowledge
5) Assert address strobe {AS)
6) Assert lower data strobe (LDS)

Provide Vector Number

1) Place vector number of DO-D7
2) Assert data transfer acknowledge {DTACK)

|

Acquire Vector Number

1) Latch vector number
2) Negate LDS
3) Negate AS

Y

Release
1) Negate DTACK

r

Start Interrupt Processing

FIGURE 26 — INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM
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Priority level seven is a special case. Level seven interrupts
cannot be inhibited by the interrupt priority mask, thus pro-
viding a "'non-maskable interrupt” capability. An interrupt is
generated each time the interrupt request level changes from
some lower level to level seven. Note that a level seven inter-
rupt may still be caused by the level comparison if the re-
quest level is a seven and the processor priority is set to a
lower level by an instruction.

INSTRUCTION TRAPS. Traps are exceptions caused by
instructions. They arise either from processor recognition of
abnormal conditions during instruction execution, or from
use of instructions whose normal behavior is trapping.

Some instructions are used specifically to generate traps.
The TRAP instruction always forces an exception, and is’
useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user
program detects a runtime error, which may be an arithmetic
overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) in-
structions will force an exception if a division operation is at-
tempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. II-
legal instruction is the term used to refer to any of the word
bit patterns which are not the bit pattern of the first word of
a legal instruction. During instruction execution, if such an
instruction is fetched, an illegal instruction exception occurs.

Word patterns with bits 15 through 12 equaling 1010 or
1111 are distinguished as unimplemented instructions and
separate exception vectors are given to these patterns to per-
mit efficient emulation. This facility allows the operating
system to detect program errors, or to emulate
unimplemented instructions in software.

PRIVILEGE VIOLATIONS. In order to provide system
security, various instructions are privileged. An attempt to
execute one of the privileged instructions while in the user
state will cause an exception. The privileged instructions are:

STOP AND (word) Immediate to SR
RESET EOR (word) Immediate to SR
RTE OR (word) Immediate to SR
MOVE to SR MOVE USP

TRACING. To aid in program development, the 68000
includes a facility to allow instruction by instruction tracing.
In the trace state, after each instruction is executed an ex-
ception is forced, allowing a debugging program to moni-
tor the execution of the program under lest.

The trace facility uses the T-bit in the supervisor portion of
the status register. If the T-bit is negated (off}, tracing is
disabled, and instruction execution proceeds from instruc-
tion to instruction as normal. If the T-bit is asserted (on) at
the beginning of the execution of an instruction, a trace ex-
ception will be generated after the execution of that instruc-
tion is completed. If the instruction is not executed, either
because an interrupt is taken, or the instruction is illegal or
privileged, the trace exception does not occur. The trace ex-
ception also does not occur if the instruction is aborted by a
reset, bus error, or address error exception. If the instruction
is indeed executed and an interrupt is pending on comple-
tion, the trace exception is processed before the interrupt ex-
ception. If, during the execution of the instruction, an excep-
tion is forced by that instruction, the forced exception is pro-
cessed before the trace exception.

As an extreme illustration of the above rules, consider the
arrival of an interrupt during the execution of a TRAP in-
struction while tracing is enabled. First the trap exception is
processed, then the trace exception, and finally the interrupt
exception. Instruction execution resumes in the interrupt
handler routine.

BUS ERROR. Bus error exceptions occur when the exter-
nal logic requests that a bus error be processed by an excep-
tion. The current bus cycle which the processor is making is
then aborted. Whether the processor was doing instruction
or exception processing, that processing is terminated, and
the processor immediately begins exception processing.

Exception processing for bus error follows the usual se-
quence of steps. The status register is copied, the supervisor
state is entered, and the trace state is turned off. The vector
number is generated to refer to the bus error vector. Since
the processor was not between instructions when the bus er-
ror exception request was made, the context of the pro-
cessor is more detailed. To save more of this context, addi-
tional information is saved on the supervisor stack. The pro-
gram counter and the copy of the status register are of
course saved. The value saved for the program counter is ad-
vanced by some amount, two to ten bytes beyond the ad-

FIGURE 26 — SUPERVISOR STACK ORDER
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dress of the first word of the instruction which made the
reference causing the bus error. If the bus error occurred
during the fetch of the next instruction, the saved program
counter has a value in the vicinity of the current instruction,
even if the current instruction is a branch, a jump, or a return
instruction. Besides the usual information, the processor
saves its internal copy of the first word of the instruction be-
ing processed, and the address which was being accessed
by the aborted bus cycle. Specific information about the ac-
cess is also saved: whether it was a read or a write, whether
the processor was processing an instruction or not, and the
classification displayed on the function code outputs when
the bus error occurred. The processor is processing an in-
struction if it is in the normal state or processing a Group 2
exception; the processor is not processing an instruction if it
is processing a Group 0 or a Group 1 exception. Figure 26 il-
lustrates how this information is organized on the supervisor
stack. Although this information is not sufficient in general
to effect full recovery from the bus error, it does allow soft-
ware diagnosis. Finally, the processor commences instruc-
tion processing at the address contained in the vector. It is

the responsibility of the error handler routine to clean up the
stack and determine where to continue execution.

If a bus error occurs during the exception processing for a
bus error, address error, or reset, the processor is halted,
and all processing ceases. This simplifies the detection of
catastrophic system failure, since the processor removes
itself from the system rather than destroy all memory con-
tents. Only the RESET pin can restart a halted processor.

ADDRESS ERROR. Address error exceptions occur when
the processor attempts to access a word or a long word
operand or an instruction at an odd address. The effect is
much like an internally generated bus error, so that the bus
cycle is aborted, and the processor ceases whatever process-
ing it is currently doing and' begins exception processing.
After exception processing commences, the sequence is the
same as that for bus error including the information that is
stacked, except that the vector number refers to the address
error vector instead. Likewise, if an address error occurs dur-
ing the exception processing for a bus error, address error,
or reset, the processor is halted.

INTERFACE WITH R6500 PERIPHERALS

Rockwell's line of R6500 peripherals are directly com-
patible with the 68000. Some of these devices that are par-
ticularly useful are:

R6520 Peripheral Interface Adapter (PIA)

R6522 Versatile Interface Adapter (VIA)

R6545 CRT Controller

R6551 Asynchronous Communication Interface Adapter

To interface the synchronous R6500 peripherals with the
asynchronous 68000, the processor modifies its bus cycle
to meet the R6500 cycle requirements whenever an R6500
device address is detected. This is possible since both
processors use memory mapped I/O. Figure 27 is a flow
chart of the interface operation between the processor and
R6500 devices. 6800 peripherals are also compatible with
the 68000 processor.

DATA TRANSFER OPERATION
Three signals on the processor provide the R6500 inter-

face. They are: enable (E), valid memory address (VMA),
and valid peripheral address (VPA). Enable corresponds
to the E or ¢2 signal in existing R6500 systems. It is the bus
clock used by the frequency clock that is one tenth of the
incoming 68000 clock frequency. The timing of E allows 1
MHz peripherals to be used with an 8 MHz 68000. Enable
has a 60/40 duty cycle; that is, it is low for six input clocks
and high for four input clocks. This duty cycle allows the
processor to do successive VPA accesses on successive
E pulses.

R6500 cycle timing is given in Figure 28. At state zero
(S0) in the cycle, the address bus and function codes are
in the high-impedance state. One half clock later, in state
1, the address bus and function code outputs are released
from the high-impedance slate. _

During state 2, the address strobe (AS) is asserted to in-
dicate that there is a valid address on the address bus. If the
bus cycle is a read cycle, the upper and/or lower data
strobes are also asserted in state 2, If the bus cycle is a write
cycle, the read/write {R/W) signal is switched to low (write)

FIGURE 27 — R6500 INTERFACING FLOW CHART

PROCESSOR SLAVE
Initiate Cycle

1) The processor starts a normal Read or
Wirite cycle

Define R6500 Cycle

1) External hardware asserts Valid Peripheral
Address (VPA)

Synchronize With Enable

1) The processor monitors Enable (E) until it is
low (Phase 1)

2) The processor asserts Valid Memory Ad-
dress (VMA)

Transfer Data

1) The peripheral waits until E is active and
then transfers the data

Terminate Cycle

1) The processor waits until E goes low. (On a
Read cycle the data is latched as E goes
low internally) —

2] The processor negates VMA -

3) The processor negates AS, UDS, and LDS

Start Next Cycle
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during state 2. One half clock later, in state 3, the write data
is placed on the data bus, and in state 4 the data strobes are
issued to indicate valid data on the data bus.

The processor now inserts wait states until it recognizes
the assertion of VPA. The VPA input signals the processor
that the address on the bus is the address of an R6500 de-
vice (or an area reserved for R6500 devices) and that the
bus should conform to the &2 transfer characteristics of the
R6500 bus. Valid peripheral address is derived by decod-
ing the address bus, conditioned by address strobe.

After the recognition of VPA, the processor assures that
the Enable (E) is low, by waiting if necessary, and subse-
quently asserts VMA. Valid memory address is then used
as part of the chip select equation of the peripheral. This
ensures that the R6500 peripherals are selected and de-
selected at the correct time. The peripheral now runs its
cycle during the high portion of the E signal.

During a read cycle, the processor latches the peripheral
data in state 6. Far all cycles, the processor negates the ad-
dress and data strobes one half clock cycle later in state 7,
and the Enable signal goes low at this time. Another half
clock later, the address bus is put in the high-impedance
state. During a write cycle, the data bus is put in the high-
impedance state and the read/write signal is switched high
at this time. The peripheral logic must remove VPA within
one clock aftet address strobe is negated.

Figure 29 shows the timing required by R6500 periph-
erals, the timing specified for the R6500 and the corre-
sponding timing for the 68000. For further details on
peripheral timing, consult the current data sheet for the
peripheral of interest. Notice that the 68000 VMA is active
low. This allows the processor to put its buses in the high-
impedance state on DMA requests without inadvertently
selecting peripherals.

FIGURE 28 — R6500 CYCLE OPERATION
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FIGURE 29 — 68000 TO R6500 PERIPHERAL TIMING DIAGRAM
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INTERRUPT INTERFACE OPERATION This operates in the same fashion (but is not restricted
During an interrupt acknowledge cycle while the proces- to) the R6500 interrupt sequence. The basic difference is
sor is fetching the vector, if VPA is asserted, the 68000 will that there are six normal interrupt vectors and one NMI
assert VMA and complete a normal R6500 read cycle as type vector. As with both the R6500 and the 68000's nor-
shown in Figure 30. The processor will then use an inter- mal vectored interrupt, the interrupt service routine can be
nally generated vector that is a function of the interrupt located anywhere in the address space. This is due to the
being serviced. This process is known as autovectoring. fact that while the vector numbers are fixed, the contents
The seven autovectors are vector numbers 25 through 31 of the vector table entries are assigned by the user.
(decimal). Since VMA is asserted during autovectoring, the R6500
peripheral address decoding should prevent unintended
accesses.

FIGURE 30 — AUTOVECTOR OPERATION TIMING DIAGRAM
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INSTRUCTION SET

The following paragraphs provide information about the
addressing categories and instruction set of the 68000.

ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways
in which they may be used. The following classifications will
be used in the instruction definitions.

Data If an effective address mode may be
used to refer to data operands, it is
considered a data addressing effective

address mode.

If an effective address mode may be
used to refer to memory operands, it is
considered a memory addressing ef-
fective address mode.

If an effective address mode may be
used to refer to alterable (writeable)
operands, it is considered an alterable
addressing effective address mode.

Memory

Alterable

Control If an effective address mode may be
used to refer to memory operands
without an associated size, it is con-
sidered a control addressing effective

address mode.

Table 20 shows the various categories to which each of the
effective address modes belong. Table 21 is the instruction
set summary.

The status register addressing mode is not permitted
unless it is explicitly mentioned as a legal addressing mode.

These categories may be combined, so that additional,
more restrictive, classifications may be defined. For exam-
ple, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to
those addressing modes which are both alterable and
memory addresses, and the latter refers to addressing modes
which are both data and alterable.

TABLE 20 — EFFECTIVE ADDRESSING MODE CATEGORIES

Effective . "
Adlilieis Addressing Categories
Modes Mode Register Data | Memory | Control | Alterable
Dn 000 | register number X - - X
An 001 register number - - - X
An@ 010 register number X X X X
An@ + on register number X X — X
An@ - 100 register number X X - X
An@l(d) 101 register number X X X X
An@ld, ix)| 110 register number X X X X
XXX W m 000 X X X X
xxx.L m 001 X X X X
PC@(d) m 010 X X X -
PC@(d, ix)| 111 on X X X -
XXX m 100 X X - -
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TABLE 21 — INSTRUCTION SET

Condition
Mnemonic Description Operation Codes
NlZ|V|C

ABCD Add Decimal with Extend (Destination) g + (Source) 10— Destination U3 I VA
ADD Add Binary (Destination} + {Source) = Destination ol Bl Gl s
ADDA Add Address (Destination} + (Source) — Destination —|-1-1-
ADDI Add Immediate (Destination) + Immediate Data— Destination o (il e
ADDQ Add Quick (Destination) + Immediate Data — Destination o e el
ADDX Add Extended (Destination) + (Source) + X — Destination g ke g
AND AND Logical (Destination) A (Source) — Destination =100
ANDI AND Immediate (Destination) A Immediate Data— Destination 20 |0
ASL, ASR Arithmetic Shift (Destination) Shifted by <count> — Destination o il el
Bce Branch Conditionally If cc then PC+d—PC —~|=|= |~

~ < bit number>) OF Destination—Z
BCHG Test a Bit and Change ~ [ < bit number>} OF Destination — =

< bit number> OF Destination
BCLR S Bl e Bl ~ (<bit number>) OF Destination— Z B EN

0=+ <bit number> — OF Destination
BRA Branch Always PC+d—PC —1—-1-1-

; ~ (< bit number>) OF Destination—Z .

BSET Testa Bit and Set 1= < bit number> OF Destination - |
BSR Branch to Subroutine PC— SP@—; PC+d—PC —|-1-1-
BTST Test a Bit ~ (< bit number>) OF Destination—*Z -1*l-1-
CHK Check Register against Bounds If Dn <0 or Dn> (<ea>] then TRAP Sl LOH KGR
CLR Clear an Operand 0—= Destination oj1]0(0
CMP Compare (Destination) — (Source) * ol s
CMPA Compare Address (Destination) — (Source) ™
CMPI Compare Immediate (Destination) — Immediate Data o i )
CMPM Compare Memory (Destination) — (Source) . L
DBcc Test Condition, Decrement and Branch [If~ ¢ then Dn—1=—Dn; if Dns — 1 then PC+d— PC e e el
DIVS Signed Divide (Destination)/ {Source) — Destination i 0
DIVU Unsigned Divide (Destination)/{Source) — Destination i b | sl [
EOR Exclusive OR Logical (Destination) @ (Sourcel — Destination * 010
EORI Exclusive OR Immediate {Destination) @ Immediate Data— Destination 1100
EXG Exchange Register Rx*= Ry —|=-=1-
EXT Sign Extend {Destination) Sign-extended — Destination *|*10]0
JMP Jump Destination— PC - |=-1-1-
JSR Jump to Subroutine PC— SP@ —; Destination— PC —|=1-1-
LEA Load Effective Address Destination— An —=|=]=[|=
LINK Link and Allocate An— SP@ -, SP— An; SP+d— SP e el B
LSL, LSR Logical Shift (Destination} Shifted by <count> — Destination “relal
MOVE Move Data from Source to Destination | (Source) = Destination | Ty e ) B
MOVE to CCR|Move to Condition Cade (Sourcel— CCR FhhE e e
MOVE to SR |Move to the Status Register (Sourcel = SR ol g (i
* affected 0 cleared U defined
— unaffected 1 set
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TABLE 21 — INSTRUCTION SET (CONTINUED)

Condition
Mnemonic Description Operation Codes

N|Z|V|C
MOVE from SR|Move from the Status Register SR — Destination it e e
MOVE USP  |Move User Stack Pointer USP—* An; An— USP e el el
MOVEA Move Address (Source) = Destination e o e
MOVEM Move Multiple Registers FSGEL?::.Z)S:F?e Zsit:,itnaarzon —_ == =
MOVEP Move Peripheral Data (Source) = Destination —-|-1-]-
MOVEQ Move Quick Immediate Data— Destination 1100
MULS Signed Multiply (Destination)* (Source) — Destination “1*10]0
MULU Unsigned Multiply {Destination)* (Source) = Destination *1*10]0
NBCD Negate Decimal with Extend 0 - (Destination) 19— X — Destination uf*luj-*
NEG Negate 0- (Destination) = Destination = i el
NEGX Negate with Extend 0 - (Destination) — X —= Destination =1
NOP No Operation - o K=y ()
NOT Logical Complement ~ {Destination) = Destination “1*10f0
OR Inclusive OR Logical (Destination) v {Source) = Destination “1*|0fo0
ORI Inclusive OR Immediate (Destination} v Immediate Data—* Destination “1*|0f0
PEA Push Effective Address Destination— SP@ — —|=1=]-
RESET Reset External Devices — o e el
ROL, ROR Rotate (Without Extend) (Destination) Rotated by < count> — Destination o A
ROXL, ROXR |Rotate with Extend (Destination) Rotated by < count> = Destination ! Ll 110 1B
RTE Return from Exception SP@ - — SR; SP@+ — PC el S
RTR Return and Restore Condition Codes SP@+ — CC; SP@ + — PC Gl Nl IS
RTS Return from Subroutine SP@+ —PC —|-1=1-
SBCD Subtract Decimal with Extend (Destination}1g — (Source) 10 — X — Destination ur*jul-e
Sce Set According to Condition If ¢cc then 1's— Destination else 0’s — Destination —|=1-]-
STOP Load Status Register and Stop Immediate Data=— SR; STOP | ]
SuB Subtract Binary (Destination) — (Source) = Destination 2 ] R
SUBA Subtract Address (Destination} — {Source) — Destination —|-|=]-
SUBI Subtract Immediate (Destination) — Immediate Data = Destination il L ol s
SUBQ Subtract Quick (Destination) — Immediate Data— Destination i ] i g
SUBX Subtract with Extend (Destination) — (Saurce) — X = Destination oo i) i
SWAP Swap Register Halves Register [31:16] +* Register [15:0] *l*|0f0
TAS Test and Set an Operand (Destination) Tested=—> CC; 1= [7] OF Destination “1*]0[0
TRAP Trap PC— SSP@-; SR— SSP@ - ; (Vector)— PC —|=1=|-
TRAPV Trap on Overflow If V then TRAP e el el
TST Test an Operand {Destination) Tested— CC * 1% 1010
UNLK Unlink An— SP; SP@ + — An —|—-|-|-
[ 1=bit number
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INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruc-
tion execution times in terms of external clock (CLK)
periods. In this timing data, it is assumed that the memory
cycle time is no greater than four periods of the external pro-
cessor clock input, which prevents the insertion of wait
states in the bus cycle. The number of bus read and write
cycles for each instruction is also included with the timing
data. This data is enclosed in parenthesis following the ex-
ecution periods and is shown as: (r/w} where r is the number
of read cycles and w is the number of write cycles.

NOTE

The number of periods includes instruction fetch and all
applicable operand fetches and stores.

EFFECTIVE ADDRESS OPERAND CALCULATION TIMING

Table 22 lists the number of clock periods required to com-
pute an instruction’s effective address. It includes fetching
of any extension words, the address computation, and
fetching of the memory operand. The number of bus read
and write cycles is shown in parenthesis as {r/w). Note there
are no write cycles involved in processing the effective ad-
dress.

MOVE INSTRUCTION CLOCK PERIODS

Tables 23 and 24 indicate the number of clock periods for
the move instruction. This data includes instruction fetch,
operand reads, and operand writes. The number of bus read
and write cycles is shown in parenthesis as: (r/w).

STANDARD INSTRUCTION CLOCK PERIODS

The number of clock periods shown in Table 25 indicates
the time required to perform the operations, store the
results, and read the next instruction. The number of bus
read and write cycles is shown in parenthesis as: (r/w). The
number of clock periods plus the number of read and write
cycles must be added to those of the effective address
calculation where indicated.

In Table 25, the headings have the following meanings:
An = address register operand, Dn=data register operand,
ea=an operand specified by.an effective address, and
M = memory effective address operand.

IMMEDIATE INSTRUCTION CLOCK PERIODS

The number of clock periods shown in Table 26 includes
the time to fetch immediate operands, perform the opera;
tions, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis
as: (r/w). The number of clock periods plus the number of
read and write cycles must be added to those of the effective
address calculation where indicated.

In Table 26, the headings have the following meanings:
#=immediate operand, Dn=data register operand,
M= memory operand, and SR = status register.

SINGLE OPERAND INSTRUCTION CLOCK PERIODS

Table 27 indicates the number of clock periods for the
single operand instructions. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number
of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation
where indicated.

TABLE 22 — EFFECTIVE ADDRESS CALCULATION TIMING

Addressing Mode Byte, Word Long
Register
Dn Data Register Direct 0(0/0) 0(0/0)
An Address Register Direct 0(0/0) 0(0/0)
Memory
An@ Address Register Indirect 4(1/0) 8(2/0)
An@ + Address Register Indirect with Postincrement 4(1/0) B(2/0)
An@ — Address Register Indirect with Predecrement 6(1/0! 10(2/0)
An@(d) Address Register Indirect with Displacement 8(2/0) 12(3/0)
An@(d, ix)* Address Register Indirect with Index 10(2/0) 14(3/0)
oW Absolute Short B(2/0) 12(3/0)
. L Absolute Long 12(3/0) 16(4/0)
PC@I(d) Program Counter with Displacement 8(2/0) 12(3/0)
PC@ld, ix)* Program Counter with Index 10(2/0) 14(3/0)
#3000 Immediate 4(1/0) B(2/0)

*The size of the index register (ix) does not affect execution time.
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TABLE 23 — MOVE BYTE AND WORD INSTRUCTION CLOCK PERIODS

+ add effective address calculation time
" indicates maximum value

“ae

only available effective address mode is data register direct

Source Dastination
Dn An An@ An@ + An@ - | An@(d) [An@(d,ix)*| xxx.W xxx. L
Dn 41/0 4(1/0) 901/1) 9(1/1) 8(1/1) 13(2/1) 1512/1) 13(2/1) 1743/1)
An 401/0) 4(1/0) a01/1) 9(1/1) 9(1/1) 1312/1) 1612/1) 13(2/1) 17(3/1)
An@ 8(2/0) B(2/0) 13(2/1) 13(2/1) 1312/1) 1713/1) 19(3/1) 17(3/1) 21(4/1)
An@ + 8(2/0) 8(2/0) 13(2/1) 1312/1) 1312/1) 17(3/1) 19(3/1) 17(3/11 21(4/1)
An@ - 10(2/0) 10(2/0) 15(2/1) 15(2/1) 15(3/1} 1913/1) 2113/1) 19(3/1) 23(4/1)
An@(d) 12(3/0) 12(3/0) 17(3/1) 1743/1) 1713/1) 2114/1) 23(4/1) 21(4/1) 25(5/1)
An@(d, ix)* 14(3/0) 14(3/0) 19(3/1) 19{(3/1) 18(3/1) 2314/1) 25(4/1) 2314/1) 27{(5/1)
0o W 12(3/0) 12(3/0) 17(3/1) 173/1) 17(3/1) 2114/1) 2314/1) 21(4/1) 25(5/1)
. L 1614/0) 16(4/0) 21(4/1) 2114/1) 2114/1) 25(5/1) 27(5/1) 25(5/1) 29(6/1)
PC@(d) 12(3/0) 12(3/0) 173/1y | 173/1) 17(3/1) 2114/1) 23(4/1) 211411) 25(5/1)
PC@Id, ix)* 14(3/0) 14(3/0) 19(3/1) 18(3/1 19(3/1) 2314/1) 25(4/1) 2314/1) 2715/1}
#xx 8(2/0) 8(2/0) 13(2/1) 13(2/1) 13(2/1) 173/1) | -18(3/1) 1713/1) 2114/1)
*The size of the index register {ix} does not affect execution time.
TABLE 24 — MOVE LONG INSTRUCTION CLOCK PERIODS
it Destination ;
Dn An An@ An@ + An@ — An@(d) |JAn@I(d,ix)*| oW wx. L
Dn 4(1/0) 41/0) 14(1/2) 14(1/2) 16(1/2) 18(2/2) 20(2/2) 18(2/2) 22(3/2)
An 4(1/0) 441/0 14(1/2) 14(1/2) 18(1/2) 18(2/2) 20(2/2) 18(2/2) 22(3/2)
An@ 12(3/0) 12(3/0) 22(3/2) 2213/2) 22(3/2) 2614/2) 28(4/2) 26(4/2) 30(5/2)
An@ + 12(3/0) 12(3/0) 22(3/2) 22(3/2) 22(3/2) 2814/6) 28(4/2) 26(4/2) 30(5/2)
An@ — 14(3/0) 14(3/0) 24(3/2) 24(3/2) 24(3/2) 28(4/2) 30(4/2) 28(4/2) 32(5/2)
An@(d) 16(4/0} 16(4/0) 26(4/2) 26(4/2) 28(4/2) 30(5/2) 32(5/2) 30(6/2) 34(6/2)
An@l(d, i)* 18(4/0} 18(4/0 28(4/2) 28(4/2) 28(4/2) 32(5/2) 34(5/2) 32(5/2) 36(6/2)
0o W 16(4/0} 1614/0) 26(4/2) 28(4/2) 26(4/2) 30(5/2) 32(5/2) 30(56/2) 34(6/2)
300, L 20(5/0) 2015/0) 30(5/2) 30(5/2) 30(5/2) 34(6/2) 36(6/2) 34(6/2) 38(7/2)
PC@(d) 16(4/0} 1614/0) 26(4/2) 28(4/2) 26(4/2) 30(56/2) 32(5/2) 3015/2) 3416/2)
PC@(d, ix}* 18(4/0} 1814/0) 28(4/2) 28(4/2) 28(4/2) 32(5/2) 34(5/2) 32(5/2) 38(6/2)
Hixx 12(3/0) 12{3/0) 22(3/2) 22(3/2) 22(3/2) 26(4/2) 28(4/2) 2614/2) 30(5/2)
*The size of the index register lix) does not affect execution time.
TABLE 25 — STANDARD INSTRUCTION CLOCK PERIODS
Instruction Size op <ea>, An op <ea>, Dn op Dn, <M>
Byte, Word 8(1/0) + 41/0) + 9N/ +
ARR Long (1701 + IT/0+ 0721+
Byte, Word - 401/0) + 91/1)+
AND Long - 6(1/0) + ** 1401/2} +
Byte, Word 6(1/0) + 401/0) + —
. Long 61/01+ 61700+ =
DIVS — — 158(1/0) + * -
DivU - - 140(1/0) + * -
Byte, Word - 4(1/0)*=* 901/1} +
EOR Long — 8(1/0)*** 14(1/2) +
MULS — — 70(1/0) +* —
MULU — — 70(1/0) +* —
Byte, Word — 4(1/0) + 901 /1) +
an Long = BO/0)+ T401/2)+
Byte, Word 8(1/0) + 4(1/0) + 91/ +
SkH Long 6(1/0) + ** 6(1/0) + ** 14{(1/2) +

** total of 8 clock periods for instruction if the effective address is register direct
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TABLE 26 — IMMEDIATE INSTRUCTION CLOCK PERIODS
Instruction Size op #, Dn op#, M op £, SR
Byte, Word 8(2/0) 13(2/1)1+ -
Aol Tong 1613700 20+ =
Byte, Word 41/0) 91/ + —
Aboa Long 81/0) 1a01/2 + =
Byte, Word 8(2/0) 1312/1) + 20(3/0)
ANDI Long 16(3/0) 22(3/2) + —
Byte, Word 8(2/0) 812/0) + -
CMPY Long 14(3/0) 12(3/01 + -
Byte, Word 8(2/0) 13(2/1)+ 20(3/0)
=Ohi Long 16(3/0) G TETp 1 E—
MOVEQ Long 41/0) - -
Byte, Word a8(2/0 1312711+ 20(3/0)
. Tong 161370 BB+ =
Byte, Word 8(2/0) 1312/ + —
SUR Long 1613/0) 2032+ =
Byte, Word 41/0) 911/1} + -
sUeg Long 801/0) a2+ -
+ add effective address calculation time
TABLE 27 — SINGLE OPERAND INSTRUCTION CLOCK PERIODS
~ Instruction Size Register Memory
CLR Byte, Word 4(1/0) 91/1) +
Long 6(1/0) 14(1/2) +
NBCD Byte 6(1/0) 9(1/1)+
Byte, Word 4(1/0) 901/ +
PIEG Long 6(1/0) 1401/2) +
NEGX Byte, Word 4(1/0) 901/ +
Long 6(1/0) 14(1/2) +
Byte, Word 4(1/0) 9(1/1) +
el Long 6(1/0) 14(1/2) +
Byte, False 4(1/0) 901/ +
Scc Byte, True &(170) 9/ +
TAS Byte 4(1/0) 110/0+
Byte, Word 4(1/0) 4(1/0)
TST Long 30700 a1/00+
+ add effective address calculation time
SHIFT/ROTATE INSTRUCTION CLOCK PERIODS CONDITIONAL INSTRUCTION CLOCK PERIODS
Table 28 indicates the number of clock periods for the shift Table 30 indicates the number of clock periods required for
and rotate instructions. The number of bus read and write the conditional instructions. The number of bus read and
cycles is shown in parenthesis as: (r/w). The number of write cycles is indicated in parenthesis as: {r/w). The number
clock periods plus the number of read and write cycles must of clock periods plus the number of read and write cycles
be added to those of the effective address calculation where must be added to those of the effective address calculation
indicated. where indicated.
BIT MANIPULATION INSTRUCTION CLOCK PERIODS JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK
Table 29 indicates the number of clock periods required for PERIODS
the bit manipulation instructions. The number of bus read Table 31 indicates the number of clock periods required for
and write cycles is shown in parenthesis as: (r/w). The the jump, jump to subroutine, load effective address, push
number of clock periods plus the number of read and write effective address, and move multiple registers instructions.
cycles must be added to those of the effective address The number of bus read and write cycles is shown in paren-
calculation where indicated. thesis as: (r/w).
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TABLE 28 — SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Instruction Size Register Memory

Byte, Word 6 + 2
Byte, Word 6 + 2n(1/0

LSR, LSL wzongor 8 : 20:1::0: 9(111)+
Byte, Word 1

ROR, HOL Wlnlongc.r : : ;.::1;(0): 9“1—1“
Byte, Word 6 + 2n(1/0) 9(1/1)

HOXR, ROXL YTongor 8 = T —

TABLE 29 — BIT MANIPULATION INSTRUCTION CLOCK PERIODS

- : Dynamic Static
Instruction Size - y
Register Memory Register Memory
Byte - 901/ 1) + — 13(2/1) +
RERES Long 8(1/0)* - 12(2/0)* -
Byte - 91/ + — 13(2/11+
AEks Long 1001/01* — 1412/01* =
Byte — 9(1/1)+ — 13(2/1) +
BSET Long g(i/0 = 12027007 =
Byte - 4(1/0) + — 8(2/0) +
il Long 6(1/01 - 10(2/0) -
+ add effective address calculation time
° indicates maximum value
TABLE 30 — CONDITIONAL INSTRUCTION CLOCK PERIODS
. . Trap or Branch Trap or Branch
Instruction Displacement Tokt Not Taken
Bce Byte 10(1/0) 8(1/0)
Word 10(1/0) 12(2/0)
Byte 10(1/0) —
- Word 10(1/0) -
Byte 20(2/2) -
HSR Word 20(2/2) -
CC true = 12(2/0)
DBcc
cc false 10(2/0) 14(3/0)
CHK — 43(5/3)+* 8(1/0) +
TRAP — 37(4/3) —
TRAPV — 37(5/3) 4(1/0)

+ add effective address calculation time

indicates maximum value
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TABLE 31 — JMP, JSR, LEA,

PEA, MOVEM INSTRUCTION CLOCK PERIODS

Instr Size An@ An@+ | An@ - An@(d) An@(d, ix)* xxx. W xxx.L PC@Id) PC@I(d, ix)*
JMP — 8(2/0) — — 10(2/0) 14(3/0) 10(2/0) 12(3/0) . 1012/0) 14(3/0)
JSR — 18(2/2) — - 20(2/2) 24(2/2) 20(2/2) 22(3/2) 2012/2) 24(2/2)
LEA — 4(1/0) - - 8(2/0) 12(2/0) 8(2/0) 12(3/0) 8(2/0) 12(2/0)
PEA - 14(1/2) — — 18(2/2) 22(2/2) 18(2/2) 22(3/2) 18(2/2) 22(2/2)
MOVEM| Word 12 +4n 12+4n — 16+4n 18+ 4n 16+4n 20+4n 16 +4n 18+4n
(3+n/0) (3+n/0) - (4+n/0) (4+n/0) (4+n/0) (5+n/0) (44 n/0) (4+n/0)
M —R Long 12+8n 12+8n — 16+ 8n 18+8n 16+8n 20+8n 16+8n 18 +8n
(3+2n/0) [{(3+2n/0) - (4+2n/0) (4+2n/0) (4+2n/0) 5+ 2n/0) (4+2n/0) (4+2n/0)
MOVEM| Word 8+5n - 8+5n 12+5n 14 +5n 12+5n 16+ 5n - -
(2/n) - (2/n) (3/n) (3/n) (3/n) (4/n) - -
R=—M Long 8+ 10n - 8+ 10n 12+ 10n 14+ 10n 12+ 10n 16+ 10n — —
(2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n is the number of registers to move

* is the size of the index register (ix) does not affect the instruction’s execution time

TABLE 32 — MULTI-PRECISION INSTRUCTION CLOCK PERIODS

Instruction Size op Dn, Dn opM, M
ADDX Byte, Word 4(1/0) 19(3/1)
Long 8(1/0) 32(5/2)
CMPM Byte, Word — 12(3/0)
Long - 20(5/0)
Byte, Word 4(1/0) 19(3/1)

SUBX .
Long 8(1/0) 32(5/2)
ABCD Byte 6(1/0) 19(3/1)
SBCD Byte 6(1/0) 19(3/1)
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MULTI-PRECISION INSTRUCTION CLOCK PERIODS

Table 32 indicates the number of clock periods for the
multi-precision instructions. The number of clock periods in-
cludes the time to fetch both operands, perform the opera-
tions, store the results, and read the next instructions. The
number of read and write cycles is shown in parenthesis as:
(r/w).

In Table 32, the headings have the following meanings:
Dn = data register operand and M = memory operand.

MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Table 33 indicates the number of clock periods for the
following miscellaneous instructions. The number of bus

read and write cycles is shown in parenthesis as: (r/w). The
number of clock periods plus the number of read and write
cycles must be added to those of the effective address
calculation where indicated.

EXCEPTION PROCESSING CLOCK PERIODS

Table 34 indicates the number of clock periods for excep-
tion processing. The number of clock periods includes the
time for all stacking, the vector fetch, and the fetch of the
first instruction of the handler routine. The number of bus
read and write cycles is shown in parenthesis as: (r/w).

TABLE 33 — MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Instruction Size " Register Memory Register = Memory | Memory - Register
MOVE from SR — 61/01 901/ + = =
MOVE to CCR - 122701 1202/00 + - -
MOVE to SR — 12(2/0) 12(2/0) + = =

Word - = 18(2/2) 16(4/0)
MOVEP Long = = 28(2/4) 2406/0)
EXG = 81/0) = - -

Word 401/0) = E =
i Long 401/0) = = =
LINK - 1812/2) - = =
MOVE from USP = 401/0) = = =
MOVE to USP - a170) = = -
NOP — 4(1/0) - o -
RESET - 132(1/0) - = -
ATE = 20(6/0) - = =
RTR = 20(5/0) = = =
RTS = 16(4/0) = = =
STOP = 4(0/0) = = =
SWAP = 301701 = = =
UNLK — 12(3/0) — — =

+ add effective address calculation time

TABLE 34 — EXCEPTION PROCESSING CLOCK PERIODS

Exception

Periods

Address Error

57(4/7)

Bus Error

57(4/7)

Interrupt

47(5/3)*

lllegal Instruction

3714/3)

Privileged Instruction

37(4/3)

Trace

37(4/3)

*The interrupt acknowledge bus cycle is assumed
to take four external clock periods
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FIGURE 31 — AC ELECTRICAL WAVEFORMS

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a
functional description of the input and output signals. Refer to other functional descriptions and their related diagrams for device operation.
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NOTE 1: S_etug time for the asynchronous inputs BERR, BGACK, NOTE 2: Waveform measurements for all inputs and outputs are
BR, DTACK, IPLO-IPL2, and VPA guarantees their recog- specified at: logic high=2.0 volts, logic low = 0.8 volts.

nition at the next falling edge of the clock.
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AC ELECTRICAL SPECIFICATIONS (Vpp =5.0 Vdc +5%; Vss =0 Vdc: Ta = 25°C)
Number Characteristic Symbol |Min Typ Max | Unit
1 Clock Period tcye — 125 — ns
2 Clock Width Low tcL — 55 — ns
3 Clock Width High tCH — 55 — ns
4 Clock Fall Time tCf — — 10 ns
5 Clock Rise Time 1Cr — — 10 ns
6 Clock Low to Address/FC Valid tCLAV — 70 — ns
7 Clock High to Address/FC High Impedance (max) {CHAZ X — 70 — ns
8 Clock High to Address/FC Invalid (min) tCHAZNn | — 20 — ns
9 Clock High to AS, DS Low (max) tcHSLx | — 60 - ns
10 Clock High to AS, DS Low (min) 1GHSLn | — 20 — ns
1 Address/FC Valid to AS, DS (read) Low tAVSL — 30" — ns
12 Clock Low to AS, DS High tcLsH | — 40 = ns
13 AS, DS High to Address/FC Invalid tSHAZ — 40* — ns
14 AS, DS Width Low (read) tsL — 150 — ns
15 AS, DS Width High tSH = 150 | — ns
16 Clock High to AS, DS High Impedance {CHSZ — 60 — ns
17 DS High to R/W High "tSHRH | — 60* = ns
18 Clock High ta R/W High {max) 1CHRHx | — 60 = ns
19 Clock High to R/W High {min) {CHRHR | — 20 — ns
20 Clock High to R/W Low tICHRL | — 60 — ns
21 Address/FC Valid to R/W Low tAVAL — 50* — ns
22 R/W Low to DS Low (write) 1RLSL — 80" — ns
23 Clock Low to Data QOut Valid (CLDO — 50 — ns
24 Clock High to R/W, VMA High Impedance ICHRZ — 60 = ns
25 DS High to Data Qut Invalid 1sHDO | — 30 s ns
26 Data Qut Valid to DS Low (write) tDOSL —_ 30" — ns
27 Data In to Clock Low (set up time) IDICL s 30 — ns
28 DS High to DTACK High tSHDAH | O * 120| ns
29 DS High to Data In {hold time) 1SHDI 0 — — ns
30 AS, DS High to BERR High {SHBEH | O — — ns
31 DTACK Low to Data In (setup time) IDALDI — 90* — ns
32 HALT and RESET Input Transition Time IRHf — - 200 ns
33 Clock High to BG Low ICHGL | — 60 = ns
34 Clock High to BG High ICHGH | — 60 - ns
35 ‘BR Low to BG Low IBRLGL 1.5 — 3.0 | clk. per.
36 BR High to BG High t1BRHGH | 1.5 — 3.0 | clk. per.
37 BGACK Low to BG High {GALGH | 15 = 20| cik per.
38 BG Low to Bus High Impedance (with AS high} 1GLZ 0 — — | clk. per
39 BG Width High tGH 15 — — | clk. per.
40 Clock Low to VMA Low tcLvmL | — 60 | — ns
41 Clock Low to E Transition tCLE — 55 — ns
42 E Output Rise and Fall Time LErf — —_ 25 ns
43 VMA Low to E High tYMLEH | 20 - 3.0| clk. per.
44 E DS High to VPA High tISHVPH 0 — —_ ns
*Actual value dependent upon actual clock period. These figures are based on 8 MHz operation.

41



(47

FIGURE 32 — AC ELECTRICAL WAVEFORMS — BUS ARBITRATION

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are
not intended as a functional description of the input and output signals. Refer to other functional descriptions and their related
diagrams for device operation.
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AC ELECTRICAL SPECIFICATIONS (Vpp = 5.0 Vdc +5%; Vss = 0 Vdg; Ta = 25°C) BUS ARBITRATION

Number Characteristic Symbol | Min Typ | Max | Unit
33 Clock High to BG Low ‘ ICHGL | — 60 — ns
34 Clock High to BG High tICHGH | — 60 — ns
35 BR Low to BG Low tgRLGL | 1.0 - 3.0 | clk. per.
36 BR High to BG High tBRHGH| 1.0 = 3.0 | clk. per.
37 BGACK Low to BG High tGALGH| 1.0 — 2.0 | clk. per.
38 8G Low to Bus High Impedance (with AS high) 1GLZ 0 - 1.5 | clk. per.
39 BG Width High 1GH 1.5 = — | clk. per.
NOTE 1: Setup time for the asynchronous inputs BERR, BGACK, NOTE 2: Waveform measurements for all inputs and outputs are
BR, DTACK, TPLO-IPLZ, and VPA guarantees their recog- specified at: logic high = 2.0 volts, logic low = 0.8 volts.

nition at the next falling edge of the clock.
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ELECTRICAL CHARACTERISTICS (Vpc=5.0 Vdc+5%; Vgs =0 Vdc; Ta 0°C to 70°C, Figures 33, 34, 35)

Characteristic Symbol Min Typ | Max | Unit
Input High Voltage ViH 2.0 — | Yec | Vde
\nput Low Voltage ViL | Vsg-03| — 0.8 | Vdc
Input Leakage Current BERR, GECK BR, DTACK,

TPLOPLZ, VPA | i = 10| - [uAde
HALT, RESET - 2.0 — .

Three-State (Off State) Input Current _Kg A1-A23, DO-D15 _ 1
Fco-Fc2, [0S, R/W, UDS, VMA | 'TS! 70 e
Output High Voltage (g = — 400 pAdc) AS, A_:f\_23 B_G %D 5, E, Vou 24 _ S Vde

Output Low Voltage

lloL=1.6mA) - HALT | - - | 05
lloL=3.2mA) A1-A23, BG, E, FCO-FC2 v — - | 05
(0L =5.0mA) ey oLl _ e
(lgL=5.3mA)- AS, DO-D15, LDS, R/ - - | 085
U S, M
Power Dissipation (Clock Frequency =8 MHz) Pp - 1.0 - W
Capacitance {Package Type Dependent) c: | 00| - oF
Vin=0 Vdc; Ta=25°C; Frequancy=1 MHz) i :
FIGURE 33 — RESET TEST LOAD FIGURE 34 — HALT TEST LOAD FIGURE 35 — TEST LOADS
+5 Vdc
+5 Vdc vd
wh R*=7400
Test MMD6150
Point or Equivalent
910 0 2.9k 01
RESET HALT CL RL
I MMD7000
p— or Equivalent
130 pF 70 pF - -
| CL=130 pF
= — (Includes all Parasitics)
= o RL=6.0 k2 for —
AS, A1-A23, BG, DO-D15, E_
FCO-FC2, LDS, R/W, UDS VMA
"R=1.22 k@l for A1-A23, BG,
E, FCO-FC2
FIGURE 36 — INPUT CLOCK WAVEFORM MAXIMUM RATINGS
l——1cyc Rating Symbol Value Unit
\ -0. 4 \'
€tCl- tCH Supply Voltage ce 0310 +7.0 dc

20V "| Input Voltage Vin |-03t0 +7.0]| Vdc
0.8V - Operating Temperature Range TA 0to 70 °c
tCr < ICf Storage Temperature Tstg -55 to 150 °c

CLOCK TIMING (Figure 36)

4 MHz 6 MHz 8 MHz
Characteristic Symbol | MC6800L4 | MCBB000L6 | MCE8000L | Unit
Min | Max | Min | Max | Min | Max | Unit
Frequency of Operation : E 20 ) 40| 20 ) 60 | 20| B0 |MHz
Cycle Time toyc | 250 | B0O | 167 | 500 500 | ns

Clock Pulse Width ns

tcH |16 | 260} 75 | 250 260

2 ; tCr - 10 - 10 10
Rise and Fall Time:
i imes it o 10 __ 10

125
tcL | 115 | 260 | 75 | 250 | 55 | 250
55

ns
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NOTES:
1. DIMENSION [-A]IS DATUM.

2. POSITIONAL TOLERANGE FOR LEADS:
[@]0.25 (0.010@[T [A @]

3. [T2]1S SEATING PLANE.

4. DIMENSION “L" TO CENTER OF LEADS
WHEN FORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5, 1973,

MILLIMETERS INCHES
MIN [ MAX | MIN | MAX
80.52 | 82.04 | 3.170 ; 3.230
22.25 | 22.96 | 0.876 | 0.904

3.06| 432 ] 0120 0.170
0.38| 053 0.015] 0.021
0.76 | 1.40 | 0.030 | 0.055
2.54 BSC 0.100 BSC
0.20 | 033 | 0.008]| 0.013
254 | 4.19 | 0.100 | 0.165
22,61 | 23.11 | 0.890 | 0.910
- 100 = 100
1.02 | 1.52 | 0.040] 0.060
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