
PART NUMBER

R68000

\
Rockwell

R68000 Microcomputer System

PRELIMINARY PRODUCT DESCRIPTION

16-BIT MICROPROCESSING UNIT

Advances in semiconductor iechnology have provided the capa-

bilify to place on a Single Silicon Chip a micfoprocessor at leas! an

order of magnikirJe higher in Performance and circuit complexily lhan

has been previously available. The R6B000 is the first oi a lamily of

such VLSI microprocessors from Rockwell. II combines slate-of-the-

art lechnology and advanced circuil design techniques with Com

puter sciences to achieve an architecturally advanced 16-bit

microprocessor.

The resources available toihe R6B000userconsist of tbefollowmg.

• 32-Bi! Data and Address Registers

• 16 Megabyte Direcl Addressing Range

• 56 Poweriul Insiruclion Types

• Operations on Five Main Data Types

• Memory Mapped I/O

• 14 Addressing Modes

As shown in Ihe programming model, the R68000 olfers sevenleen

32-bil registers in addilion lo the 32-bit program counter and a 16-bit

Status register. The first eight regisiers (D0-D7) afe used as daia reg-

istets (or byle (8-bit). word (16-bit). and long word (32-bit) data op-

eralions. The second set oi seven registers (A0-A6) and the System

Stack pointer may be used as Software Stack pointers and base ad

dress ragisters. in addilion, these registers may be used for word and

long word address operations. All 17 registers may be used as mdex

reg isteis.
The R6B000 mictoprocessor is available in thiee modeis:

• R68000C4 (4 MHz)

• R68000C6 (6 MHz)

• R6B0OOC8 (8 MHz)

PROGRAMMING MODEL

1615 87

1615

DO

DI

D2

03

04

DB

D6

D7

AO

AI

A2

A3

A4

A5

A6

Eighi

Data

Registers

Seven

Address

Registers

User Stack Pointer

Supervisor Siack Pointer

87

|Sysiem Byte, Uss' Byta

Two Stack

Pointers

Program

Counier

Staius

Register

C SUFFIX

CERAMIC PACKAGE

PINASSIGNMENT

D4C

D3Lt

D2C3

D1C4

DOC

ÄSC6

ÜDSC

LDSC8

R/WE9

DTACKC

"BGC

BGACK.

BRC13

VCCC14

CLKC15

GNDC 16

17

IESETC16

HALT

VMAC19'''

VPAC21

FC2C26"

C27

FC0C28

FC!

:C0

A1CJ29

A2C30

A3C31

A4C32

^

BERRC22

IPL2C23

IPL1C 241
|

i?

■

64DD5

63DD6

62DD7

61 DD8

60 3D9

59 3D10

56 3D11

57 3D12

56 UD13

55 I3D14

54 UD15

53 ZIGND

52 n A23

51QA22

50p A21

48

47

46

45

44

43

42

A20

A19

I AIS

IA17

IJA16

IA15

IJA14

UA13

403A12

39DA11

A10

A9

36ÖA8

35HA7

34DA6

W

H

O
X
o
■o

O
o
m
0)

O

c
z

H

0 Bockwell Inlernalional Corpofation 1960

All Righls Reserved

Prinied in U.S.A.

Sp«clflcitioni tubjKt to

chan^o with out notic«

Document No. 68650 NOI

August 1960

R68000C4»R68000C6»R68000C8

A 23-bit address bus provides a memory addressing ränge

of greater than 16 megabytes. This large ränge of addressing

capability, coupled with a memory management unit, allows

large, modular programs to be developed and operated

without resorting to cumbersome and time consuming Soft

ware bookkeeping and paging techniques.

The Status register contains the interrupt mask (eight

levels available) as well as the condition codes; extend (XI,

negative (N), zero IZ), overflow (VI, and carry IC). Addi-

tional Status bits indicate that the processor is in a trace (T)

mode and/or in a Supervisor (S) State.

STATUS REGISTER

System Byte User Byte

Trace Mode

Supervisor

State Interrupt

Mask

r
Extend

Negative

Zero

Overflow

Carry

Five basic data types are supported. These data types are:

• Bits

• BCD Digits (4-bits)

• Bytes (8-bits)"
• Words (16-bits)

• Long Words (32-bits)

In addition, operations on other data types such as memory

addresses, Status word data, etc., are provided for in the in-

struction set.

The 14 addressing modes, shown in Table 1, include six

basic types:

• Register Direct

• Register Indirect

• Absolute

• Immediate

• Program Counter Relative

• Implied

Included in the register indirect addressing modes is the

capability to do postincrementing, predecrementing, offset-

ting and indexing. Program counter relative mode can also

be modified via indexing and offsetting.

TABLE 1 - DATA ADDRESSING MODES

Mode

Register Direct Addressing

Data Register Direct

Address Register Direct

Absolute Data Addressing

Absolute Short

Absolute Long

Program Counter Relative Addressing

Relative with Offset

Relative with Index and Offset

Register Indirect Addressing

Register Indirect

Postincrement Register Indirect

Predecrement Register Indirect

Register Indirect with Offset

Indexed Register Indirect with Offset

Immediate Data Addressing

Immediate

Quick Immediate

Implied Addressing

Implied Register

Generation

EA=Dn

EA=An

EA=(Next Word!

EA=iNext Two Words)

EA=(PCI + di6

EA = (PC) + (Xnl + de

EA m (An)

EA=(Anl, An —An + N

An*-An-N, EA=IAn)

EA=(Anl + di6

EA-(An] + (Xn) + d8

DATA=Next Wordtsl

Inherent Data

EA=SR, USP, SP, PC

NOTES:

EA= Effective Address

An = Address Register

Dn=Data Register

Xn = Address or Data Register used

as Index Register

SR= Status Register

PC= Program Counter

(1= Contents of

dg= Eight-bit OHset

(displacementl

di6=Sixteen-bit Offset

Idisplacement)

N=1 for Byte, 2 for

Words and 4 for Long

Words

•— = Replaces

2 .

R68000C4«R68000C6«R68000C8

The 68000 instruction set is shown in Table 2. Some ad-

ditional instructions are variations, or subsets, of these and

they appear in Table 3. Special emphasis has been given

lo the instruction sei's support of structured high-level lan-

guages to facilitate ease of programming. Each instruc

tion, with few exceptions, operates on bytes, words, and

long words and most instructions can use any of the 14 ad-

dressing modes. Combining instruction types, data types,

and addressing modes, over 1000 useful instruclions are

provided- These instructions include signed and unsigned

multiply and divide, "quick" arithmetic operations, BCD

arithmetic and expanded operations {through traps).

TABLE 2 - INSTRUCTION SET

Mnemonic

AßCD

ADD

AND

ASL

ASR

BCC
BCHG

BCLR

BRA

BSET

BSR

BIST

CHK

CLR

CMP

DBCC

DIVS

DIVU

Description

Add Decimal with Extend

Add

Logical And

Arithmetic Shift Left

Arithmetic Shift Right

Branch Conditionally

Bit Test and Change

Bit Test and Clear

Branch Always

Bit Test and Set

Branch to Sübroutine

Bit Test

Check Register Against Bounds

Clear Operand

Compare

Test Condition, Decrement and

Branch

Signed Divide

Unsigned Divide

Mnemonic

EOR

EXG

EXT

JMP

JSR

LEA

LINK

LSL

LSR

MOVE

MOVEM

MOVEP

MULS

MULU

NBCD

NEG

NOP

NOT

OR

Description

Exclusive Or

Exchange Registers

Sign Extend

Jump

Jump to Subroutme

Load Effective Address

Link Stack

Logical Shift Left

Logical Shift Right

Move

Move Multiple Registers

Move Peripheral Data

Signed Multiply

Unsigned MultiplY

Negate Decimal with Extend

Negate

No Operation

One's Complement

Logical Or

Mnemonic

PEA

RESET

ROL

ROR

ROXL

ROXR

RTE

RTR

RTS

SBCD

See
STOP

SUB

SWAP

TAS

TRAP

TRAPV

TST

UNLK

Description

Push Effective Address

Reset Extemai Devices

Rotate Left without Extend

Rotate Right without Extend

Rotate Left with Extend

Rotate Right with Extend

Return frorn Exception

Return and Restore

Return from Subroutine

Subtract Decimal with Extend

Set Conditional

Stop

Subtract

Swap Data Register Halves

Test and Set Operand

Trap

Trap on Overflow

Test

Unlink

TABLE 3 - VARIATIONS OF INSTRUCTION TYPES

Instruction

Type

ADD

AND

CMP

EOR

Variation

ADD

ADDA

ADDQ

ADD!

ADDX

AND

ANDI

CMP

CMPA

CMPM

CMPI

EOR

EORI

Description

Add

Add Address

Add Quick

Add Immediate

Add with Extend

Logical And

And Immediate

Compare

Compare Address

Compare Memory

Compare Immediate

Exclusive Or

Exclusive Or Immediate

Instruction

Type

MOVE

NEG

OR

SUB

Variation

MOVE

MOVEA

MOVEQ

MOVE from SR

MOVE to SR

MOVE to CCR

MOVE USP

NEG

NEGX

OR

ORI

SUB

SUBA

SUBI

SUBQ

SUBX

Description

Move

Move Address

Move Quick

Move from Status Register

Move to Status Register

Move to Condition Codes

Move User Stack Pointer

Negate

Negate with Extend

Logical Or

Or Immediate

Subtract

Subtract Address

Subtract Immediate

Subtract Quick

Subtract with Extend

R68000C4«R68000C6»R68000C8

DATA ORGANIZATION AND ADDRESSING CAPABILITIES

The following paragraphs describe the data organization

and addressing capabililies of the 68000.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits,

a word equals 16 bits, and a long word equals 32 biis. The

Operand size for each instruction is either explicitly encoded

in the instruction or implicitly defined by the instruction

Operation. AH explicit instructions support byte, word or long

word operands. Implicit instructions support some subset of

all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16,

or 32 bits. The seven address registers together with the ac-

tive Stack pointer support address operands of 32 bits.

DATA REGISTERS. Each data register is 32 bits wide.

Byte operands occupy the Iow order 8 bits, word operands

the Iow order 16 bits, and long word operands the entire 32

bits. The least significant bit is addressed as bil zero; the

most significant bit is addressed as bit 31.

When a data register is used as either a source or destina-

tion Operand, only the appropriate Iow-order ponion is

changed; the remainmg high-order portion is neither used

nor changed.

ADDRESS REGISTERS. Each address register and the

Stack pointer is 32 bits wide and holds a füll 32 bit address.

Address registers do not support byte sized operands.

Therefore, when an address register is used as a source

Operand, either the Iow order word or the entire long word

Operand is used depending upon the Operation size. When

an address register is used as the destination Operand, the

entire register is affected regardless of the Operation size. If

the Operation size is word, any other operands are sign ex-

tended to 32 bits before the Operation is performed.

DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte

having an even address the same as the word, as shown in

Figure 1. The Iow order byte has an odd address that is one

count higher than the word address. Instructions and

multibyte data are accessed only on word (even byte) boun-

daries. If a long word datum is located at address n in even),

then the second word of that datum is located at address

n + 2.

The data types supported by Ihe 68000 are bit data, in

teger data of 8, 16, or 32 bits, 32-bit addresses and binary

coded decimal data. Each of these data types is put in

rnemory, as shown in Figure 2.

ADDRESSING

Instructions for the 68000 contain two kinds of informa-

fion: the type of function to be performed, and the location

of the operand(s) on which to perform that function. The

methods used to locate (address) the operand(s) are ex-

plained in the following paragraphs.

Instructions specify an Operand location in one of three

ways:

Register Specification - the number of the register is

given in the register field of the instruction.

Effective Address -- use of the different effective

address modes.

Implicit Reference — the definition of certain instruc

tions implies the use of specific registers.

FIGURE 1 - WORD ORGANIZATION IN MEMORY

7

15 14 13 12 11

Byte 000000

Byte 000002

10 y 8

Word

Word

7

000000

000002

i

Ö □ 43

Byte 000001

Byte 000003

2 1 0

Word FFFFFE

Byte FFFFFE Byte FFFFFF

FIGURE 2 - DATA OHGANIZATION IN MEMORY

Bit Data

Byte = 8Bits

7 6 5 4 3 2 1 0

Integer Data

1 Byte =6 Bits

15

MSB

15

MSB

15

14

14

14

13

13

13

12

Byte

Byte

12

12

II

0

2

11

11

10

10

10

9

9

1

9

8

LSB

1

1 Word =16

8 7

Word 0

Word 1

Word 2

Long Word =

3 7

6

Bits

6

32 Bus

6

5

5

5

4

8yte

Byte

4

4

3

1

3

3

3

2

2

2

1

1

1

0

0

LSB

0

MSB

Long Word 0-

High Order

Low Order
LSB

— — Long Word 1 —

— — Long Word 2 ____ _

Addresses

1 Address = 32 Bits

15

MSB

14 13

Address 0

Address 1

Address 2

12 11 10 9 8

High

Low

7 6

Order

Order

5 4 3 2 1 0

LSB

MSB = Most Signiiicant Bit

LSB = Least Significani Bit

Decimal Data

2 Binary Coded Decimal Digits = 1 Byte

15

MSD

14

BCD

BCD

13

0

4

XI 11 10

BCD

BCD

y

1

5

8

LSD

7 6

BCD

BCD

b

2

6

4 3 2

BCD

8 CD

1

3

7

0

MSD^Most Significant Digit

LSD= Least Significani Digit

INSTRUCT10N FORMAT

Instructions are from one to five words in length, as

shown in Figure 3. The length of the instruction and the

Operation to be performed is specified by the first word of

the instruction which is called the Operation word. The re-

maining words further specify the operands. These words

are either immediate operands or extensions to the effective

address mode specified in the Operation word.

PROGRAM/DATA REFERENCES

The 68000 separates memory references into two

classes: program references, and data references. Pro

gram references, as the name implies, are references to

that section of memory that contains the program being

executed. Data references refer to that section of memory

that contains data. Generally, Operand reads are from the

data Space. All Operand writes are to the data Space.

REGISTER SPECIFICATION

The register field within an instruction specifies the

register to be used. Other fields within the instruction specify

whether the register selected is an address or data register

and how the register is to be used.

EFFECTIVE ADDRESS

Most instructions specify the location of an Operand by us-

ing the effective address field in the Operation word. For ex-

ample, Figure 4 shows the general format of the Single effec

tive address instruction Operation word. The effective ad

dress is composed of two 3-bit fields: the mode field, and the

register field. The value in the mode field selects the different

address modes. The register field contains the number of a

register.

The effective address field may require additional informa-

tio'n to fully specify the Operand. This additional information,

called the effective address extension, is contained in the

following word or words and is considered pari of the in

struction, as shown in Figure 3. The effective address modes

are grouped into three categories: register direct, memory

addressing, and Special.

REGISTER DIRECT MODES. These effective addressing

modes specify that the Operand is in one of the 16 multif unc-

lion registers.

Data Register Direct. The Operand is in the data register

specified by the effective address register field.

Address Register Direct. The Operand is in the address

register specified by the effective address register field.

MEMORY ADDRESS MODES. These eftective address

ing modes specify that the Operand is in memory and provide

the specific address of the Operand.

Address Register Indirect. The address of the Operand is in

the address register specified by the register field. The

reference is classified as a data reference with the exception

of the jump and jump to subroutine instructions.

Address Register Indirect With Postincrement. The >.

dress of the Operand is in the address register specified hy

the register field. After the Operand address is used, it is in-

cremented by one, two, or four depending upon whether the

size of the Operand is byte, word, or long word. If the ad

dress register is the Stack pointer and the Operand size is

byte, the address is incremented by two rather than one to

keep the Stack pointer on a word boundary. The reference is

classified as a data reference.

Address Register Indirect With Predecrement. The ad

dress of the Operand is in the address register specified by

the register field. Before the Operand address is used, it is

decremented by one, two, or four depending upon whether

the Operand size is byte, word, or long word. If the address

register is the Stack pointer and the Operand sizeis byte, the

address is decremented by two rather than one to keep the

Stack pointer on a word boundary. The reference is classified

as a data reference.

Address Register Indirect With Displacement. This ad

dress mode requires one word of extension. The address of

the Operand is the sum of the address in the address register

and the sign-extended 16-bit displacement integer in the ex

tension word. The reference is classified as a data reference

with the exception of the jump and jump to subroutine in

structions.

Address Register Indirect With Index. This address mode

requires one word of extension. The address of the Operand

FIGURE 3 - INSTRUCTION FORMAT

15 14 13 12 11 10 9 8 7 6 5 4

Operation Word

{First Word Specifies Operation and Modes)

Immediate Operand

llf Any, One of Two Words)

Source Effeclive Address Extension

{If Any, One or Two Words)

Destination Effective Address Extension

ilf Any, One or Two Words)

3 2 1 0

FIGURE 4 - SINGLE-EFFECTiVE-ADDRESS
INSTRUCTION OPERATION WORD GENERAL FORMAT

15

X

14

X

13

X

12

X

11

X

10

X

y

X

8

X

7

X

6

X

5 4 3 2 1 0

Effective Address

Mode j Register

is the sum of the address in the address register, the sign-

extended displacement integer in the Iow order eight bits of

the extension word, and the contents of the index register.

The reference is classified as a data reference with the excep-

tion of the jump and jump to subroutine instructions.

SPECIAL ADDRESS MODES. The Special address modes

use the effective address register field to specify the Special

addressing mode instead of a register number.

Absolute Short Address. This address mode requires one

word of extension. The address of the Operand is the exten

sion word- The 16-bit address is sign extended before it is

used. The reference is classified as a data reference with the

exception of the Jump and jump to subroutine instructions.

Absolute Long Address. This address mode requires two

words of extension. The address of the Operand is

developed by the concatenalion of the extension words. The

high-order part of the address is the first extension word; the

low-order part of the address is the second extension word.

The reference is classified as a data reference with the ex-

ception of the jump and jump to subroutine instructions.

Program Counter With Displacement. This address mode

requires one word of extension. The address of the Operand

is the sum of the address in the program counter and the

sign-extended 16-bit displacement integer in the extension

word. The value in the program counter is the address of the

extension word. The reference is classified as a program

reference.

Program Counter With Index. This address mode requires

one word of extension. The address is the sum of the ad

dress in the program counter, the sign-extended displace

ment integer in the lower eight bits ot the extension word,

and the contents of the index register. The value in the pro

gram counter is the address of the extension word. This

reference is classified as a program reference.

Immediate Data. This address mode requires either one or

two words of extension depending on the size of the Opera

tion.

Byte Operation - Operand is Iow order byte of exten

sion word

Word Operation - Operand is extension word

Long word Operation — Operand is in the two extension

words, high-order 16 bits are in the first extension

word, low-order 16 bits are in the second extension

word.

Condition Codes or Status Register. A selected set of in

structions may reference the Status register by means of the

effective address field. These are:

ANDI to CCR

ANDI to SR

EORI to CCR

EORI to SR

ORI to CCR

ORI to SR

EFFECTtVE ADDRESS ENCODING SUMMARY

Table 4 is a summary of the effective addressing modes

discussed in the previous paragraphs.

IMPLICIT REFERENCE

Some instructions make implicit reference to the program

counter (PC), the System Stack pointer ISP), the Supervisor

Stack pointer (SSP), the user Stack pointer (USP), or the

Status register (SR). Tabie 5 provides a list of these instruc

tions and the registers implied.

SYSTEM STACK. The system Stack is used implicitly by

many instructions; user Stacks and queues may be created

and maintained through the addressing modes. Address

register seven (A7) is the System Stack pointer (SP). The

system Stack pointer is either the Supervisor Stack pointer

(SSP) or the user Stack pointer (USP), depending on the

State of the S-bit in the Status register. If the S-bit indicates

Supervisor State, SSP is the active system Stack pointer, and

the USP cannot be referenced as an address register. If the

S-bit indicates user State, the USP is the active system Stack

pointer, and the SSP cannot be referenced. Each System

Stack fills from high memory to Iow memory.

TABLE 4 - EFFECTIVE ADDRESS ENCODING SUMMARY

Addressing Mode

Data Register Direct

Address Register Direct

Address Register Indirect

Address Register Indirecl with

Postincrement

Address Register Indirect with

Predecremem

Address Register Indirect with

Displacement

Address Register Indirect with

Index

Absolute Short

Absolute Long

Program Counter with

Displacement

Prograrn Counter with Index

Immediate or Status Register

Mode

000

001

010

011

100

101

110

111

in

in

in

m

Register

register number

register number

register number

register number

register number

register number

register number

000

001

010

011

100

TABLE 5 - IMPLICIT INSTRUCTION REFERENCE SUMMARY

Instruction

Branch Conditional IBqq), Branch Always (BRA)

Branch lo Subroutine (BSR)

Check Register againsl Bounds ICHK)

Test Condition. Decrement and Branch (DBcq)

Signed Divide (DIVS)

Unsigned Divide (DIVU)

Jump (JMP)

Jump to Subroutine IJSR}

Link and Allocate (LINK!

Move Condition Codes (MOVE CCR)

Move Status Register (MOVE SR)

Move User Stack Pointer (MOVE USP)

Push Effective Address (PEA)

Return from Exception (RTE)

Return and Restore Condition Codes (RTR)

Return from Subroutine (RTS)

Trap ITRAP)

Trap on Overflow (TRAPVI

Unlink (UNLK)

Implied

Register! s)

PC

PC. SP

SSP, SR

PC

SSP, SR

SSP. SR

PC

PC, SP

SP

SR

SR

USP

SP

PC, SP, SR

PC, SP, SR

PC, SP

SSP, SR

SSP, SR

SP

R68000C4«R68000C6»R68000C8

INSTRUCTION SET SUMMARY

The following paragraphs contain an overview of the

form and structure of the 68000 instruction set. The instruc-

tions form a set of tools that include all the machine func-

tions to perform the following operations:

Data Movement

Integer Arithmetic

Logical

Shift and Rotate

Bit Manipulation

Binary Coded Decimal

Program Control

System Control

The complete ränge of instruction capabilities combiriBd

with the flexible addressing modes described previously pro-

vide a very flexible base for program development.

DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and

storage) is provided by the move (MOVE) instruction- The

move instruction and the effective addressing modes allow

both address and data manipulation. Data move instructions

ailow byte, word, and long word operands to be transferred

from memory to memory, memory to register, register to

memory, and register to register. Address move instructions

aliow word and long word Operand transfers and ensure that

only legal address manipulations are executed. In addition to

the general move instruction there are several Special data

movement instructions: move multiple registers (MOVEM),

move peripheral data (MOVEP), exchange registers (EXG),

load effective address (LEAI, push effective address (PEA),

link Stack (LINK), unlink Stack (UNLK), and move quick

(MOVEQ). Table 6 is a summary of the data movement

operations.

TABLE 6 - DATA MOVEMENT OPERATIONS

Instruction

I£XG

LEA

LINK

MOVE

MOVEM

MOVEP

MOVEQ

PEA

SWAP

UNLK

Operand Size

32

32

-

8, 16, 32

16, 32

16, 32

8

32

32

-

Operation

Rx-* Ry

EA—An

An — SP@-

SP— An

SP + d— SP

(EA)s- EAd

tEAl— An, Dn

An, Dn—EA

(EA)—Dn

Dn —EA

#xxx — Dn

EA—SP@-

Dn[31:16]*~Dn|15:0]

An—Sp
SP(ß>+ —An

NOTES:

s = source

d = destination

[] = bit numbers

@ - = indirect with predecremenl

@ + = indiiect with postdecrement

INTEGER ARITHMETiC OPERATIONS

The arithmetic operations include the four basic opera

tions of add (ADD), subtract (SUB), multiply IMUL), and

divide (DIV) as well as arithmetic compare (CMPI, clear

(CLRI, and negate INEG). The add and subtract instructions

are available for both address and data operations, with data

operations accepting all Operand sizes. Address operations

are limited to legal address size operands (16 or 32 bits).

Data, address, and memory compare operations are also

available. The clear and negate ins\ructions may be used on

all sizes of data operands.

The multiply and divide operations are available for signed

and unsigned operands using word multiply to produce a

long word product, and a long word dividend with word

divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be ac-

complished using a set of extended instructions. These in-

slructions are: add extended (ADDX), subtract extended

(SUBX), sign extend (EXT), and negate binary with extend

(NEGX}.

A test Operand (TST) instruction that will set the condition

Codes as a result of a compare of the Operand with zero is

also avaüable. Test and set (TAS) is a synchronization in

struction useful in multiprocessor Systems. Table 7 is a sum

mary of the integer arithmetic operations.

TABLE 7 - INTEGER ARITHMETIC OPERATIONS

Instruction

ADO

ADDX

CLR

CMP

DIVS

DIVU

EXT

MULS

MULU

NEG

NEGX

SUB

SUBX

TAS

TST

Operand Size

8, 16, 32

16, 32

8, 16, 32

16, 32

8, 16, 32

8, 16, 32

16, 32

32+16

32+16

8—16

16—32

16*16— 32

16-16-32

8, 16, 32

8. 16, 32

8. 16, 32

16, 32

8, 16, 32

8

8, 16. 32

Operation

Dn + (EA)—Dn

(EA) + Dn — EA

lEA) + #xxx— EA

An-rlEA)— An

Dx + Dy + X -*■ Dx
Axa@- + Ay@ - + X —Ax@

0—EA

Dn-(EA)

(EA)-tfxxx

Ax@ + - Ay@ +

An-IEA)

Dn/(EA) — Dn

Dn/IEAI —Dn

(Dn)g—-Dniß

(Dnl16- Dn32

Dn'IEA) —Dn

Dn'IEA)—Dn

O-(EA) — EA

0-IEA1-X-EA

Dn-(EA) — Dn

(EA)-Dn—EA

(EA)-#xxx— EA

An-(EA) — An

Dx-Dy-X—Dx

Ax@- - Ay@- -X—Ax@

(EA1-0, 1 — EA[71

(EA)-O

NOTE: [) = bit number

R68000C4»R68000C6»R68000C8

LOGICAL OPERATIONS

Logical Operation instructions AND, OR, EOR, and NOT

are available for all sizes of integer data operands. A similar

sei of immediate instructions (ANDl, ORI, and EORI) provide

these logical operations with all sizes of immediate data,

Table 8 is a summary of the logical operations.

BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the

following instructions: bit test IBTST}, bit test and set

(BSET), bit test and clear (BCLR), and bit test and change

IBCHGI. Table 10 is a summary of the bit manipulation

operations. (Bit 2 of the Status register is Z.)

TABLE 8 - LOGICAL OPERATIONS

TABLE 10 - BIT MANIPULATION OPERATIONS

Instruction

AND

OR

EOR

NOT

Operand Size

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

Operation

DnAlEAl — Dn

(EA)ADn— EA

IEA)A#xxx— EA

Dn v (EAI—-Dn

(EA) v Dn—EA

(EA) v#xxx— EA

lEA)®Dy—EA

(EA)si#xxx—'EA

-(EA)—EA

NOTE: - =invert

SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the

arithmetic instructions ASR and ASL and logical shift in

structions LSR and LSL. The rotate instructions [with and

without extend} available are ROXR, ROXL, ROR, and ROL.

All shift and rotate operations can be performed in either

registers or memory. Register shifts and rotates Support all

Operand sizes and allow a shift count specified in the instruc

tion of one to eight bits, or 0 to 63 specified in a data register.

Memory shifts and rotates are for word operands only and

allow only single-bit shifts or rotates.

Table 9 is a summary of the shift and rotate operations.

TABLE 9 - SHIFT AND ROTATE OPERATIONS

nstruc

tion

ASL

ASR

LSL

LSH

ROL

ROR

ROXL

ROXR

Operand

Size

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

8, 16, 32

Operation

Instruction

BTST

BSET

BCLR

BCHG

Operand Size

8, 32

8, 32

8, 32

3, 32

Operation

-bit of (EA) —Z

-bit of (EA) —Z

1 — bit of EA

-bit of (EA) —Z

0—bit of EA

-bit of (EA) —Z

-bit oi (EAI—bit of EA

BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded

decimal numbers are accomplished using the following in

structions: add decimal with extend IABCD), subtract

decimal with extend (SBCD), and negate decimal with ex

tend (NBCD). Table 11 is a summary of the binary coded

decimal operations.

TABLE 11 - BINARY CODED DECIMAL OPERATIONS

Instruction

ABCD

SBCD

NBCD

Operand

Size

8

8

8

Operation

Dxio-f Dyio+ X —Dx

Ax@- io+Ay@ - 10+ X— Ax@

Dxio-Dy1O-X— Dx

Ax@- 10-Ay@- 10- X—Ax@

O-(EA)io-X— EA

PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a

series of conditional and unconditional branch instructions

and return instructions. These instructions are summarized

in Table 12.

The conditional instructions provide setting and branching

for the following conditions:

CC - carry clear LS - Iow or same

CS - carry set LT - less than

EQ - equal MI -minus

F — never true NE - not equal

GE — greater or equal PL - plus

GT - greater than T - always true

Hl -high VC - no overflow

LE - less or equal VS - overflow

R68000C4«R68000C6«R68000C8

TABLE 12 - PROGRAM CONTROL OPERATIONS TABLE 13 - SYSTEM CONTROL OPERATIONS

Instruction

Conditional

BCC

DBCC

SCC

Uncondilional

BRA

BSR

JMP

JSR

Returns

RTR

ms

Operation

Branch conditionally (14 conditions)

8- and 16-bit displacement

Test condition, decremenl, and branch

16-bit displacement

Set byte conditionally (16 conditions)

Branch always

8- and 16-bit displacement

Branch lo subroutine

8- and 16-bit displacement

Jump

Jump to subrouline

Return and restore condition codes

Return from subroutine

SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using

privileged instructions, trap generating instructions, and in-

structions that use or modify the Status regisler. These in

structions are summarized in Table 13.

Instruction

Privileged

RESET

RTE

STOP

ORI to SR

MOVE USP

ANDI to SR

EORI to SR

MOVE EA to SR

Trap Generating

TRAP

TRAPV

CHK

Status Register

ANDI to CCR

EORI to CCR

MOVE EA to CCR

ORI to CCR

MOVE SR to EA

Operation

Reset external devices

Return from exception

Stop program execution

Logical OR to Status register

Move user Stack pointer

Logical AND to Status register

Logical EOR to Status register

Load new Status register

Trap

Trap on overflow

Check register against bounds

Logical AND to condition codes

Logical EOR to condition codes

Load new condition codes

Logical OR to condition codes

Store Status register

SIGNALAND BUS OPERATION DESCRIPTION

The following paragraphs contain a brief description of the

input and output Signals. A discussion of bus Operation dur-

ing the various machine cycles and operations is also given.

SIGNAL DESCRIPTION

The input and Output Signals can be functionally organized

into the groups shown in Figure 5. The following paragraphs

pfovide a brief description of the Signals and also a reference

(if applicable) to other paragraphs that contain more detail

about the function being performed.

am
ADDRESS BUS (A1 THROUGH A23). This 23-bit,

unidirectional, three-state bus is capable of addressing 8

megawords of data. It provides the address for bus Operation

during al1 cycles except Interrupt cycles. During Interrupt

cycles, address lines A1, A2, and A3 provide information

about what level interrupt is being serviced while address

lines A4 through A23 are all set to a logic high.

DATA BUS (DO THROUGH D15). This 16-bit, bidirec-

tional, three-state bus is the general purpose data path, It

can transfer and accept data in either word or byte length.

During an Interrupt acknowiedge cycle, the external device

supplies the vector number on data lines D0-D7.

ASYNCHRONOUS BUS CONTROL. Asynchronous data

transfers are handled using the following controi Signals: ad

dress strobe, read/write, upper and Iower data strobes, and

data transfer acknowiedge. These Signals are explained in

the following paragraphs.

1 /

V

9

FIGURE5 -

VCC(2}

ProcessorJ

Status S
\

M6800 /

Conirol 1

SystemJ

Contran

GND(2)

CLK

FCO

,FC1

FC2

E

VMA

VPA

BERR

aRESET

aHALT

INPUT AND OUTPUT SIGNALS

*

68000

Microprocessor

Bus)

V

A1-A23

(Data Bu^>D0-D15

ÄS m%
R/W t

UDS

LDS .

DTACK

BH

BG

BGACK

1IPU3

IPL1

n IPL2

Asynchronoiis

> Bus

Control

)

Ißus ArbiHation
\ Control

)

1 Interrupt

f Control

Address Strobe (AS). This signat indicates that there is a

valid address on the address bus.

Read/Write (R/WK This signal' defines the data bus

transfer as a read or write cycle. The R/W Signal also works

in conjunction with the upper and iower data strobes as ex

plained in the following paragraph.

ffM

10

R68000C4»R68000C6«R68000C8

Upper And Lower Data Strobes (UDS, LDS}. These

Signals control the_data on the data bus, as shown in Table

14. When the R/W line is high, the processor will read from

the data bus as indicated. When the R/W line is Iow, the

processor will write to the data bus as shown.

TABLE 14 - DATA STROBE CONTROL OF DATA BUS

UDS

High

Low

High

Low

Low

High

Low

LDS

High

Low

Low

High

Low

Low

High

R/W

_

High

High

High

Low

Low

Low

D8-D15

No valid data

Valid data bits

8-15

No valid data

Valid data bils

8-15

Valid dala bits

8-15.

Valid data bits

0-7'

Valid data bits

8-15

D0-D7

No valid data

Valid data bits

0-7

Valid data bits

0-7

No valid data

Valid dala bits

0-7

Valid data bits

0-7

Valid data bits

8-15"

'These conditions are a result of current implementation and mav

not appear on future devices.

Data Transfer Acknowledge (DTACK). This input in-

dicates that the data transfer is completed. When the pro

cessor recognizes DTACK during a read cycle^

latched and the bus cycle terminated. When

data

DTACK i

recognized during a write cycle, the bus cycle is terminaled

BUS ARBITRATION CONTROL. These three Signals form

a bus arbitration circuit to determine which device will be the

bus master device.

Bus Request (BR). This input is wire ORed withlaII other

devices that could be bus masters. This input indicates to the

processor that some other device desires to become the bus

master.

Bus Grant (BG). This Output indicates to all other potential, -

bus master devices that the processor will release bus con-

trol at the end of the current bus cycle.

Bus Grant Acknowledge (BGACK). This input indicates

that some other device has become the bus master. This

slgnal cannot be asserted until the following four conditions

are met:

1. a bus grant has been received

2. address strobe is inactive which indicates that the

microprocessor is not using the bus

data transfer acknowledge is inactive which indicates

that either memory or the peripherals are not using

the bus

bus grant acknowledge is inactive which indicates

that no other device is still claiming bus mastership.

INTERRUPT CONTROL (IPLO, 1PL1, IPL2). These input

pins indicate the encoded priority level of the device re-

questing an Interrupt. Level seven is the highest priority

while level zero indicates that no interrupts are requested.

The least significant bit is given in IPLO and the most signifi-

cant bit is contained in IPL2.

SYSTEM CONTROL. The System control inputs are used

to either reset or halt the processor and to indicate to the

processor that bus errors have occurred. The three System

control inputs are expiained in the following paragraphs.

Bus Error IBERR). This input informs the processor that

there is a problem with the cycle currently being executed.

Problems may be a result of:

1. nonresponding devices

2. Interrupt vector number acquisition failure

3. illegal access request as determined by a memory

management unit

4. other application dependent errors.

The bus error Signal interacts with the halt signal to deter

mine if exception processing should be performed or the cur

rent bus cycle should be retried.

Refer to BUS ERROR AND HALT OPERATION paragraph

for additional information about the interaction of the bus er

ror and halt Signals.

Reset (RESET}. This bidirectional signal line acts to reset

(initiate a System initiaiization sequence) the processor in

response to an external reset signal. An internally generated

reset (result of a RESET instruction) causes all external

devices to be reset and the internal State of the processor is

not affected. A total System reset (processor and external

devices) is the result of external halt and reset Signals applied

at the same time. Refer to RESET OPERATION paragraph

for additional information about reset Operation.

Halt (HALT). When this bidirectional line is driven by an

external device, it will cause the processor to stop at the

completion of the current bus cycle. When the processor has

been halted using this input, all control Signals are inactive

and all three-state lines are put In thelr high-impedance State.

Refer to BUS ERROR AND HALT OPERATION paragraph

for additional information about the interaction between the

halt and bus error Signals.

When the processor has stopped executing instructions,

such as in a double bus fault condition, the halt line is driven

by the processor to indicate to external devices that the pro

cessor has stopped.

11

R68000C4»R68000C6»R68000C8

R6500 PERIPHERAL CONTROL These control Signals

are used to ailow the interfacing of synchronous R6500 pe-

ripheral devices with the asynchronous 68000. These Sig

nals are explained in the following paragraphs.

Enabte (E). This is the Standard enable Signal commoniy

called 02 in R6500 peripheral devices. The period for this

output is ten 68000 clock periods (six clocks Iow; four

clocks high).

Valid Peripheral Address (VRA). This input indicates that

the device or region addressed is a R6500 family device

and that data transfer should be synchronized with the en

able (E) signal. This input also indicates that the processor

should use automatic vectoring for an interrupt. Refer to

INTERFACE WITH R6500 PERIPHERALS.

Valid Memory Address (VMA). This Output is used to in

dicate to R6500 peripheral devices that there is a valid ad

dress on the address bus and the processor is synchro

nized to enable. This signal only responds to a valid

peripheral address (VPA) input which indicates that the

peripheral is a R6500 family device.

PROCESSOR STATUS (FCO, FC1, FC2). These function

code Outputs indicate the State (user or Supervisor) and the

cycle type currently being executed, as shown in Table 15.

The information indicated by the function code Outputs is

valid whenever address strobe (ASI is active. ^

O

TABLE 15 - FUNCTION CODE OUTPUTS

FC2

Low

Low

Low

Low

High

High

High

High

FC1

Low

Low

High

High

Low

Low

High

High

FCO

Low

High

Low

High

Low

High

Low

High

Cycle Type

(Undefined, Reserved)

User Data

User' Program

lUndefined, Reserved)

(Undeiined, Reserved)

Supervisor Data

Supervisor Program

Interrupl Acknowtedge V

CLOCK (CLK). The clock input is a TTL compatible signal

that is internally buffered for development of the internal

clocks needed by the processor. The clock input shall be a

constant frequency.

SIGNAL SUMMARY. Table 16 is a summary of all the

Signals discussed in the previous paragraphs.

TABLE 16 - SIGNAL SUMMARY

Signal Name

Address Bus

Data Bus

Address Strobe

Read/Write

Upper and Lower Data Strobes

Data Transfer Acknowledge

Bus Request

Bus Grant

Bus Grant Acknowledge

Interrupt Priority Level

Bus Error

Reset

Halt

Enable

Valid Memory Address

Valid Peripheral Address

Function Code Output

Clock

Power Input

Ground

MnBmonic

A1-A23

D0-D15

SS

R/W

DDS, LDS"

DTACK

B7i

BG

BGACK

IPLU. IPLl, IPL2

BERR

RESET

HALT

E

VMA

VPA

FCO, FC1, FC2

CLK

Vcc

GND

Input/Output

Output

input/output

Output

Output

Output

in pul

input

Output

input

input

input

input/output

input/output

Output

Output

input

Output

input

input

input

Active State

high

high

low

read-high

wrile-low

low

low

low

low

low

low

low

low

low

high

low

low

high

high

-

-

Three

State

yes

yes

yes

yes

yes

no

no

no

no

no

no

no"

no"

no

yes

no

yes

no

-

-

'open drain

12

R68000C4»R68000C6«R68000C8

BUS OPERATION

The following paragraphs explain control signal and bus

Operation during data transfer operations, bus arbitration,

bus error and halt conditions, and reset Operation.

DATA TRANSFER OPERATIONS. Transfer of data be-

tween devices irwolves the following leads:

• Address Bus AI through A23

• Data Bus DO through D15

• Control Signals

The address and data buses are separate parallel buses used

to transfer data using an asynchronous bus structure. In all

cyctes, the bus master assumes responsibility for deskewing

all Signals it issues at both the Start and end of a cycle. In ad-

dition, the bus master is responsible for deskewing the

acknowledge and data Signals from the slave device.

The following paragraphs explain the read, write, and

read-modify-write cycles. The indivisible read-modify-write

cycle is the method used by the 68000 for interlocked mul-

liprocessor communications.

FIGURE 6 - WORD READ CYCLE FLOW CHART

NOTE

The terms assertion and negation will be used extensivelv.

This is done to avoid confusion when dealing with a mixture

of "active-low" and "active-high" Signals. The term assert or

assertion is used to indicate that a Signal is active or true in-

dependent of whether that voltage is Iow or high- The term

negate or negation is used to indicate that a Signal is inactive

or false.

Read Cycle. During a read cycle, the processor receives

data from memory or a peripheral device. The processor

reads bytes of data in all cases. If the instruction specifies a

word (or double word) Operation, the processor reads both

bytes. When the instruction specifies byte Operation, the

processor uses an internal A0 bit to determine which byte to

read and then issues the data strobe required for that byte.

For byte operations, when the A0 bit equals zero, the upper

data strobe is issued. When the A0 bit equals one, the Iower

data strobe is issued. When the data is received, the pro

cessor correctly posittons it internally.

A word read cycle flow Chart is given in Figure 6. A byte

read cycle flow chart is given in Figure 7. Read cycle timing is

given in Figure 8 and Figure 9 details word and byte read cy

cle Operation.

FIGURE 7 - BYTE READ CYCLE FLOW CHART

BUS MASTER

Address Device

Set R/W to Read

Ptace Address on A1-A23

Place Function Code on FCQ-FC2

Assert Address Slrobe (ASI

Assert Upper Data Strobe iUDS) and Low-

er Data Strobe (LDS)

SLAVE

Acquire Data

1) Latch Data

2) Negate LIDS and LDS

3) Negate AS

f

Input Dsta

Decode Address

Place Data on D0-D15

Assert Data Transfer Acknowledge

IDTACK)

Terminate Cycle

1) Remove Data from D0-D15

21 Negate DTACK

BUS MASTER

Address Device

Set R/W to Read

Place Address on A1-A23

Place Function Code on FCQ-FC2

Assert Address Strobe (AS)

Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDS) tbased on AO)

I

SLAVE

2)

3)

Input Data

Decode Address

Place Data on D0-D7 or D8-D15 (based on

UDS or LDS)

Assert Data Transfer Acknowledge

(DTACK)

Acquire Data

Latch Data

2) Negate UDS or LDS

3) Negate AS

1
Terminate Cycle

1) Remove Data from D0-D7 or D8-D15

2) Negate DTACK

♦
Start Next Cycle Start Next Cycle

R68000C4«R68000C6«R68000C8

FIGURE 8 - READ AND WRITE CYCLE TIMING DIAGRAM

CLK

A4-A23)—Q

A1-A3)—Q

UDS

LDS

R/W

DTACK

D8-D15

D0-D7

FCO-2

V

k-- -Read-

X

X
J

f

\

\

V

v-c

/

— >|< — —Write' — —

\

\

\

\

— — -Slow Read

f

>

>

>

>l

FIGURE 9 - WORD AND BYTE READ CYCLE TIMING DIAGRAM

CLK

R/W

DTACK

D8-D15

D0-D7

V

FCO-2)—("

V

X

V

'Internal Signal Only

— -Word Read- — >|<- — Odd Byte Read— >]-*■ —Even Byle Read

Write Cycle. During a write cycle, the processor sends

data to memory or a peripheral device. The processor writes

bytes of data in all cases. If the instruction specifies a word

Operation, the processor writes both bytes. When the in

struction specifies a byte Operation, the processor uses an

internal AO bil to determine which byte to write and then

issues the data strobe required for that byte. For byte opera-

tions, when the AO bit equals zero, the upper data strobe is

issued. When the AO bit equals one, the lower data strobe is

issued. A word write cycle fiow Chart is given in Figure 10. A

byte write cycte flow Chart is given in Figure 11. Write cycle

timing is given in Figure 8 and Figure 12 details word and

byte write cycle Operation.

14

R68000C4«R68000C6«R68000C8

FIGURE 10 - WORD WRITE CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device

Place Address on A1-A23

Place Function Code on FC0-FC2

Assert Address Strobe (AS)

Set R/W to Write

Place Data on D0-D15

6)

1)

2)

3)

4)

Assert Upper Data S

Lower Data Strobe 1

robe

_DS)

UDS)

1)

2)

3)

Terrninate Outpul Transfer

Negate UDS and LDS

Negate AS

Remove_Data from D0-D15

Set R/W to Read

and

Input Data

Decode Address

Store Data on D0-D15

Assert Data Transfer Acknowledge

(DTACK)
■

Terminate Cycle

11 Negate DTACK

FIGURE 11 - BYTE WRITE CYCLE FLOW CHART

BUS MASTER

Address Device

SLAVE

Place Address on A1-A23

Place Function Code on FCQ-FC2

Assen_A_ddress Strobe (AS)

Set R/W to Write

Place Data on D0-D7 or D8-D15 (accofding

to AOJ

Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDS) (based on A0)

Input Data

Decode Address

Store Data on D0-D7 if LDS is asserted

Store Data on D8-D15 if UDS is asserted

Assert Data Transfer Acknowledge

(DTACK)

f
Terminate Output Transfer

Negate Ü~b~S and LOS
Negate AS

Remove_Data from D0-D7 or D8-D15

Set R/W to Read

Terminate Cyde

1) Negate DTACK

Start Nexl Cycle Start Next Cycle

FIGURE 12 - WORD AND BYTE WRITE CYCLE TIMING DIAGRAM

CLK

A4-A23 3—(

AI-AS} (

A0*

"Internal Signal Only

*~ — —Word Write— *f<- "Odd Byte Write — >|< Even Byte Write- >|

15

R68000C4«R68000C6«R68000C8

Read-Modify-Write Cycle. The read-modify-write cycle sorenvironment. This instruction is the only instruction that

performs a read, modifies the data in the arithmetic-logic uses the read-modify-write cycles and since the lest and

unit, and writes the data back'to the same address. In the set instruction only operates on bytes, all read-modify-write

68000 this cycle is indivisible in that the address strobe is cycles are byte operations. A read-modify-write cycle flow

asserted throughout the entire cycle. The test and set Chart is given in Figure 13 and a timing diagram is given in

(TAS) instruction uses this cycle to provide meaningful Figure 14.

communication between processors in a multiple proces-

FIGURE 13 - READ-MODIFY-WRITE CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device

II Place Address on A1-A23

2) Sei R/W io Read

3) Assert Address Strobe (AS)

4) Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDSI
i

t
Acquire Data

1) Laich Data

2) Negate UDS or LDS

3t Start Data Modification

T
Start Output Transfer

I) Set R/W lo Write

2) Place Data on D0-D7 or D8-D15

3) Assert Upper Data Strobe IUDS) or Lower

Data Strobe (LDS)

t
Terminate Output Transfer

1) Negate ÜÜ5 or LÖS
2) Negate AS

31 Remove Data Irom D0-D7 or D8-D15

41 Set R/W to Read

t
Start Next Cycle

r
Input Data

1) Decode Address

2) Place Data on D0-D7 or D8-D15

3) Assert Data Transfer Acknowledge

(DTACKI
r

*
Terminate Cycle

1) Remove Data from D0-D7 or DB-D15

2) Negate DTACK

_|

T
Input Data

1) Store Data on D0-D7 or D8-D15

21 Assert Data Transfer Acknowledqe

IDTACK) t

Terminate Cycle

1) Negate DTACK

J

16

R68000C4»R68000C6»R68000C8

F1GURE 14 - READ-MODIFY-WRITE CYCLE TIMING DIAGRAM

— — — Indivisible Cycle—

BUS ARBITRATION. Bus arbitration is a technique used

by master-type devices to request, be granted, and

acknowledge bus mastership. In its simpiest form, it consists

of:

1. Asserting a bus mastership request.

2. Receiving a grant that the bus is available at the end

of the current cycle.

3. Acknowledging that mastership has been assumed.

Figure 15 is a flow Chart showing the detail involved in a

request from a Single device. Figure 16 is a timing diagram

for the same operations. This technique allows processing of

bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated

at the time that an acknowledge is asserted. This type of

Operation would be true for a System consisting of the pro-

cessor and one device capable of bus mastership. In Systems

having a number of devices capable of bus mastership, the

bus request line from each device is wire ORed to the pro-

cessor. In this System, it is easy to see that there could be

more than one bus request being made. The timing diagram

shows that the bus grant signal is negated a few dock cycles

after the transition of the acknowledge (BGACK) Signal.

However, if the bus requests are still pending, the pro-

cessor will assert another bus grant within a few clock cycles

after it was negated. This additional assertion of bus grant

allows external arbitration circuitry to select the next bus

master before the current bus master has completed its re-

quirements. The following paragraphs provicie additional in-

formation about the three steps in the arbitration process.

FIGURE 15 - BUS ARBITRATION CYCLE FLOW-CHART

PROCESSOH REQUESTING DEVICE

Request the Bus

1) Assert Bus Request

Gram Bus Arbitration

1) Assert Bus Grant IBG)

Acknowledge Bus Maslership

1) External arbitration deiermines next bus

master

2) Next bus master waits for current cycle to

complete

31 Next bus master asserts Bus Grant

Acknowledge (BGACK) to become new

master

4) Bus master negates BR

Terminate Arbitration

1) Negate BG (and wait for BGACK to be

negated)

Operate as Bus Master

1) Perform Data Transfers (Read and Write

cyclesl according to the same rules the pro-

cessor uses.

Release Bus Masiership

11 Negate BGACK

Re-Arbitrate or Resume Processor

17

R68000C4*R68000C6«R68000C8

BGACK

FIGURE 16 - BUS ARBITRATION CYCLE TIMING DIAGRAM

Processor— >t< —DMA Device— — -Processor— -DMA Device- —

Requesting the Bus. External devices capable of becoming

bus masters request the bus by asserting the bus request

(BRI Signal. This is a wire ORed signal lalthough it need not

be constructed from open collector devices) that indicates to

the processor that sonne external device requires control of

the external bus. The processor is effectively at a Iower bus

priority levei than the external device and will reiinquish the

bus 3fter it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request

signal goes inactive, the processor will continue processing

when it detects that the bus request is inactive. This allows

ordinary processing lo continue if the arbitration circuitry

responded to noise inadver.tently.

_Receiving the Bus Grant. The processor asserts bus grant

IBGI as soon as possible. Normally this is immediately after

internal synchronization. The only exception to this occurs

when the processor has made an internal decision to execute

the next bus cycle but has not progressed far_enough into

the cycle tu have asserted the address strobe (AS) signal. In

this case, bus grant will not be asserted until one dock after

address strobe is asserted to indicate to external devices that

a bus cycle is being executed.

The bus grant signal may be routed through a daisy-

chained network or through a specific priority-encoded net-

work. The processor is not affected by the external method

of arbitration as long as the protocol is obeyed.

Acknowledgement of Mastership. Upon receiving a bus

grant, the requesting device waits until address strobe, data

transfer acknowledge, and bus grant acknowledge are

negated before issuing its own BGACK. The negation of the

address strobe indicates that the previous master has com

pleted its cycle, the negation of bus grant acknowledge in

dicates that the previous master has released the bus. (While

address strobe is asserted no device is allowed to "break in

to" a cycle.) The negation of data transfer acknowledge in

dicates the previous slave has terminated its connection to

the previous master. Note that in some applications data

transfer acknowledge might not enter into this function.

General purpose devices would then be connected such that

they were only dependent on address strobe. When bus

grant acknowledge is issued the device is bus master until it

negates bus grant acknowledge. Bus grant acknowledge

should not be negated until after the bus cycle(s) is (are)

completed. Bus mastership is terminated at the negation of

bus grant acknowledge.

The bus request from the granted device should be drop-

ped when bus grant acknowledge is asserted. If bus request

is still asserted after bus grant acknowledge is negated, the

processor performs another arbitration sequence and issues

another bus grant. Note that the processor does not perform

any external bus cycles before it re-asserts bus grant.

BUS ERROR AND HALT OPERATION. In a bus architec-

ture .that requires a handshake (rom an external device, the

possibility exists that the handshake might not occur. Since

different Systems will require a different maximum response

time, a bus error input is provided. External circuitry must be

used to determine the duration between address strobe and

data transfer acknowledge before issuing a bus error signal.

When a bus error signat is received, the processor has two

options: initiate a bus error exception sequence or try runn-

ing the bus cycle again.

ia

R68000C4«R68000C6«R68000C8

Exception Sequence. The bus error exception sequence is

entered when the processor receives a bus error Signal and

the halt pin is inactive. Figure 17 is a timing diagram for the

exception sequence. The sequence is composed of the

following elements:

1. Stacking the program counter and Status register

2. Stacking the error Information

3. Reading the bus error vector table entry

4. Executing the bus error handlet routine

The stacking of the program counter and the Status

register is the same as if an Interrupt had occurred. Several

additional items are stacked when a bus error occurs. These

items are used to determine the nature of the error and cor-

rect it, if possible. The bus error vector is vector number two

located at address $000008. The processor loads the new

program counter from this location. A Software bus error

handler routine is then executed by the processor. Refer to

EXCEPTION PROCESSING for additional Information.

Re-Running the Bus Cycle. When the processor receives a

bus error Signal and the halt pin is being driven by an external

device, the processor enters the re-run sequence. Figure 18

is a timing diagram for re-running the bus cycle.

The processor completes the bus cycle, then puts the ad

dress, data and function code Output lines in the high-

impedance State. The processor remains "halted," and will

not run another bus cycle until the halt signal is removed by

external logic. Then the processor will re-run the previous

bus cycle using the same address, the same function codes,

the same data (for a write Operation), and the same controls.

The bus error signal should be removed before the halt signal

is removed.

FIGURE 17 - BUS ERROR TIMING DIAGRAM

HALT

kInitiale i i I ., i Initiate Bus
fr- r>\< -Response Failure- ><Bus Error Detection-^WCvcle TerminatesH"*
Read ' Error Stacking

FIGURE 18 - RE-RUN BUS CYCLE TIMING INFORMATION

CLK

A4-A23

A1-A3 ^}—C
ÄS

ÜDS ~

LDS

R/W

DTACK

D8-D15

D0-D7 "

FCO-2

\

\

\

\

\
V

BERR

HALT

\
V

V

— — Read— — *f< -Halt Rerun —*»|

19

R68000C4»R68000C6»R68000C8

NOTE

The processor will not re-run a read-modify-write cycle.

This restriction is made to guarantee that the entire cycle

runs correctly and that the write Operation of a Test-and-Set

Operation is performed without ever releasing AS.

Halt Operation with No Bus Error. The hal! input signal to

the 68000 performs a Halt/Run/Single-Step function in a

similar fashion to the M6800 halt function. The halt and run

modes are somewhat seif explanatory in that when the halt

signal is constantly active the processor "halts" (does

nothing) and when the halt signal is constantly inactive the

processor "runs" (does something).

The single-step mode is derived from correctly timed tran-

sitions on the halt signal input. It forces the processor to ex-

ecute a Single bus cycle by entering the "run" mode until the

processor Starts a bus cycle then changing to the "halt"

mode. Thus, the single-step mode allows the user to pro-

ceed through (and therefore debug) processor operations

one bus cycle at a time.

Figure 19 details the timing required for correct single-step

operations. Some care must be exercised to avoid harmful

interactions between the bus error signal and the halt pin

when using the Single cycle mode as a debugging tool. This

is also true of interactions between the halt and reset lines

since these can reset the machine.

When the processor completes a bus cycle after recogniz-

ing that the halt signal is active, most three-state Signals are

put in the high-impedance State. These include:

1. address lines

2. data lines

3. function code lines

This is required for correct Performance of the re-run bus cy

cle Operation.

Note that when the processor honors a request to halt, the

function Codes are put in the high-impedance State ttheir

buffer characteristics are the same as the address buffersl.

While Ihe processor is honoring the halt request, bus arbitra-

tion performs as usual. That is, halting has no effect on bus

arbitration. It is the bus arbitration function that removes the

control Signals from the bus.

The halt function and the hardware trace capability allow

the hardware debugger to Irace Single bus cycles or Single

instructions one at a time. These processor capabilities.

along with a Software debugging package, give total de

bugging flexibiiity.

Double Bus Faults. When a bus error exception occurs,

the processor will attempt to Stack several words containing

information about the State of the machine. If a bus error ex

ception occurs during the stacking Operation, there have

been two bus errors in a row. This is commonly referred to as

a double bus fault. When a double bus fault occurs, the pro

cessor will halt. Once a bus error exception has occurred,

any bus error exception occurring before the execution of

the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a

bus error exception, and does not contribute to a double bus

fault. Note also that this means that as long as the external

hardware requests it, the processor will continue to re-run

the same bus cycle.

The bus error pin also has an effect on processor Operation

after the processor receives an external reset input. The pro

cessor reads the vector table after a reset to determine the

address to Start program execution. If a bus error occurs

while reading the vector table (or at any time before the first

instruction is executed), the processor reacts as if a double

bus fault has occurred and it halts. Only an external reset will

start a halied processor.

FIGURE 19 - HALT SIGNAL TIMING CHARACTERISTICS

CLK

A4-A23)—£

AS

UDS

LDS

R/W

V

\

f

f

V

\
Y

DTACK

D8-D15

D0-D7

FCO-2

HÄLT \

y v

— -Read >+-«— — — Halt >|< Read >\

R68000C4»R68000C6»R68000C8

RESET OPERATION. The reset Signal is a bidirectionai

Signal that allows either the processor or an external Signal to

reset the system. Figure 20 is a timing diagram for reset

operations. Both the halt and the reset lines must be applied

to ensure total reset of the processor.

When the reset and halt lines are driven by an external

device, it is recognized as an entire System reset, mcluding

the processor. The processor responds by reading the reset

vector table entry (vector number zero, address $000000)

and loads it into the Supervisor Stack pointer {SSP). Vector

table entry number one at address $000004 is read next and

loaded into the program counter. The processor initializes

the Status register to an interrupt level of seven. No other

registers are affected by the reset sequence.

When a RESET sequence is executed, the processor

drives the reset pin for 124 dock pulses. In this case, the pro

cessor is trying to reset the rest of the System. Therefore,

there is no effect on the internal State of the processor. All of

the processor's internal regtsters and the Status register are

unaffected by the execution of a RESET instruction. All ex

ternal devices connected to the reset line shouid be reset at

the completion of the RESET instruction.

When Vqc is initially applied to the processor, an external

reset must be applied to the reset pin for 100 milliseconds.

FIGURE 20 - RESET OPERATION TIMING DIAGRAM

clk jinjinMMnjinjiMJinfmnmMnjiim innjmnnjinnnnjuuwwi
Plus 5 Volts

t-> 100 Milliseconds

HALT

!-* *4-t

Bus Cycles)00ÖO00OO0O0O(WOO

NOTES:

II Internal start-up time 4)

2) SSP High read in here 5)

3) SSP Low read in here 6)

PC High read in here

PC Low read in here

First instruclion fetched here.

1

Bus State Unknown:

All Conirol Signals Inactive.

Data Bus In Read Mode: \ ■ -^

EXCEPTION PROCESSING

The following paragraphs describe the actions of the

68000 which are outside the normal processing associ-

ated with the execution of instructions. The functions of the

bits in the Supervisor porlion of the Status register are cov-

ered: the supervisor/user bit, the trace enable bit, and the

processor interrupt priority mask. Finally, the sequence of

memory references and actions taken by the processor on

exception conditions is detailed.

PROCESSING STATES

The 68000 is always one of three processing slates: nor

mal, exception, or halted. The normal processing State is

that associated with instruction execution; the memory ref

erences are to fetch instructions and operands, and to

störe results. A Special case of the normal State is the

stopped State which the processor enters when a STOP in

struction is executed. In this State, no further memory ref

erences are made.

The exception processing State is associated with Inter

rupts, trap instructions, tracing and other exceptional condi

tions. The exception may be internally generated by an in

struction or by an unusual condition arising during the ex

ecution of an instruction. Externally, exception processing

can be forced by an interrupt, by a bus error, or by a reset.

Excep\rar\ processing is designed to pfovide an efficient con-

text switch so that the processor may handle unusual condi

tions.

The halted processing State is an indication of catastrophic

hardware failure. For example, if during the exception pro

cessing of a bus error another bus error occurs, the pro

cessor assumes that the system is unusable and halts. Only

an external reset can restart a halted processor. Note that a

processor in the stopped State is not in the halted State, nor

vice versa.

PRIVILEGE STATES

The processor operates in one of two states of privilege:

the "user" State or the "Supervisor" State. The privilege State

determines which operations are legal, is used by the exter

nal memory management device to control and translate ac-

cesses, and is used to choose between the Supervisor Stack

pointer and the user Stack pointer in instruction references.

The privilege State is a mechanism for providing security in

a Computer system. Programs shouid access only their own

code and data areas, and ought to be restricted from access-

ing Information which they do not need and must not

modify.

The privilege mechanism provides security by allowing

most programs to execute in user State. In this State, the ac-

cesses are controlled, and the effects on other parts of the

System are limited. The operating System executes in the

Supervisor State, has access to all resources, and performs

the overhead tasks for the user State programs.

21

R68000C4«R68000C6»R68000C8

SUPERVISOR STATE. The Supervisor State is the higher

State of privilege. For instruction execution, the Supervisor

State is determined by the S-bit of the Status register; if the

S-bit is asserted (high), the processor is in the Supervisor

State. All instructions can be executed in the Supervisor

State. The bus cycles generated by instructions executed in

the Supervisor State are classified as Supervisor references.

While the processor is in the Supervisor privilege State, those

instructions which use either the System Stack pointer im-

pücitly or address register seven explicitly access the Super

visor Stack pointer.

All exception processing is done in the Supervisor State,

regardless of the setting of the S-bit. The bus cycles

generated during exception processing are classified as

Supervisor references. All stacking operations during excep

tion processing use the Supervisor Stack pointer.

USER STATE. The user State is the lower State of

privilege. For instruction execution, the user State is deter

mined by the S-bit of the Status register; if the S-bit is

negated (low), the processor is executing instructions in the

user State.

Most instructions execute the same in user State as in the

Supervisor State. However, some instructions which have

important System effects are made privileged. User programs

are not permitted to execute the STOP instruction, or the

RESET instruction. To ensure that a user program cannot

enter the Supervisor State except in a controlled manner, the

instructions which modify the whole Status register are

privileged. To aid in debugging programs which are to be

used as operating Systems, the move to user Stack pointer

(MOVE USP) and move from user Stack pointer (MOVE from

USP) instructions are also privileged.

The bus cycles generated by an instruction executed in

user State are classified as user State references. This allows

an external memory management device to translate the ad

dress and to control access to protected portions of the ad

dress Space. While the processor is in the user privilege

State, those instructions which use either the System Stack

pointer implicitly, or address register seven explicitly, access

the user Stack pointer.

PRIVILEGE STATE CHANGES. Once the processor is in

the user State and executing instructions, only exception

processing can change the privilege State. During exception

processing, the current setting of the S-bit of the Status

register is saved and the S-bit is asserted, putting the pro

cessing in the Supervisor State. Therefore, when instruction

execution resumes at the address specified to process the

exception, the processor is in the Supervisor privilege State.

REFERENCE CLASSIFICATION. When the processor

makes a reference, it classifies the kind of reference being

made, using the encoding on the three function code outpul

lines. This allows external translation of addresses, control oi

access, and differentiation of Special processor states, such

as interrupt acknowledge. Table 17 lists the dassification

references.

TABLE 17 - REFERENCE CLASSIFICATION

Function Code Output

FC2

0

0

0

0

1

1

1

1

FC1

0

0

1

1

0

0

1

1

FCO

0

1

0

1

0

1

0

1

Reference Class

lUnassigned)

User Data

User Program

(Unassignedl

(Unassigned!

Supervisor Daia

Supervisor Program

Interrupt Acknowledge

EXCEPTION PROCESSING

Before discussing the delails of inteirupts, traps, and trac-

ing, a general description of exception processing is in order.

The processing of an exception occurs in four Steps, with

variations for different exception causes. During the first

step, a temporary copy of the Status register is made, and

the Status register is set for exception processing. in the sec-

ond step the exception vector is determined, and the third

step is the saving of the current processor context. In the

fourth step a new context is obtained, and the processor

Switches to instruction processing.

EXCEPTION VECTORS. Exception vectors are memory

locations from which the processor fetches the address of a

routine which will handle that exception. All exception vec

tors are two words in length (Figure 21), except for the reset

FIGURE 21 - EXCEPTION VECTOR FORMAT

WordO

Word 1

New Program Counter IHighl

New Program Counter (Lowl

A0 = 0, A1

A0 = 0, Al

D15

FIGURE 22 - PEHIPHERAL VECTOR NUMBER FORMAT

D8 D7 DO

Ignored v7 v6 v5 v4 v3 v2 vi vO

Where:

v7 is the MSB of the Vector Number

vO is the LSB of the Vector Number

22

vector, which is four words. All exception vectors lie in the

Supervisor data Space, except for the reset vector which is in

the Supervisor program Space. A vector number is an eight-

bit number which, when multiplied by four, gives the ad-

dress of an exception vector. Vector numbers are generated

imernally or externally, depending on the cause of the excep

tion. In the case of interrupts, during the interrupt

acknowledge bus cycle, a peripheral provides an 8-bit vector

number (Figure 22} to the processor on data bus lines DO

through D7. The processor translates the vector number into

a füll 24-bit address, as shown in Figure 23. The memory

layout for exception vectors is given in Table 18.

As shown in Table 18, the memory layout is 512 words

long (1024 bytes). It Starts at address 0 and proceeds

through address 1023. This provides 255 unique vectors;

some of these are reserved for TRAPS and other System

functions. Of the 255, there are 192 reserved for user inter

rupt vectors. However, there is no protection on the first 64

entries, so user Interrupt vectors may overlap at the discre-

tion of the Systems designer.

KINDS OF EXCEPTIONS. Exceptions can begenerated by

either internal or external causes. The externally generated

exceptions are the interrupts and the bus error and reset re

quests. The interrupts are requests from peripheral devices

for processor action while the bus error and reset inputs are

used for access control and processor restart. The internally

generated exceptions come from instructions, or from ad-

A23

FIGURE 23 - ADDRESS TRANSLATED FROM 8-BIT

VECTOR NUMBER

A10 A9 A8 A7 A6 A5 A4 A3 A2 AI A0

All Zeroes v7 v6 v5 v4 v3 v2 vl vO 0 0

TABLE 18 - EXCEPTION VECTOR ASSIGNMENT

Vector

Numberls)

0

-

2

3

4

5

6

7

8

9

10

11

12"

13"

14*

15

16-23*

24

25

26

27

28

29

30

31

32-47

48-63*

64-255

Address

Dec

0

4

8

12

16

20

?A

28

32

36

40

44

48

52

56

60

64

95

96

100

104

108

112

116

120

124

128

191

192

255

256

1023

Hex

000

004

008

OOC

010

014

018

01C

020

024

028

02C

030

034

038

03C

040

05F

060

054

068

06C

070

074

078

07C

080

OBF

OCO

OFF

100

3FF

Space

SP

SP

SD

SO

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

SD

Assignment

Reset: Initial SSP

Reset: Initial PC

Bus Error

Address Error

Illegal Instruction

Zero Divide

CHK instruction

TRAPV Instruction

Privilege Violatton

Trace

Line'1010 Emulator

Line 1111 Emulator

lUnassigned, reserved)

(Unassigned. reserved)

(Unassigned, reserved)

Uniiialized Interrupt Vector

lUnassigned, reserved!

-

Spurious Interrupt

Level 1 Interrupt Autovector

Level 2 Interrupt Autovector

Level 3 Interrupt Autovector

Level 4 Interrupt Autovector

Level 5 Interrupt Autovector

Level 6 Interrupt Autovector

Level 7 Interrupt Autovector

TRAP instruciion Vectors

-

(Unassigned, reserved)

-

User Interrupt Vectors

•Vector numbers 12, 13, 14, 16

served for future enhancemenis.

assigned these numbers.

through 23 and 48 through 63 are re-

No user peripheral devices should be

23

R68000C4«R68000C6«R68000C8

dress errors or tracing. The trap (TRAP), trap on overflow

(TRAPV), check register against bounds (CHK} and divide

(DIV) instructions all can generate exceptions as part of their

instruction execution. In addition, illegal inslructions, word

fetches from odd addresses and privilege violations cause ex-

ceptions. Tracing behaves like a very high priority, internally

generated interrupi after each instruction execution.

EXCEPTION PROCESSING SEQUENCE. Exception pro-

cessmg occurs in four identifiable Steps. In the first Step, an

internal copv is made of the Status register. After the copy is

made, the S-bit is asserted, putting the processor into the

Supervisor privilege siate. Also, the T-bit is negated which

will allow the exception handler to execute unhindered by

tracing. For the reset and Interrupt exceptions, the Interrupt

priority mask is also updated.

In the second Step, the vector number of the exception is

determined. For Interrupts, the vector number is obtained by

a processor fetch, classified as an interrupt acknowledge.

For all other exceptions, internal logic provides the vector

number. This vector number is then used to generate the ad-

dress of the exception vector.

The third step is to save the current processor Status, ex-

cept for the reset exception. The current program counter

value and the saved copy of the Status register are stacked

using the Supervisor Stack pointer. The program coumer

value stacked usually points to the next unexecuted instruc

tion, however for bus error and address error, the value

stacked for the program counter is unpredictable, and may

be incremented from the address of the instruction which

caused the error. Additional information defining the current

context is stacked for the bus error and address error excep

tions.

The last step is the same for all exceptions. The new pro

gram counter value is fetched from the exception vector.

The processor then resumes instruction execution. The in

struction at the address given in the exception vector is

fetched, and normal instruction decoding and execution is

started.

MULTIPLE EXCEPTIONS. These paragraphs describe the

processing which occurs when multiple exceptions arise

simultaneously. Exceptions can be grouped according to

their occurrence and priority. The Group 0 exceptions are

reset, bus error, and address error. These exceptions cause

the instruction currentiy being executed to be aborted, and

the exception processing to commence at the next minor cy-

cle of the processor. The Group 1 exceptions are trace and

interrupt, as well as the privilege violations and illegal in

structions. These exceptions allow the current instruction to

execute to completion, but preempt the execution of the

next instruction by forcing exception processing to occur

(privilege violations and illegal instructions are detected

when they are the next instruction to be executed). The

Group 2 exceptions occur as part of the normal processing of

instructions. The TRAP, TRAPV, CHK, and zero divide ex

ceptions are in this group. For these exceptions, the normal

execution of an instruction may lead to exceplion process

ing,

Group 0 exceptions have highest priority, while Group 2

exceptions have Iowest priority. Within Group 0, reset has

highest priority, followed by bus error and then address er

ror. Within Group 1, trace has priority over external inter-

rupts, which in turn takes priority over illegal instruction and

privilege violation. Since only one instruction can be ex

ecuted at a time, there is no priority relation within Group 2.

The priority relation between two exceptions determines

which is taken, or taken first, if the conditions for both arise

simultaneously. Therefore, if a bus error occurs during a

TRAP instruction, the bus error takes precedence, and the

TRAP instruction processing is aborted. In another example,

if an interrupt request occurs during the execution of an in

struction while the T-bit is asserted, the trace exception has

priority, and is processed first. Before instruction processing

resumes, however, the interrupt exception is also processed,

and instruction processing commences finally in the inter

rupt handler routine. A summary of exception grouping and

priority is given in Table 19.

TABLE 19 - EXCEPTION GROUPING AND PRIORITY

Group

0

1

2

Exception

Reset

Bus Error

Address Error

Trace

Interrupt

Illegal

Privilege

TRAP, TRAPV.

CHK,

Zero Divide

Processing

Exception processing begins at

the next minor cycle

Exception processing begins before

the next instruction

Exception processing is started by

normal instruction execution

EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception

has processing which is pecultar to it. The following

paragraphs detail the sources of exceptions, how each

arises, and how each is processed.

RESET. The reset input provides the highest exception

level. The processing of the reset signal is designed for

System initiation, and recovery from catastrophic failure.

Any processing in progress at the time of the reset is aborted

and cannot be recovered. The processor is forced into the

Supervisor State, and the trace State is forced off. The pro

cessor interrupt priority mask is set at level seven. The vector

number is internally generated to reference the reset excep

tion vector at location 0 in the Supervisor program Space.

Because no assumptions can be made about the vaiidity of

regisier contents, in particular the Supervisor Stack pointer,

neither the program counter nor the Status register is saved.

The address contained in the first two words of the reset ex

ception vector is fetched as the initial Supervisor Stack

pointer, and the address in the last two words of the reset

exception vector is fetched as the initial program counter.

Finally, instruction execution is started at the address in the

program counter- The power-up/restart code should be

pointed to by the initial program counter.

The RESET instruction does not cause loading of the reset

vector, but does assert the reset line to reset external

devices. This allows the Software to reset the System to a

known State and then continue processing with the next in

struction.

INTERRUPTS. Seven levels of interrupt priorities are pro-

vided. Devices may be chained externally within interrupt

priority levels, allowing an unlimited number of peripheral

devices to interrupt the processor. Interrupt priority levefs

24

R68000C4«R68000C6»R68000C8

are numbered from one to seven, level seven being the

highest priority. The Status register contains a three-bit mask

which indicates the current processor priority, and Interrupts

are inhibited for all priority levels less than or equal to the

current processor priority.

An interrupt request is made to the processor by encoding

the Interrupt request level on the interrupt request lines; a

zero indicates no interrupt request. Interrupt requests arriv-

ing at the processor do not force immediate exception pro-

cessing, but are made pending. Pending interrupts are

detected between instruction executions. If the priority of

the pending interrupt is lower than or equal to the current

processor priority, execution continues with the next instruc

tion and the interrupt exception processing is postponed,

(The recognition of level seven is slightly different, as ex-

plained in a following paragraph.)

If the priority of the pending interrupt is greater than the

current processor priority, the exception processing se-

quence is started. First a copy of the Status register is saved,

and the privilege State is set to Supervisor, tracing is sup-

pressed, and the processor priority level is set to the level of

the interrupt being acknowledged. The processor fetches

the vector number from the interrupting device, classifying

the reference as an interrupt acknowledge and displaying the

level number of the interrupt being acknowledged on the ad-

dress bus. If externa! logic requests an automatic vectoring,

the processor imernally generates a vector number which is

determined by the interrupt level number. If external logic in

dicates a bus error, the interrupt is taken to be spurious, and

the generated vector number references the spurious inter

rupt vector. The processor then proceeds with the usual ex

ception processing, saving the program counter and Status

register on the Supervisor Stack. The saved value of the pro

gram counter is the address of the instruction which would

have been executed had Ihe interrupt not been present. The

content of the interrupt vector whose vector number was

previously obtained is fetched and loaded into the program

counter, and normal instruction execution commences in the

interrupt handling routine. A flow Chart for the interrupt

acknowledge sequence is given in Figure 24; a timing

diagram is given in Figure 25.

FIGURE 24 - INTERRUPT ACKNOWLEDGE SEQUENCE

FLOW CHAHT

PROCESSOR 1NTERRUPTING DEVICE

Request Interrupt

Grant Interrupt

Compare inlerrupt level in Status register

and wait for current instruction to complete

Place Interrupt leve! on A1, A2, A3

Set R/W to read

Set function code to Interrupt acknowledge

Assert address strobe {ASJ

Assert lower data strobe (LDS)

Provide Vector Number

1) Place vector number of D0-D7

2) Assert data transfer acknowledge (DTACK)

f
Acquire Vector Number

II Latch vector number

2) Negate LDS

3) Negate ÄT

Release

1) Negate DTACK

Start Interrupt Processing

FIGURE 25 - INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM

CLK

R/W

\ V

7

[■<- Read Cycle >\< —Vector Number Acquisition

25

R68000C4«R68000C6»R68000C8

Priority level seven is a Special case. Level seven interrupts

cannot be inhibited by the interrupt priority mask, thus pro-

viding a "non-maskable interrupt" capability. An interrupt is

generated each time the interrupt request level changes from

some lower level to level seven. Note that a level seven inter

rupt may still be caused by the level comparison if the re

quest level is a seven and the processor priority is set to a

lower level by an instruction.

INSTRUCTION TRAPS. Traps are exceptions caused by

instructions. They arise either from processor recognition of

abnormal conditions during instruction execution, or from

use of instructions whose normal behavior is trapping.

Some instructions are used specifically to generate traps.

The TRAP instruction always (orces an exception, and is

useful for implementing System calls for-user programs. The

TRAPV and CHK instructions force an exception if the user

program detects a runtime error, which may be an arithmetic

overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide IDIVU) in

structions will force an exception if a division Operation is at-

tempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. Il

legal instruction is the term used to refer to any of the word

bit patterns which are not the bit pattern of the first word of

a legal instruction. During instruction execution, if such an

instruction is fetched, an illegal instruction exception occurs.

Word patterns with bits 15 through 12 equaling 1010 or

1111 are distinguished as unimplemented instruclions and

separate exception vectors are gtven to these patterns to per-

mit efficient emulation. This facility allows the operaling

System to detect program errors, or to emulate

unimplemented instructions in Software.

PRIVILEGE VIOLATIONS. In order to provide System

security, various instructions are privileged. An attempt to

execute one of the privileged instructions while in the user

State will cause an exception. The privileged instructions are:

STOP AND (word) Immediate to SR

RESET EOR (word) Immediate to SR

RTE OR (word) Immediale to SR

MOVEtoSR MOVE USP

TRACING. To aid in program development, the 68000

includes a facility to allow instruction by instruction tracing.

In the trace State, after each instruction is executed an ex-

ceplion is forced, allowing a debugging program to moni-

tor the execution of the program under test.

The trace facility uses the T-bit in the Supervisor portion of

the Status register. If the T-bit is negated (off), tracing is

disabled, and instruction execution proceeds from instruc

tion to instruction as normal. If the T-bit is asserted (on) at

the beginning of the execution of an instruction, a trace ex

ception will be generated after the execution of that instruc

tion is completed. If the instruction is not executed, either

because an interrupt is taken, or the instruction is illegal or

privileged, the trace exception does not occur. The trace ex

ception also does not occur if the instruction is aborted by a

reset, bus error, or address error exception. If the instruction

is indeed executed and an interrupt is pending on comple-

tion, the trace exception is processed before the interrupt ex

ception. If, during the execution of the instruction, an excep

tion is forced by that instruction, the forced exception is pro

cessed before the trace exception.

As an extreme Illustration of the above rules, consider the

arrival of an interrupt during the execution of a TRAP in

struction while tracing is enabted. First the trap exception is

processed, then the trace exception, and finally the interrupt

exception. Instruction execution resumes in the interrupt

handler routine.

BUS ERROR. Bus error exceptions occur when the exter-

nal logic requests that a bus error be processed by an excep

tion. The current bus cycle which the processor is making is

then aborted. Whether the processor was doing instruction

or exception processing, that processing is terminated, and

the processor immediately begins exception processing.

Exception processing for bus error follows the usual se-

quence of Steps. The Status register is copied, the Supervisor

State is entered, and the trace State is turned off. The vector

number is generated to refer to the bus error vector. Since

the processor was not between instructions when the bus er

ror exception reques! was made, the context of the pro

cessor is more detailed. To save more of this context, addi-

tional information is saved on the Supervisor Stack. The pro

gram counter and the copy of the Status register are of

course saved. The value saved for the program counter is ad-

vanced by some amount, two to ten bytes beyond the ad-

FIGURE 26 - SUPERVISOR STACK ORDER

Lower Address

15 14 13 12 11

Access Address

Program Counter - — —

10 9 8 7 6

High

Low

Instruction Register

Status Register

High

Low

5 4

R/W

3

l/Kl

2 1

Function

0

Code

R/W (read/writel: write = 0, read= 1. l/N tinstruction/not): instruction = 0, nol= 1

26

dress of the first word of the instruction which made the

reference causing the bus error. If the bus error occurred

during the fetch of the next instruction, the saved program

counter has a value in the vicinity of the current instruction,

even if the current instruction is a branch, a jump, or a return

instruction. Besides the usual information, the processor

saves its internal copy of the first word of the instruction be-

ing processed, and the address which was being accessed

by the aborted bus cycle. Specific information about the ac-

cess is also saved: whether it was a read or a write, whether

the processor was processing an instruction or not, and the

classification displayed on the function code Outputs when

the bus error occurred. The processor is processing an in

struction if it is in the normal State or processing a Group 2

exception; the processor is not processing an instruction if it

is processing a Group 0 or a Group 1 exception. Figure 26 il-

lustrates how this information is organized on the Supervisor

Stack. Although this information is not sufficient in general

to effect füll recovery from the bus error, it does allow Soft

ware diagnosis. Finally, the processor commences instruc

tion processing at the address contained in the vector. It is

the responsibility of the error handler routine to clean up the

Stack and determtne where to continue execution.

If a bus error occurs during the exception processing for a

bus error, address error, or reset, the processor is haited,

and all processing ceases. This simplifies the detection of

catastrophic System failure, since the processor removes

itself from the System rather than destroy all memory con-

tents. Only the RESET pin can restart a haited processor.

ADDRESS ERROR. Address error exceptiöns occur when

the processor attempts to access a word or a long word

Operand or an instruction at an odd address. The effect is

much like an internally generated bus error, so that the bus

cycle is aborted, and the processor ceases whatever process

ing it is currently doing and begins exception processing.

After exception processing commences, the sequence is the

samc as that for bus error including the information that is

stacked, except that the vector number refers to the address

error vector instead. Likewise, if an address error occurs dur

ing the exception processing for a bus error, address error,

or reset, the processor is haited.

INTERFACE WITH R6500 PERIPHERALS

Rockwell's line of R6500 peripherals are directly com-

patible with the 68000. Some of these devices that are par-

ticularly useful are:

R6520 Peripheral Interface Adapter {PIA)

R6522 Versatile Interface Adapter (VIA)

R6545 CRT Controller

R6551 Asynchronous Communication Interface Adapter

To interface the synchronous R6500 peripherals with the

asynchronous 68000, the processor modifies its bus cycle

to meet the R6500 cycle requirements whenever an R6500

device address is detected. This is possible since both

processors use memory mapped I/O. Figure 27 is a flow

Chart of the interface Operation between the processor and

R6500 devices. 6800 peripherals are also compatibie with

the 68000 processor.

DATA TRANSFER OPERATION

Three Signals on the processor provide the R6500 inter-

face. They are: enable (E), valid memory address (VMA),

and valid peripheral address (VPA). Enable corresponds

to the E or $2 Signal in existing R6500 Systems. It is the bus

dock used by the frequency dock that is one tenth of the

incoming 68000 dock frequency. The timing of E allows 1

MHz peripherals to be used with an 8 MHz 68000. Enable

has a 60/40 duty cycie; that is, it is Iow for six input clocks

and high for four input clocks. This duty cycle allows the

processor to do successive VPA accesses on successive

E pulses.

R6500 cycle timing is given in Figure 28. At State zero

(SO) in the cycfe, the address bus and function codes are

in the higb-impedance State. One half dock later, in State

1, the address bus and function code Outputs are released

from the.htgh-impedance State.

During State 2, the address strobe lAS) is asserted to in-

dicate that there is a valid address on the address bus. If the

bus cycle is a read cycle, the upper and/or lower data

strobes are also asserted jn_ State 2. If the bus cycle is a write

cycle, the read/write (R/W) signal is switched to Iow (write)

FIGURE 27 — R6500 INTERFACING FLOW CHART

PROCESSOR SLAVE

Initiale Cycle

1) The processor Starts a normal Read or

Write cycle

Define R6500 Cycle

External hardware asserts Valid Peripheral

Address (VPÄ)

Synchronize With Enable

The processor monitors Enable (E) until it is

Iow (Phase 1)

The processor asserts Valid Memory Ad

dress (VMA)

Transfer Data

The peripheral waits until E is active and

then transfers the data

(■
Terminate Cycle

The processor waits until E goes Iow. (On a

Read cycle the data is latched as E goes

Iow internally)

The processor negates VMA

The processor negates AS, UDS, and LDS

i
Start Next Cycle

27

R68000C4«R68000C6»R68000C8

during State 2. One half dock later, in State 3, the write data

is placed on the data bus, and in State 4 the data strobes are

issued to indicate valid data on the data bus.

The processor now inserts wail states until it recognizes

the assertion of VPA. The VPA input Signals the processor

that Ihe address on the bus is the address ol an R6500 de-

vice (or an area reserved for R6500 devices) and that the

bus should conform to the <!>2 transfer characteristics of the

R6500 bus. Valid peripheral address is derived by decod

ing the address bus. conditioned by address strobe.

After the recognition of VPA. the processor assures that

the Enable (E) isjow, by waiting if necessary, and subse-

quenlly asserts VMA. Valid memory address is then used

as part of the chip select equation of the peripheral. This

ensures that the R6500 peripherals are selected and de-

seiected at the correct time. The peripheral now runs its

cycle during the high portion of the E Signal.

During a read cycle, the processor iatches the peripheral

data in State 6. For all cycles, the processor negates the ad

dress and data strobes one half clock cycle later in State 7,

and the Enable signal goes iow at this time. Another half

clock later, the address bus is put in the high-impedance

State. During a write cycle, the data bus is put in the high-

impedance State and the read/write signal is switched high

at this time. The peripheral logic must remove VPA within

one clock afteT address strobe is negated.

Figure 29 shows the timing required by R6500 periph

erals, the timing specified for the R6500 and the corre-

sponding timing for the 68000. For furlher details on

peripheral timing, consuit the current data sheet for the

peripheral of inlerest. Notice that the 68000 VMA is active

Iow. This allows the processor to put its buses in the high-

impedance State on DMA requests without inadvertently

selecting peripherals.

FIGURE 28 — R6500 CYCLE OPERATION

SO S2 S4 S6 SO S2 S4 Sw Sw Sw Sw Sw SwSw Sw SwSw S6 SO S2 S4 Sw SwSwSwSwSw S6 SO

j

VMA

K Normal

Cycle

-R6500 Penpheral Read Cycle- — R6500 Peripheral Write Cycle

FIGURE 29 — 68000 TO R6500 PERIPHERAL TIMING DIAGRAM

68000 CLK

E

R6500, R/W

R6500 Address

R6500 Read Data

R6500 Write Data

66000 Address

AS

WMML
[<- 30 ns R6500*

\<- 10 ns Peripheral"

\\\\\m

Peripheral"

90 ns ->j Type A

80ns-*J Std
R6500 <t>2

2.0

1.0

Clock

MHz

MHz

Freq. Type

A

Std

Type

Strfh*

Peripheral'

— 190 ns—

—395 ns—

Peripheral"

Type A (<— 150 ns —^j
Sldk—300 ns A

10 ns R6500'

10 ns Peripheraf

M///M//M

ffl

68000 (8 MHz)

ns-

"Times are expressed for different device cfock frequencies

R68000C4»R68000C6»R68000C8

INTERRUPT INTERFACE OPERATION

During an inlerrupt acknowledge cycle while the proces-

sor is fetching (he vector, if VPA is asserled, the 68000 will

assert VMA and com'plete a normal R6500 read cycle as

shown in Figure 30. The processor will then use an inter-

nally generated veclor that is a function of the Interrupt

being serviced. This process is known as autovectoring.

The seven autovectors are vector numbers 25 through 31

(decimal).

This operates in the same iashion (but is not restricted

to) the R6500 interrupt sequence. The basic difference is

that there are six normal interrupt vectors and one NMI

type vector. As with both the R6500 and the 68000's nor

mal vectored interrupt, the interrupt Service routine can be

located anywhere in the address Space. This is due to the

fact that while the vector numbers are fixed, the contents

of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring. the R6500

peripheral address decoding should prevent untntended

accesses.

FIGURE 30 - AUTOVECTOR OPERATION TIMING DIAGRAM

SO S2 S4 S6 SO S2 S4 Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S6 SO S2

nrinnnrumnji^^

IPLO-2

E

WÄ \

VMA \

I Normal

F^ "Cycie ~
— Autovector Operation- >|

R68000C4«R68000C6«R68000C8

INSTRUCTION SET

The following paragraphs provide Information about the

addressing categories and instruction set of the 68000.

ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways

in which they may be used. The following ciassifications will

be used in the instruction definitions.

Data

Memory

Alterable

If an effective address mode may be

used to refer to data operands, it is

considered a data addressing effective

address mode.

If an effective address mode may be

used to refer to memory operands, it is

considered a memory addressing ef

fective address mode.

If an effective address mode may be

used to refer to aiterable (writeable)

operands, it is considered an alterable

addressing effective address mode.

Control If an effective address mode may be

used to refer to memory operands

without an associated size, it is con

sidered a control addressing effective

address mode.

Table 20 shows the various categories to which each of the

effective address modes belong. Table 21 is the instruction

set summary.

The Status register addressing mode is not permitted

unless it is explicitly mentioned as a legal addressing mode.

These categories may be combined, so that additional,

more restrictive, ciassifications may be defined. For exam-

ple, the instruction descriptions use such ciassifications as

alterable memory or data alterable. The former refers to

those addressing modes which are both alterable and

memory addresses, and the latter refers to addressing modes

which are both data and alterable.

TABLE 20 - EFFECTIVE ADDRESSING MODE CATEGORIES

Effective

Address

Modes

Dn

An

An@

An@ +

An@ -

An@)d)

An@(d, ixl

xxx.W

xxx.L

PC@(d>

PC<SMd, ix)

Ixxx .

Mode

000

001

010

011

100

101

110

111

111

111

111

in

Register

register number

register nurnber

register number

register number

register number

register number

register number

000

001

010

011

100

Data

X

X

X

X

X

Addressing Categories

Memory

X

X

X

X

Control

X

X

X

X

Alterable

-

R68000C4«R68000C6»R68000C8

TABLE 21 - INSTRUCTION SET

Mnomonic

ABCD

ADD

ADDA

ADDl

ADDQ

ADDX

AND

ANDI

ASL, ASR

BCC

BCHG

BCLR

BRA

BSET

BSR

BTST

CHK

CLR

CMP

CMPA

CMPI

CMPM

DBCC
DIVS

DIVU

EOR

EORI

EXG

EXT

JMP

jsn

LEA

UNK

LSL, LSR

MOVE

MOVE to CCR

MOVE to SR

Description

Add Decimal with Extend

Add Binary

Add Address

Add Immediate

Add Quick

Add Extended

AND Logicai

AND Immediale

Arithmetic Shift

Branch Conditionally

Test a Bit and Change

Test a Bit and Clear

Branch Always

Test a Bit and Set

Branch to Subrouline

Test a Bit

Check Register against Bounds

Clear an Operand

Campare

Compare Address

Compare Immediate

Compare Memory

Test Condition, Decrement and Branch

Signed Divide

Unsigned Divide

Exclusive OR Logicai

Exclusive OR immediate

Exchange Register

Sign Extend

Jump

Jump to Subroutine

Load Effective Address

Link and Allocate

.ogical Shift

Move Data from Source to Destination

viove to Condition Code

Move to the Status Register

Operation

IDestinationl iQ+(Source)io,— Destination

(Destination) + {Source) —* Destination

(Destination) + (Source) —* Destination

{Destination) + Immediate Data—* Destination

(Destination) + Immediate Data—»Destination

(Destination) + (Sourcel + X —* Destination

(Destination) A (Source) —Destination

(Destination) A Immediate Data—Destination

(Destination) Shifted by <count> —Destination

II cc then PC i d—PC

~(<bit number>) OF Destination—*Z

— (<bit number>) OF Destination—*

<bit number> OF Destination

~(<bit numbeo) OF Destination—*Z

0— < bit number> —* OF Destination

PC + d—PC

~(<bit number>) OF Destination —Z

1 —* <bit number> OF Destination

PC—SP@-; PC + d-* PC

~(<bit number>l OF Destination —Z

If Dn <0or Dn> Kea>) then TRAP

0— Destination

IDestination) - (Source)

(Destination! - (Source)

IDestinationl- Immediate Data

(Destination)- (Sourcel

If-CC then Dn-1 — Dn; if Dn* - 1 then PC + d—PC

(Destination)/(Source)—* Destination

(Destination)/(Source)—"Destination

(Destination)«(Sourcel—* Destination

(Destination) e Immediate Data— Destination

Rx-»Ry

(Destination) Sign-extended— Destination

Destination—» PC

PC — SP@ -; Destination — PC

Destination—* An

An— SP@-; SP —An; SP + d-*SP

IDestinationl Shifted by <count> —* Destination

(Source) —* Destination

(Source)—* CCR

(Source) —SR

Condition

Codes

X

■

-

■

-

-

-

-

-

-

--

-

-

—

-

-

■

-

-

-

-

-

-

N

U

-

■

-

-

-

-

-

-

-

•

0

•

■

•

•

-

■

•

■

■

-

-

-

-

-

-

•

•

z

•

-

■

■

■

■

•

-

•

-

•

u

1

•

•

•

■

-

•

-

•

-

•

-

■

■

•

V

u

-

0

0

■

-

-

-

--

-

u

0

•

•

•

•

•

•

0

0

0

-

■

■

0

0

c

■

0

0

-

-

-

-

-

-

-

u

0

*

•

•

■

-

0

0

0

0

-

0

-

-

•

0

" affected

- unaffected

0 cleared

1 set

U defined

32

R68000C4«R68000C6«R68000C8

Mnemonic

MOVE from SR

MOVE USP

MOVEA

MOVEM

MOVEP

MOVEQ

MULS

MULU

NBCD

NEG

NEGX

NOP

NOT

OR

ORI

PEA

RESET

ROL, ROR

ROXL, ROXR

RTE

RTR

RTS

SBCD

See
STOP

SUB

SUBA

SUBi

SUBQ

SUBX

SWAP

TAS

TRAP

TRAPV

TST

UNLK

TABLE21

Description

Move from the Status Register

Move User Stack Pointer

Move Addtess

Move Multiple Registers

Move Peripheral Data

Move Quick

Signed Multiply

Unsigned Muttiply

Negaie Decimal with Extend

Negate

Negate wtth Extend

No Operation

Logical Complement

Inclusive OR Logical

Inclusive OR Immediale

Push Effective Address

Reset External Devices

Roiate (Without Extend)

Rotate with Extend

Return from Exception

Return and Restoie Condition Codes

Return frorn Subroutine

Subtract Decimal with Extend

Set According to Condition

Load Status Register and Stop

Subtract Binary

Subtract Address

Subtract Immediate

Subtraci Quick

Subtract with Extend

Swap Register Halves

Test and Set an Operand

Trap

Trap on Overflow

Test an Operand

Unünk

- INSTRUCTION SET (CONTINUED)

Operation

SR—-Destination

USP—An; An—USP

(Source) —* Destination

Registers— Destination

(Source) —* Registers

(Source) —* Destination

Immediate Data—Destination

IDestinationHSource) —* Destination

I Destination)* (Source) —* Destination

0- (Destination)^-X —'Destination

0- (Destination)— Destination

0- (Destination)- X—* Destination

-

- (Destination) — Destination

(Destination! v ISource)—* Destination

(Destination! v immediate Data—•■ Destination

Destination— SP@ -

-

(Destination) Rotated by <count> —* Destination

(Destination) Rotated by <count> —* Destination

SP@- —SR; SP@+ —PC

SP@ + — CC; SP@ + —PC

SP@+ —PC

iDestinationho-(SourcB)io-X— Destination

if CC th6n 1's—Destination eise O's— Destination

mmediate Data—SR; STOP

(Destination) - (Source) —* Destination

(Destination)-(Source)— Destination

iDestination)- Immediate Data—Destination

^Destination)- Immediate Data— Destination

Destination) - (Sourcel - X — Destination

Register [31:16]** Register [15:0]

Destination) Tested—* CC; 1 — [7] OF Destination

PC—SSP@-; SR—SSP@-; (Vector)— PC

f V thenTRAP

Destination) Tested—* CC

An—SP; SP@+ —An

Condition

Codes

X

_

_

-

_

-

—

•

_

—

—

—

—

_

_

—

-

—

-

—

_

-

-

-

N

_

_

-

_

■

•

1)

_

■

-

—

_

•

■

_

U

—

—

•

•

—

-

•

—

7

_

-

_

•

•

•

•

•

•

-

•

•

_

•

•

•

-

-

■

—

V

__

-

_

0

n

n

u

_

n

n

n

— ■

n

0

_

II

—

-

0

n

—

_

0

_

r

-

0

n

0

•

_

n

n

n

_

•

■

_

•

—

0

n

_

_

0

_

] = btt number

33

R68000C4»R68000C6»R68000C8

INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruc-

tion execution times in terms of external dock (CLK)

periods. In this timing data, it is assumed that the memory

cycle time is no greater than four periods of the external pro-

cessor dock input, which prevents the insertion of wait

states in the bus cycle. The number of bus read and write

cycles for each instruction is also included with the timing

data. This data is enclosed in parenthesis following the ex

ecution periods and is shown as: (r/wl where r is the number

of read cycles and w is the number of write cycles.

NOTE

The number of periods includes instruction fetch and all

applicabie Operand fetches and Stores.

EFFECTIVE ADDRESS OPERAND CALCULATION TIMING

Table 22 lists the number of dock periods required to com-

pute an instruction's effective address. It includes fetching

of any extension words, the address computation, and

fetching of the memory Operand. The number of bus read

and write cycles is shown in parenthesis as (r/w). Note there

are no write cycles involved in processing the effective ad

dress.

MOVE INSTRUCTION CLOCK PERIODS

Tables 23 and 24 indicate the number of dock periods for

the move instruction. This data indudes instruction fetcji,

Operand reads, and Operand writes. The number of bus read

and write cycles is shown in parenthesis as: (r/w).

STANDARD INSTRUCTION CLOCK PERIODS

The number of dock periods shown in Table 25 indicates

the time required to perform the operations, störe the

results, and read the next instruction. The number of bus

read and write cycles is shown in parenthesis as; (r/w). The

number of dock periods plus the number of read and write

cycles must be added to those of the effective address

calculation where indicated.

In Table 25, the headings have the following meanings:

An = address register Operand, Dn = data register Operand,

ea = an Operand specified by.an effective address, and

M = memory effective address Operand.

IMMEDIATE INSTRUCTION CLOCK PERIODS

The number of dock periods shown in Table 26 includes

the time to fetch immediale operands, perform the opera-,

tions, störe the results, and read the next Operation. The

number of bus read and write cycles is shown in parenthesis

as: (r/w). The number of dock periods plus the number of

read and write cycles must be added to those of the effective

address calculation where indicated.

In Table 26, the headings have the following meanings:

= immediate Operand, Dn = data register Operand,

M = memory Operand, and SR-Status register.

SINGLE OPERAND INSTRUCTION CLOCK PERIODS

Table 27 indicates the number of dock periods for the

Single Operand instructions. The number of bus read and

write cycles is shown in parenthesis as: {r/w). The number

of dock periods plus the number of read and write cycles

must be added to those of the effective address calculation

where indicated.

TABLE 22 - EFFECTIVE ADDRESS CALCULATION TIMING

Addressing Mode

Dn

An

An@

An@ +

An@-

An@(d)

An@ld, ix)'

xxx.W

xxx. L

PC@(d|

PC@(d, ix|*

/xxx

Register

Data Register Direct

Address Register Direct

Memory

AddreBS Register Indirect

AddreBs Register Indirect wrth Postincrement

Address Register Indirect wrth Predecrement

Address Register Indirect wrth Deplacement

Address Register Indirect with Index

Absolute Short

Absolute Long

Program Counter with DtspJacement

Program Counter wrth Index

Immediate

Byte, Word

0(0/0)

0(0/0)

411/0)

4I1/0I

611/01

8(2/0)

10(2/0)

8(2/0)

12(3/0)

8(2/0)

10(2/0)

4(1/0)

Long

0(0/0)

0(0/0)

8(2/0)

B(2/01

10(2/0)

12(3/0)

14(3/0)

1213/0)

1614/0)

1213/0)

14(3/0)

8(2/0)

*The size of the index tegister (ixl does not affect execution lime.

34

R68000C4-R68000C6«R68000C8

TABLE 23 - MOVE BYTE AND WORD INSTRUCTION CLOCK PERIODS

Source

Dn

An

An@

An@ +

An@-

An@(d)

An@(d, ix}*

xxx.W

xxx. L

PC@(d)

PC@W, ix}#

txxx

Destination

Dn

4(1/0)

4(1/0)

8(2/0)

8(2/0)

10(2/0)

12(3/0)

14(3/0)

12(3/0)

16(4/0)

12(3/0)

14(3/0)

8(2/0)

An

4(1/0)

4(1/0)

8(2/0)

8(2/0)

10(2/0)

12(3/0)

14(3/0)

12(3/0)

16(4/0)

12(3/0)

14(3/0)

8(2/0)

An@

9(1/1)

9(1/11

13(2/11

13(2/11

15(2/11

17(3/1}

19(3/1}

17(3/1)

21(4/1}

17(3/1}

19(3/1}

13(2/1}

An@ +

9(1/1)

9(1/1)

13(2/1)

13(2/1)

15(2/1)

17(3/1)

19(3/1)

17(3/1)

2114/1)

, 1713/1)

1913/11

1312/11

An@-

9(1/1)

9(1/1)

13(2/11

13(2/11

15(3/11

17(3/1)

19(3/1)

17(3/1)

21(4/1)

1713/1)

1913/1)

13(2/1»

An@ld)

1312/1)

13(2/1)

17(3/1)

17(3/1)

19(3/1)

21(4/1)

23(4/1)

21(4/1)

25(5/1)

2114/1)

23(4/1)

1713/1)

An@(d,ix)'

15(2/1)

15(2/1)

19(3/1)

19(3/1)

21(3/1)

2314/1)

2514/1)

23(4/1)

27(5/1)

23(4/11

26(4/1)

19(3/1)

xxx.W

13(2/1)

13(2/1)

17(3/1)

17(3/1)

19(3/1)

21(4/1)

23(4/1)

21(4/1)

25(5/1)

21(4/1)

23(4/1)

1713/1)

xxx.L

17(3/1)

17(3/1)

21(4/1)

21(4/1)

23(4/1)

25(5/1)

27(5/1)

25(5/1)

29(6/1)

25(5/11

27(5/11

21)4/1)

*The size of the index register (ix) does not affect execution time.

TABLE 24 - MOVE LONG INSTRUCTION CLOCK PERIODS

'The size of the index register lix) does not affect execution time.

TABLE 25 - STANDARD INSTRUCTION CLOCK PERIODS

Source

Dn

An

An@

An@ +

An@-

An@(d)

An@<d, ix)"

xxx.W

xxx.L

PC@(d)

PC@(d, ixl"

#xxx

Destination

Dn

4(1/01

4(1/0)

12(3/01

12(3/0)

14(3/01

16(4/01

18(4/01

16(4/01

20(5/01

16(4/01

18(4/01

12(3/01

An

4(1/01

4(1/01

12(3/01

12(3/01

14(3/01

16(4/01

18(4/01

16(4/01

20(5/01

16(4/01

18(4/01

12(3/01

An@

14(1/2)

1411/2)

22(3/2)

22(3/2)

24(3/2)

26(4/2)

28(4/2)

26(4/2)

30(5/2)

26(4/2)

28(4/2)

22(3/2)

An<5> +

14(1/21

14(1/2)

22(3/2)

22(3/2)

24(3/2)

26(4/2)

28(4/21

26(4/21

30(5/21

26(4/2)

28(4/2)

22(3/2)

An@-

16(1/2)

16(1/2)

22(3/2)

22(3/2}

24(3/2}

26(4/2}

28(4/2}

26(4/2)

30(5/2)

26(4/2)

28(4/2)

22(3/2)

An@(d)

18(2/2)

18(2/2)

26(4/2)

26(4/6)

28(4/2)

30(5/2)

32(5/2)

30(5/2)

34(6/2)

30(5/2)

32(5/2)

26(4/21

An@(d,ix)'

20(2/2}

20(2/2}

28(4/2)

28(4/2)

30(4/21

32(5/2)

34(5/2)

32(5/2)

36(6/2)

32(5/2)

34(5/2}

28(4/2}

xxx.W

18(2/2)

1812/2)

26(4/21

28(4/2)

28(4/21

30(5/21

32(5/21

30(5/21

34(6/21

30(5/21

32(5/21

26(4/21

xxx.L

22(3/2)

22(3/2)

30(5/2)

30(5/2)

32(5/2)

34(6/2)

36(6/21

34(6/2)

38(7/2)

34(6/2}

36(6/2}

30(5/2)

Instruction

DIVS

DIVU

MULS

MULU

Size

Byte, Word

Long

Byte, Word

Long

Byte, Word

Long

-

-

Byte, Word

Long

-

-

Byte, Word

Long

Byte, Word

Long

op < ea >, An

8(1/0} +

6(1/0) + *"

-

-

6(1/0) +

6(1/0) +

-

-

-

-

-

—

-

-

8(1/0) +

6(1/0) + ""

op <ea>, Dn

4(1/01 +

6(1/01 + ""

4(1/01 +

6(1/01 + ""

4(1/01 +

6(1/01 +

158(1/0) + "

140(1/01 + "

411/0)"*

8(1/0)"'

70(1/01+*

7011/01 + *

411/0) +

6(1/0) + "*

4(1/0) +

6(1/0) + "

op Dn, <M>

9(1/1) +

14(1/21 +

911/11 +

1411/2) +

-

-

-

-

9(1/11 +

14(1/21 +

-

—

9(1/1) +

14(1/2) +

9(1/1) +

14(1/2) +

+ add effeciive address calculation time '* total of 8 dock periods for instruction if the effective address is register direct

* indicates maximum value "* only available effective address mode is dala register direct

35

R68000C4«R68000C6*R68000C8

TABLE 26 - IMMEDIATE INSTRUKTION CLOCK PERIODS

Inatructton

ADDI

ADOQ

ANDI

CMPI

EORI

MOVEO

ORI

SUBI

SUBQ

Size

Byte, Word

Long

Byte, Word

Long

Byte, Word

Long

Byte, Word

Lang

Byte, Word

Long

Long

Byte, Word

Long

Byte, Word

Long

Byte, Word

Long

op t, Dn

0(2/0)

16(3/0)

4(1/0)

8(1/0)

0(2/0)

16(3/0)

8(2/0)

14(3/0)

8(2/0)

16(3/0)

4(1/0)

8(2/0)

16(3/0)

8(2/0)

16(3/0)

4(1/0)

8(1/0)

op/, M

13(2/1) +

22(3/2) +

9(1/11 +

14(1/2) +

13(2/11 +

22(3/21 +

812/01 +

12(3/01+

13(2/11 +

22(3/21 +

-

13(2/1) +

22(3/21 +

13(2/11 +

2213/21 +

911/11 +

1411/21 +

op f, SR

-

-

-

- ■

20(3/0)

-

-

-

20(3/01

-

20(3/01

-

-

-

-

-

+ add effective address calculation time

TABLE 27 - SINGLE OPERAND INSTRUCTION CLOCK PERIODS

instruction

CLR

NBCD

NEG

NEGX

NOT

See

TAS

TST

Size

Byte, Word

Long

Byte

Byte, Word

Long

Byte, Word

Long

Byte, Word

Long

Byte, False

Byte, True

Byte

Byte, Word

Long

Register

4(1/0)

6(1/0)

6(1/0)

4(1/0)

6(1/0)

4(1/0)

6(1/0)

4(1/0)

6(1/0)

4(1/0)

6(1/0)

4(1/0)

4(1/0)

4(1/0)

Memory

9(1/11 +

14(1/21 +

9(1/11 +

9(1/11 +

14(1/21 +

9(1/11 +

14(1/21 +

9(1/1} +

14(1/2) +

9(1/1) +

9(1/1) +

11(1/11 +

4(1/0)

4(1/0) +

+ add effective address calculation time

SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Table 28 indicates the number of dock periods for the shift

and rotate instruetions. The number of bus read and write

cycles is shown in parenthesis as: (r/w). The number of

dock periods plus the number of read and write cycles must

be added to those of the effective address calculation where

indicated.

BIT MANIPULATION INSTRUCTION CLOCK PERIODS

Table 29 indicates the number of dock periods required for

the bit manipulation instruetions. The number of bus read

and write cycles is shown in parenthesis as: (r/w). The

number of dock periods plus the number of read and write

cycles must be added to those of the effective address

calcuiation where indicated.

CONDITIONAL INSTRUCTION CLOCK PERIODS

Table 30 indicates the number of dock periods required for

the conditional instruetions. The number of bus read and

write cycles is indicated in parenthesis as: Ir/w). The number

of dock periods plus the number of read and write cycles

must be added to those of the effective address calculation

where indicated.

JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK

PERIODS

Table 31 indicates the number of dock periods required for

the Jump, jump to subroutine, load effective address, push

effective address, and move multiple registers instruetions.

The number of bus read and write cycles is shown in paren

thesis as: (r/w).

36

R68000C4»R68000C6«R68000C8

TABLE 28 - SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Instruction

ASR, ASL

LSR, LSL

ROR, ROL

ROXR, ROXL

Size

Byte, Word

Long

Byte, Word

Long

Byte, Word

Long

BytB, Word

Long

Register

6 + 2n(1/0)

8 + 2n<1/0)

6 + 2n(1/0)

8 + 2n<1/0)

6 + 2n(1/0)

8 + 2n(l/0)

6 + 2n(l/0)

8 + 2n(1/0l

Memory

9(1/11 +

-

9(1/1) +

-

9(1/1) +

-

9(1/11 +

-

TABLE 29 - BIT MANIPULATION INSTRUCTION CLOCK PERIODS

Instruction

BCLR

BSET

BTST

Size

Byte

Long

Byte

Long

Byte

Long

Byte

Long

Dynamic

Register

-

8(1/0)"

-

10(1/0)"

—

8(1/0)"

-

611/01

Memory

9(1/1) +

-

9(1/1) +

-

9(1/1) +

-

411/01 +

—

Static

Register

-

12(2/0)"

-

1412/01*

—

12(2/01"

-

10(2/0)

Memory

13(2/11 +

-

13(2/11 +

—

13(2/11 +

—

8(2/0) +

—

+ add effeclive address calculation time

' indicaies maximum value

TABLE 30 - CONDITIONAL INSTRUCTION CLOCK PERIODS

Instruction

ßcc

BRA

BSR

DBCC

CHK

TRAP

TRAPV

Displacement

Byte

Word

Byte

Word

Byte

Word

CC true

CC false

-■

-

-

Trap or Branch

Taken

10(1/0)

10(1/0)

10(1/0)

10(1/0)

20(2/2)

20(2/2)

-

1012/0)

43(5/3)+ "

37(4/3)

37(5/3)

Trap or Branch

Not Taken

8(1/0)

12(2/0)

-

-

-

-

12(2/0)

1413/0)

811/0) +

-

4(1/01

+ add eflective address calculation time

" indicates maximum value

37

TABLE31 - JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK PERIODS

Instr

JMP

JSR

LEA

PEA

MOVEM

M — R

MOVEM

R —M

Size

_

—

—

—

Word

Long

Word

Long

An®

8(2/0)

18(2/2)

4(1/0)

14(1/2)

12 + 4n

13+ n/0)

12 + 8n

(3+2n/0)

8+5n

(2/nl

8+10n

!2/2nl

An@ +

—

-

—

-

12 + 4n

(3+n/0)

l2 + 8n

<3+2n/0l

—

—

An@-

—

-

—

—

—

—

8+5n

12/n)

8+1On

(2/2n)

An@(d)

10(2/0)

20(272)

8(2/0!

13(2/2)

16+4n

(4 + n/0)

16 + 8n

(4 + 2n/0)

i2 + 5n

13/n)

12 + 10n

(3/2nl

An@{d, ix)"

14(3/0)

2412/2)

12(2/0)

2212/21

18+4n

(4 +n/0)

18+Bn

(4 + 2n/O)

14+5n

(3/n)

14+10n

!3/2n)

xxx.W

10(2/0)

20(2/2)

8(2/0]

18(2/2)

i6 + 4n

(4+n/0)

16 + 8o

!4 + 2n/01

12+5n

(3/n)

12+10n

(3/2n)

xxx.L

12(3/0)

22(3/2)

12(3/0)

22(3/2!

20 + 4n

(5 + n/O)

20 + 8n

!5+2n/0)

16+5n

(4/n)

16+1On

(4/2n)

PC(S(d)

. 10(2/0)

20(2/2)

8(2/0)

18(2/2»

16 + 4n

(4 +n/0)

16+Sn

(4 + 2n/0)

—

—

PC@id, ix)-

14(3/0)

24(2/2)

12(2/0)

22(2/2)

18 + 4n

(4+n/0)

1B + 8n

(4 + 2n/0)

:

—

n is the number of registers to move

* is the size of the index cegister (ix) does nol affect The instruction's execuiion Time

TABLE 32 - MULTI-PRECISION IMSTRUCTION CLOCK PERIODS

Instruktion Size Op Dn, Dn OP M, M

ADDX
Byte, Word

Long

4(1/0)

8(1/0)

19(3/1)

32(5/2)

CMPM
Byte, Word 12(3/0)

20(5/0)

SUBX
Byte, Word

Long

4(1/0!

8(1/0)

19(3/1)

32(5/2)

ABCD

SBCD

Byte

Byte

6(1/0)

6(1/0)

19(3/1)

19(3/1)

R68000C4»R68000C6»R68000C8

MULTI-PREC1S10N INSTRUKTION CLOCK PERIODS

Table 32 indicates the number of dock periods for the

multi-precision instructions. The number of dock periods in-

cludes the time to fetch both operands, perform the opera-

tions, störe the results, and read the next instructions. The

number of read and write cycles is shown in parenthesis as:

(r/w).

In Table 32, the headings have the following meanings:

Dn = data register Operand and M = memory Operand.

MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Table 33 indicates the number of dock periods for the

following miscellaneous instructions. The number of bus

read and write cyctes is shown in parenthesis as: (r/w). The

number of dock periods plus the number of read and write

cycles must be added to those of the effective address

calculation where indicated.

EXCEPTION PROCESSING CLOCK PERIODS

Table 34 indicates the number of dock periods for excep-

tion processing. The number of dock periods includes the

time for all stacking, the vector fetch, and the fetch of the

first instruction of the handler routine. The number of bus

read and write cycles is shown in parenthesis as: (r/w).

TABLE 33 - MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Instruction

MOVE from SR

MOVE to CCR

MOVE to SR

MOVEP

EXG

EXT

UNK

MOVE from USP

MOVE to USP

NOP

RESET

RTE

RTR

RTS

STOP

SWAP

UNLK

Size

-

-

-

Word

Long

-

Word

Long

-

-

■

-

-

-

—

-

-

-

-

Register

6(1/01

12(2/01

12(2/0)

-

-

6(1/0)

4(1/01

4(1/0)

18(2/2)

4(1/0)

4(1/0)

4(1/0)

132(1/0)

20(5/0)

20(5/0)

16(4/0)

4(0/0)

4(1/01

12(3/0)

Memory

9(1/1) +

12(2/0)+

12(2/01 +

-

-

-

-

-

-

-

-

-

-

-

-

-

_

-

-

Register ■■- Memory

-

-

-

18(2/2)

28(2/4)

-

-

-

-

-

-

-

-

-

-

-

-

-

Memory ■•-Register

-

-

-

16(4/0)

24(6/0)

-

-

-

-

-

-

-

-

-

-

-

-

+ add effective address calculation lime

TABLE 34 - EXCEPTION PROCESSING CLOCK PERIODS

Exceptktn

Address Error

Bub Error

Interrupt

Illegal Instruction

Privileged Instruction

Trece

Periods

57(4/7)

57(4/7)

47(5/3)"

37(4/3)

37(4/3)

37(4/3)

'The interrupt acknowledge bus cycle is assumed

to take four external dock periods

39

R68000C4«R68000C6«R68000C8

F1GURE 31 - AC ELECTRICAL WAVEFORMS

These waveforms should only be reforonced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a

functkinal description of the input and Output Signals. Refer to other functional descriptions and their related diagrams for device Operation.

VPA \

VMA

CLK/

A23-A1

FC2-FC0

LÖS. ÜÜ5 Read Cycle

LDS. UDS Wrile Cycle

R/W Read Cycle

R/W Wrile Cycte

Data Oui

Asynchronous Inputs"

(See Note 1).

i 1

121

HALT, RESET (Inputl

BEflH

DTACK— — -~

NOTE 1: Setup tirne for the asynchronous inputs BERR, BGACK,

BR, DTACK, IPL0-IPL2, and VPA guarantees their recog-

nition at the nexl falling edge of the clock.

NOTE 2: Waveiorm measurements fof all inputs and Outputs are

specified at: logic high = 2.0 volts, logic low = 0.8 volts.

40

R68000C4»R68000C6»R68000C8

AC ELECTRICAL SPECIFICATIONS (VDD = 5 0 Vdc ±5%; Vss = 0 Vdc; TA = 25°C)

Number

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

"Actual value

Characteristic

Clock Period

Clock Width Low

Clock Width High

Clock Fall Time

Clock Rise Time

Ciock Low to Address/FC Valid

Clock High to Address/FC High Impedance (max)

Clock High to Address/FC Invalid (min)

Clock High to AS, DS Low (max(

Clock High to AS: DS Low (min)

Address/FC Valid to AS, DS (read) Low

Clock Low to AS, DS Hjgh

AS, DS High to Address/FC Invalid

AS, DS Width Low (read)

AS, DS Width High

Clock High to AS, DS High Impedance

DS High to R/W High

Clock High to R/W High (max)

Clock High to R/W High (mm)

Clock High to R/W Low

Address/FC Valid to R/W Low

R/W Low to DS Low (write)

Clock Low to Data Out Valid

Clock High to R/W, VMA High Impedance

DS High to Data Out Invalid

Data Out Valid lo DS Low (write)

Dala In to Clock Low (set up time)

DS High to DTACK High

DS High to Data In (hold time]

AS, DS High to BERR High

DTACK Low to Data In (setup time)

HALT and RESET Input Transition Time

Clock High to BG Low

Clock High to BG High

BR Low to BG Low

BR High to BG High

BGACK Low to BG High

BG Low to Bus High Impedance (with AS high)

BG Width High

Clock Low to VMA Low

Clock Low to E Transition

E Outpul Rise and Fall Time

VMA Low to E High

AS, DS High to VPA High

Symbol

1CYC

'CL

tCH

ICf

ICr

ICLAV

tCHAZx

tCHAZn

tCHSLx

tCHSLn

CAVSL

tCLSH

tSHAZ

«SL

tSH

tCHSZ

tSHRH

ICHRHx

'CHRHn

ICHRL

tAVHL

1RLSL

tCLOO

tCHRZ

tSHDO

'DOSL

tDICL

tSHDAH

tSHDI

tSHBEH

'DALDI

tRHrf

tCHGL

tCHGH

1BRLGL

tBRHGH

'GALGH

tGLZ

tQH

tCLVML

tCLE

IErf

tVMLEH

tSHVPH

dependent upon aclual clock period. These figures are based on 8 MHz Operation.

Min

—

—

—

—

—

—

—

—

—

_

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0

0

0

—

—

—

1.5

1.5

1.5

0

1 5

—

-

—

2.0

0

Typ

125

55

55

—

—

70

70

20

60

20

30"

40

40*

150

150

60

60-

60

20

60

50'

80'

50

60

30'

30"

30

—

—

90"

60

60

—

—

—

—

—

60

55

—

—

—

Max

10

10

—

—

—

—

-

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

120

—

—

200

—

—

3.0

30

20

—.

—

—

—

25

3.0

—

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

clk. per.

cik. per

clk. per.

clk. per

clk. per.

ns

ns

ns

clk. per.

ns

41

FIGURE32 - AC ELECTR1CAL WAVEFORMS - BUS ARBITRATIQN

These waveforms should onty be referenced in regard to the edge-to-edge measurement of the timing specifications. They are

not intended as a functionai description of the input and output Signals. Refer to other functionai descriptions and their reiated

diagrams for device Operation.

and R/W

ER

BGACK

BG

CLK

AC ELECTRICAL SPECIFICATIONS (Vdd s 5.0 Vdc ±5%; Vss = 0 Vdc; TA = 25CC) BUS ARBITRATION

Number

33

34

35

36

37

38

39

Characienstic

Clock High to BG Low

Clock High to BG High

BR Low to BG Low

BR High lo BG High

BGACK Lowto BG High

BG Low to Bus High Impetiance (with AS high)

BG Width High

Symbol

tCHGL

tCHGH

tBRLGL

IBRHGH

tGALGH

1GLZ

tGH

Min

—

—

1.0

10

1.0

0

1.5

typ

60

60

.—

—

—

—

Max

—

—

3.0

3.0

2.0

1.5

—

Unit

ns

ns

clk. per.

ctk. per.

clk. per.

clk. per.

clk. per

NOTE 1: Setup time for the asvnchronous inputs BERR, BGACK,

BR, DTACK, IPL0-IPL2, and VPA guarantees their recog-

nition at the next falling edge of the clock.

NOTE 2: Waveform measurements for all inputs and Outputs are

specitied at: logsc high = 2.0 volts, logic low = 0.8

R68000C4«R68000C6«R68000C8

ELECTRICAL CHARACTERISTICS <VCC=5.0 Vdc±5%; VSs = O Vdc; TA 0°C to 70DC, Figures 33, 34, 35)

Characteristic

Input High Voltage

input Low Voltage

Input LeakageCurrent BERR, BGACK, BR, DTACK,

IPLO-1PL2,VPA

HALT, RESET

Three-State lOff State) Input Current ÄS, A1-A23, D0-D15
FC0-FC2, LDS, R/W, UDS, VMA

Output High Voltage Höh = -400fiAdc) ÄS, A1-A23, BG, D0-D15, E,
FC0-FC2, LDS, R/W, UDS, VMA

Output Low Voltage

||0l= 1.6mA) HALT

HOL = 3.2 mA) A1-A23, BG, E, FC0-FC2

llOL=5.0mA) RESET.

dOL=5-3 mA) AS, D0-D15, LDS, R/W,

UDS, VMA

Power Dissipation (Clock Frequency = 8 MHz)

Capacitance (Package Type Dependent)

<Vjn = 0Vdc; Ta = 25°C; Frequency=l MHz)

Symbol

V|H

VfL

lin

'TSl

VOH

VOL

PD

Qn

Min

2.0

VSS-0.3

-

-

2.4

IIII
-

Typ

-

-

1.0

2.0

7.0

IIII
1.0

10.0

Max

vCc

0.8

-

-

0.5

0.5

0.5

0.5

-

-

Unrt

Vdc

Vdc

pAdc

fiAdc

Vdc

Vdc

W

PF

FIGURE 33 - RESET TEST LOAD FIGURE 34 - HALT TEST LOAD HGURE 35 - TEST LOADS

+ 5 Vdc

R'=740Q

Test

Point

I

MMD6150

or Equivalent

-M-

MMD7000

or Equivalent

CL=130pF

(Includes all Parasitics)

RL = 6.0 kfifor _

Ä~5, A1-A23;_BG, DO-D 15, E

FC0-FC2, LDS, R/W, UD_S, VMA

"R=1.22kÜfor A1-A23, BG,

E, FC0-FC2

FIGURE 36 - INPUT CLOCK WAVEFORM MAXIMUM RATINGS

2.0 V.

tCr

lcyc-

r

Rating

Supply Voltage

Input Voltage

Operating Temperature Range

Storage Temperature

Symbol

Vcc

Vin

TA

Tstg

Value

-0.3 to +7.0

-0.3 to +7.0

0to70

-55to 150

Unit

Vdc

Vdc

°C

°c

CLOCK TIMING (Rgure36)

Characteristic

Frequency of Operation

Cycle Time

Clock Pulse Width

Rise and Fall Times

Symbol

F

*cyc

tCL

tCH

'Cr

tCf

4 MHz

MC6800L4

Min

2.0

250

115

115

—

Max

4.0

500

250

250

10

10

6 MHz

MC68000L6

Min

2.0

167

75

75

_-

Msx

6.0

500

250

250

10

10

8 MHz

MC68000L

Min

2.0

125

55

55

Max

8.0

500

250

250

10

10

Unrt

Unit

MHz

ns

ns

ns

43

R68000C4«R68000C6»R68000C8

— D

NOTES:

1. DIMENSION PÄllS DATUM.

2. POSITIONALTOLERANCE FOR LEADS:

0.25 (0.01 0)(m)T A

3. [T]1SSEATING PLANE.

4. DIMENSION "L"TO CENTER OF LEADS

WHEN FORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5,1973.

DIM

A

B

C

0

F

G

J

K

L

M

N

MILLIMETERS

MIN

80.52

22.25

3.05

0.38

0.76

MAX

82.04

22.96

4.32

0.53

1.40

2.54 BSC

0.20

2.54

22.61

„

1.02

0.33

4.19

23.11

10°

1.52

INCHES

MIN

3.170

0.876

0.120

0.015

0.030

MAX

3.230

0.904

0.170

0.021

0.055

0.100 BSC

0.008

0.100

0.890

-

0.040

0.013

0.165

0.910

1QO

0.060

ELECTRONIC DEVICES DIVISION REGIONAL ROCKWELL SALES OFFICES

UNITED STATES

Eleciromc Devices Qvision

RocKwe'J intwnational

3310 Miraioma Avenue

P O Bo< 3669

Ananei.ii. Caiiloma 92BO3

(714)632-3729
TWX 910 591-1698

Electronic Dences Division

RocKweil Iniernaliorral

PO Box 1D4fi2

Dallas. Texas 75207
121-1) 996-5794 ,'5780

Telex 73-307 73-2490

Eleclrofiic Devices Division

Rochwell International

l eo 1 Civic CBtilcr Dnue Sjile 203

Santa Odra Caiilorn.a 95050

14081 984-6070

Telei 17n3S Mission snw

Elect' Dev

RHOwell Inleinaiionui

10700 Wes! Higgms fto . Swlo 102

Rosemoii. Illinois SO0I8

13121 297-8862

TWX 910 2330179 iRI MED ROSM)

Eleclronic Devices Division
Rochwell lntefnalion.il

SO01B Gteenttue

E.eculive Campus nt 73

MaillQrl N J 0B053 i5OQ) 5960090

TWX 710 WO-1377

EUROPE

Eleclionic Devices Oiväion

Rotkweil intwnalional GmbH

Fiaunlioleislrasbe 11

D8O33 Munchen-Mdninsited

Geimary

10891 859-9575 Telo> D52W265O

Eiecl'onic Devices DiviFjon

Rnotweti-Cotiifls

Heallitow Housc. Bald Rö

C'awlo'il Hunslo«.

MidOlese' Eng.ana

(01I759-99M Telei 851-25463.

FAR EAST

Eleclronic Devices Division

Rochwell International Qve'seas Ccp

llolipia Hirakiiw.'iclio Umi|

7-6, Z-cliomo Hir.ikawii-cho

Chiyoda-ku Tokyo 102 Jap.ni

1031 265-8806 Tolui J22198

YYOUR LOCAL HEPRESENTATIVE

5-80

